Compare commits

...

230 Commits

Author SHA1 Message Date
Recep Aslantas
059bdfdd4b update docs 2018-05-27 11:54:05 +03:00
Recep Aslantas
ef0653640f update cocoapod version tag 2018-05-27 11:53:48 +03:00
Recep Aslantas
e5d61b3433 update mat4_mulv3 api to include translation 2018-05-27 11:46:27 +03:00
Recep Aslantas
73c073cf32 add missing call functions 2018-05-27 11:44:06 +03:00
Recep Aslantas
1362bef50f fix glm_translate_to 2018-05-23 23:13:41 +03:00
Recep Aslantas
7d783eeace align local variables on stack 2018-05-23 23:04:06 +03:00
Recep Aslantas
e12e79b1a5 improve scale_make 2018-05-23 22:11:44 +03:00
Recep Aslantas
6cd3d52dc5 improve translate_make 2018-05-23 22:08:12 +03:00
Recep Aslantas
fb2cac9816 aabb: center of AABB helper
* it is just wrapper of vec_center but it saves to access min and max values of AABB
2018-05-22 17:45:37 +03:00
Recep Aslantas
4e63325f55 aabb: add missing call versions 2018-05-22 17:44:36 +03:00
Recep Aslantas
96c3e604ff now working on v0.4.6 2018-05-22 17:43:46 +03:00
Recep Aslantas
077e304fc5 Merge pull request #42 from recp/optimizations
simd: optional shuffle configuration to save move instructions
2018-05-10 16:47:00 +03:00
Recep Aslantas
599524dacf docs: add new option to docs 2018-05-10 16:42:13 +03:00
Recep Aslantas
da5ad69863 simd: rename _mm_ extensions to glmm_ 2018-05-10 14:27:53 +03:00
Recep Aslantas
9fc2ead8ef Merge branch 'master' into optimizations 2018-05-10 13:59:10 +03:00
Recep Aslantas
48d33c16cb Merge pull request #53 from recp/simd
simd: Make alignment OPTIONAL
2018-05-10 13:57:31 +03:00
Recep Aslantas
464bd917d0 update readme 2018-05-10 12:21:33 +03:00
Recep Aslantas
c6d07bb6eb surround PI with parentheses + code style + update docs 2018-05-10 12:18:54 +03:00
Recep Aslantas
94b286f1f9 docs: add new alignment option to docs 2018-05-09 16:43:42 +03:00
Recep Aslantas
f774925e8a win, simd: make sure that CGLM_ALL_UNALIGNED is defined for older visual studios 2018-05-09 15:30:54 +03:00
Recep Aslantas
0e49e95161 win: update visual studio version for align requirement 2018-05-08 18:29:02 +03:00
Recep Aslantas
b277357800 update gitignore 2018-05-08 18:28:31 +03:00
Recep Aslantas
835cec2ccb drop alignment requirement if CGLM_ALL_UNALIGNED defined
* bring alignment back for visual studio 2017
2018-05-08 16:26:33 +03:00
Recep Aslantas
5dbbd0826d simd: replace glm_simd_ with glmm_
* now glmm_ is used as global simd namescape
2018-05-08 15:55:36 +03:00
Recep Aslantas
56f0bb0928 simd, avx: make alignment optional for load/store operations 2018-05-08 15:35:17 +03:00
Recep Aslantas
568001d26a simd, sse2: make alignment optional for store operations 2018-05-08 15:31:09 +03:00
Recep Aslantas
252bf925fc simd, sse2: make alignment optional for load operations 2018-05-08 15:25:23 +03:00
Recep Aslantas
0f339c5c03 fix header dependencies 2018-05-07 21:12:29 +03:00
Recep Aslantas
a9d56f2dae docs: fix typos 2018-05-04 00:50:56 +03:00
Recep Aslantas
dd60496ffc Merge pull request #49 from Yatima1460/master
replace _WIN32 with _MSC_VER
2018-04-30 19:08:59 +03:00
Federico Santamorena
7c0e9e99c6 _WIN32 to _MSC_VER 2018-04-30 17:17:06 +02:00
Federico Santamorena
064209c917 replaced _WIN32 with _MSC_VER 2018-04-30 17:13:16 +02:00
Recep Aslantas
94d6036c38 suppress warnings for Mingw 2018-04-30 11:09:42 +03:00
Recep Aslantas
6c01eff056 now working on v0.4.5 2018-04-30 10:59:40 +03:00
Recep Aslantas
ada69a7c43 fix cocoapods validation errors 2018-04-22 10:14:17 +03:00
Recep Aslantas
cef97fca3e add cocoapods spec 2018-04-22 01:03:17 +03:00
Recep Aslantas
498a33fac5 fix public header's includes 2018-04-21 22:36:25 +03:00
Recep Aslantas
3c7a729729 build: remove making symbolic link for libtoolize 2018-04-20 15:19:06 +03:00
Recep Aslantas
a6a37995e9 build: update automake sources 2018-04-18 23:02:15 +03:00
Recep Aslantas
6202179c23 update version 2018-04-18 22:30:20 +03:00
Recep Aslantas
22b699174c build: improve calling libtoolize 2018-04-18 21:47:53 +03:00
Recep Aslantas
016c0a71a6 Merge pull request #46 from recp/affine
affine transform update
2018-04-18 15:25:40 +03:00
Recep Aslantas
e28cf1d3f6 remove unused variable 2018-04-18 15:23:07 +03:00
Recep Aslantas
63966ee5c0 quat: use the new "glm_mul_rot" for quaternion
* this should be faster than mat4_mul
2018-04-18 15:16:24 +03:00
Recep Aslantas
a723ecdb7e add troubleshooting to docs 2018-04-18 15:11:06 +03:00
Recep Aslantas
065f93ab3c update docs, drop scale1 2018-04-18 14:30:44 +03:00
Recep Aslantas
4dbcd28fdb use mul_rot for rotations to make thrm faster 2018-04-18 14:12:56 +03:00
Recep Aslantas
be0e3fc9f2 new matrix multiplication helper for rotation matrices 2018-04-18 14:05:09 +03:00
Recep Aslantas
d648f5772d affine: drop rotate_ndc functions 2018-04-18 10:57:35 +03:00
Recep Aslantas
f163fcd043 simd: load vec3 helpers for sse/sse2 2018-04-18 00:00:47 +03:00
Recep Aslantas
27ab6a7dd0 update docs, add clarifications for affine transforms 2018-04-17 15:42:24 +03:00
Recep Aslantas
33e951fe2e implement rotate_at for quat and provide make version 2018-04-17 12:17:04 +03:00
Recep Aslantas
c63c6c90ac implement rotate_at 2018-04-17 11:12:18 +03:00
Recep Aslantas
a2792178db add missing call funcs for affine transforms 2018-04-17 11:07:57 +03:00
Recep Aslantas
cefd5fb53d test: add some tests for affine transforms 2018-04-17 10:33:52 +03:00
Recep Aslantas
821c79572f test: add some tests for mat3 2018-04-15 20:47:38 +03:00
Recep Aslantas
f0a27d0ce2 now working on v0.4.2 2018-04-15 20:46:46 +03:00
Recep Aslantas
007ae62e06 update docs version 2018-04-15 13:10:07 +03:00
Recep Aslantas
826ddf0f5b improve normalize vectors 2018-04-15 12:46:29 +03:00
Recep Aslantas
b09b5f260b vec: fix rotate vector using mat4 and mat3 rotation matrices 2018-04-15 12:44:50 +03:00
Recep Aslantas
59aacee968 optimize clamp for vec4 2018-04-14 12:49:37 +03:00
Recep Aslantas
429aff087f optimize min and max for vec4 2018-04-14 11:35:28 +03:00
Recep Aslantas
ca9f61dd74 Merge pull request #44 from recp/vector
new vector functions and optimizations
2018-04-14 09:19:51 +03:00
Recep Aslantas
d6395d4fb8 vec: optimize rotate vector using matrix
* add mat3 version
2018-04-13 22:33:32 +03:00
Recep Aslantas
7f7007574b vec: implement muladd's scalar version 2018-04-13 22:30:44 +03:00
Recep Aslantas
13345f06c1 fix vec4 scalar ops 2018-04-13 15:50:05 +03:00
Recep Aslantas
725fac75d0 now working on v0.4.1 2018-04-13 15:47:45 +03:00
Recep Aslantas
c05f58a169 vec: add addadd, subadd and muladd helpers 2018-04-13 15:46:43 +03:00
Recep Aslantas
d841f8809d vec: add some new functions for vector
* _mul: multiply two vector (replacement for _mulv)
* _div: div two vector
* _divs: div vector with scalar
* adds: add scalar to each components of vec
* subs: sub scalar from each components of vec
2018-04-13 15:12:56 +03:00
Recep Aslantas
af5a2627b4 fix scale_as for zero length vector
* return zero if vector length is zero
2018-04-13 11:57:34 +03:00
Recep Aslantas
25fc3d0284 vec: add one and zero helpers for vectors 2018-04-13 11:57:14 +03:00
Recep Aslantas
c489955b00 add simd norm helper 2018-04-13 11:39:14 +03:00
Recep Aslantas
79f8b1ebf8 vec4: optimize vec4 norm and norm2 2018-04-13 11:18:42 +03:00
Recep Aslantas
0eb37da8bb vec4: optimize vec4 normalize with SIMD 2018-04-13 11:01:07 +03:00
Recep Aslantas
44728c536b ci: update travis ci 2018-04-12 15:52:06 +03:00
Recep Aslantas
c8ed8acbed Update README.md 2018-04-12 14:47:14 +03:00
Recep Aslantas
2d77123999 quat: fix quaternion inverse and tests about it
* multiplication quaternion and its inverse must be identity
2018-04-11 16:50:37 +03:00
Recep Aslantas
462067cfdc Merge pull request #43 from recp/quaternion
quaternion improvements and new features
2018-04-11 12:43:48 +03:00
Recep Aslantas
9ae8da3e0a update version to v0.4.0 2018-04-11 12:36:39 +03:00
Recep Aslantas
0e63c245d4 update docs 2018-04-11 12:34:20 +03:00
Recep Aslantas
de55850136 add call version of vector extensions 2018-04-11 12:31:29 +03:00
Recep Aslantas
51278b26b4 quat: update call versions of quaternion 2018-04-11 11:19:13 +03:00
Recep Aslantas
fdea13507b replace mat4_mulq with glm_quat_rotate
* glm_quat_rotate is better name to rotate transform matrix using quaternion.
* we may use mat4_mulq in the future for another purpose e.g. left multiplication quat with matrix
2018-04-11 10:49:53 +03:00
Recep Aslantas
80d255e6d9 rotate vector using quaternion 2018-04-11 00:47:11 +03:00
Recep Aslantas
d447876c70 improve glm_vec_rotate 2018-04-11 00:46:23 +03:00
Recep Aslantas
b1fa7ff597 normalize axis quaternion axis-angle constructor 2018-04-11 00:36:39 +03:00
Recep Aslantas
010dcc9837 optimize normalize quaternion with SIMD
* provide _to version for storing into another quat
2018-04-11 00:17:41 +03:00
Recep Aslantas
5dec68823c add additional tests and comments to quat tests 2018-04-10 17:41:25 +03:00
Recep Aslantas
4c79fee5d3 quat: additional tests for angle, axis, mul (hamilton product) 2018-04-10 17:16:31 +03:00
Recep Aslantas
18ef0d7af1 quat: quaternion for look rotation ( from source point to dest point ) 2018-04-10 16:52:52 +03:00
Recep Aslantas
9466182c10 quat: create view wmatrix with quaternion helper 2018-04-10 16:01:23 +03:00
Recep Aslantas
f0a51b35ad quat: transposed/inverted version of quat2mat 2018-04-10 15:41:09 +03:00
Recep Aslantas
290bcf134c quat: add lerp and improve slerp 2018-04-10 12:38:54 +03:00
Recep Aslantas
416e2f4452 vec: lerp for vec3 and vec4 2018-04-10 11:44:16 +03:00
Recep Aslantas
1fb82a1922 quat: use vector functions for available operations
* provide quat_copy function
2018-04-10 10:47:55 +03:00
Recep Aslantas
591c881376 vec: extend flip sign to store result in another vector 2018-04-10 10:46:45 +03:00
Recep Aslantas
6f69da361b quaternion multiplication
* convert quaternion multiplication to xyzw
* previous implementation may be wrong, wikipedia version implemented
* implement SSE version
2018-04-09 23:56:09 +03:00
Recep Aslantas
93a08fce17 quat: axis angle of quaternion 2018-04-09 23:12:44 +03:00
Recep Aslantas
cc1d3b53ea quat: implement add, sub, real and imag helpers 2018-04-09 22:32:55 +03:00
Recep Aslantas
b21df8fc37 inverse of quaternion 2018-04-09 22:26:23 +03:00
Recep Aslantas
76e9f74020 conjugate of quaternion 2018-04-09 21:54:53 +03:00
Recep Aslantas
d79e58486d update credits file 2018-04-09 21:54:35 +03:00
Recep Aslantas
3dc93c56e8 convert quaterinon to xyzw order (part 1) 2018-04-09 18:49:12 +03:00
Recep Aslantas
7615f785ac improve quaternion to matrix 2018-04-09 00:53:14 +03:00
Recep Aslantas
f0daaca58b improve matrix to quaternion 2018-04-09 00:46:00 +03:00
Recep Aslantas
381b2fdcc0 fix vec4_norm2, use dot for vec3_norm2 2018-04-09 00:01:56 +03:00
Recep Aslantas
e4e0fa623c sse2 version of vec4 dot product
* use this for normalizing vector
2018-04-08 18:27:54 +03:00
Recep Aslantas
932f638d5a optimize mat4 to quaternion
* add SSE2 version and optimize scalar version
2018-04-08 12:31:32 +03:00
Recep Aslantas
81bda7439d vector square root 2018-04-08 12:30:15 +03:00
Recep Aslantas
b27603c268 normalize quaternion before converting to matrix
* because it must be unit quaternion and didn't specified this in docs.

* we must provide alternative func for unit quat
2018-04-08 00:09:40 +03:00
Recep Aslantas
12c5307447 vec3 and vec4 sign helper 2018-04-07 21:53:22 +03:00
Recep Aslantas
257c57d41f mat4 to quaternion 2018-04-07 19:46:46 +03:00
Recep Aslantas
f5140ea005 quat: mat4_mul_quat helper
* the quaternion is used as right matrix
2018-04-07 13:47:20 +03:00
Recep Aslantas
619ecdc5a4 quat: improve normalize 2018-04-07 13:46:46 +03:00
Recep Aslantas
9b8748acc4 quat: quaternion to mat3 2018-04-07 13:27:40 +03:00
Recep Aslantas
ae06c51746 improve glm_mat4_mulN for non-DEBUG environment 2018-04-07 13:22:44 +03:00
Recep Aslantas
11430559b4 fix isnan and isinf 2018-04-07 08:28:37 +03:00
Recep Aslantas
58f0043417 vector utils: isnan and isinf
* a vector which has least one NaN or INF member, is assumed not valid vector.
2018-04-06 22:57:24 +03:00
Recep Aslantas
cfd3600107 simd: optional shuffle configuration to save move instructions 2018-04-04 22:42:21 +03:00
Recep Aslantas
967fb1afad Update README.md 2018-04-03 17:32:10 +03:00
Recep Aslantas
7411ac36c1 update docs for euler angles 2018-04-03 17:05:45 +03:00
Recep Aslantas
238609f2c0 Merge pull request #31 from recp/proj
add project / unproject functions
2018-04-03 16:51:55 +03:00
Recep Aslantas
ea0a10ade9 suppress warnings 2018-04-03 16:47:59 +03:00
Recep Aslantas
429fdfd5c5 update build scripts 2018-04-03 16:47:51 +03:00
Recep Aslantas
024412f00e add docs for project/unproject 2018-04-03 16:41:13 +03:00
Recep Aslantas
e8615ea14c fix tests list 2018-04-03 12:35:30 +03:00
Recep Aslantas
be81d73895 Update test_main.c 2018-04-03 12:32:21 +03:00
Recep Aslantas
b16f0ded85 Merge branch 'master' into proj 2018-04-03 12:30:03 +03:00
Recep Aslantas
63acfd681e fix unproject, add tests to project/unproject 2018-04-03 12:27:20 +03:00
Recep Aslantas
eb527e39b4 optimize project 2018-04-03 11:25:33 +03:00
Recep Aslantas
9f389ab8ec project function 2018-04-03 11:09:13 +03:00
Recep Aslantas
3399595dc2 add vec2 type 2018-04-03 10:46:46 +03:00
Recep Aslantas
2513d46102 Merge pull request #41 from winduptoy/patch-1
Fix small typo.
2018-04-02 20:26:52 +03:00
Matt Reyer
c298f4a4d7 Fix small typo. 2018-04-02 11:33:58 -04:00
Recep Aslantas
84cdbd5072 Merge pull request #40 from recp/aabb-ext
Axis-Aligned Bounding Box (AABB) Extensions
2018-04-02 16:40:23 +03:00
Recep Aslantas
74f9865884 add docs for new aabb functions 2018-04-02 16:36:55 +03:00
Recep Aslantas
dbd1e334ea aabb box size and radius 2018-04-02 16:26:14 +03:00
Recep Aslantas
acda316c12 get sign of float helper as -1, +1 and 0
* add clarification for zero input
2018-04-02 16:18:50 +03:00
Recep Aslantas
86efe64b8e helper for check aabb is valid or not 2018-04-02 12:35:22 +03:00
Recep Aslantas
b0991342a6 aabb printer function 2018-04-02 12:08:08 +03:00
Recep Aslantas
984916d520 invalidate axis-aligned boundng box util 2018-04-02 11:50:53 +03:00
Recep Aslantas
54c44ff224 Merge pull request #39 from opencollective/opencollective
Activating Open Collective
2018-04-01 22:26:33 +03:00
Jess
db4761b437 Added backers and sponsors on the README 2018-04-01 18:12:46 +09:00
Recep Aslantas
ca504f7058 now working on v0.3.6 2018-03-29 00:12:16 +03:00
Recep Aslantas
5a7b9caf16 Update README.md 2018-03-29 00:02:37 +03:00
Recep Aslantas
43b3df992d Merge pull request #37 from recp/euler
fix euler angles (extrinsic -> intrinsic)
2018-03-28 23:58:15 +03:00
Recep Aslantas
26110f83d1 euler: fix thetaY in extracting angles 2018-03-27 12:35:19 +03:00
Recep Aslantas
d1f3feeb6e test: add tests for euler XYZ 2018-03-27 12:14:46 +03:00
Recep Aslantas
4298211795 euler: fix extracting XYZ angles 2018-03-27 12:14:12 +03:00
Recep Aslantas
c244b68e73 build: improve build-deps 2018-03-27 11:22:05 +03:00
Recep Aslantas
205d13aa93 fix euler angles (extrinsic -> intrinsic)
because cglm uses intrinsics for these rotations
2018-03-27 11:14:26 +03:00
Recep Aslantas
45f13217c3 Merge pull request #35 from recp/clamp
clamp functions
2018-03-22 21:28:19 +03:00
Recep Aslantas
21ec45b2af add tests for clamp 2018-03-22 21:24:41 +03:00
Recep Aslantas
71b48b530e add documentation for clamp 2018-03-22 21:24:26 +03:00
Recep Aslantas
48b7b30e42 add call version for clamp 2018-03-22 21:18:08 +03:00
Recep Aslantas
86055097e1 clamp functions 2018-03-22 18:10:10 +03:00
Recep Aslantas
08be94a89b Merge pull request #34 from NoxNode/typofix
typo fixes
2018-03-20 10:41:11 +03:00
mcsquizzy123
91b2a989e2 typo fixes - heaer and haeder 2018-03-19 18:37:49 -07:00
Recep Aslantas
780179ff0d fix unproject 2018-03-08 22:29:10 +03:00
Recep Aslantas
c148eacdc2 fix unproject's parameters 2018-03-08 13:12:08 +03:00
Recep Aslantas
fadde1e26a fix libtool version number 2018-03-08 13:04:29 +03:00
Recep Aslantas
29996d0bdd add unproject function 2018-03-08 13:02:33 +03:00
Recep Aslantas
cfab79e546 now working on v0.3.5 2018-03-08 12:18:07 +03:00
Recep Aslantas
da2f3aaafd docs: fix aabb docs 2018-03-03 18:17:58 +03:00
Recep Aslantas
0e964a1a62 complete documentation 2018-03-03 17:59:50 +03:00
Recep Aslantas
1fd0a74478 docs: euler angles documentation 2018-03-01 18:27:56 +03:00
Recep Aslantas
b3a39aa13c docs: add docs for quaternions 2018-02-27 11:14:03 +03:00
Recep Aslantas
b737bb2dde docs: add docs for affine matrix 2018-02-27 10:53:45 +03:00
Recep Aslantas
a610626693 fix vec4 parameter type 2018-02-26 23:24:43 +03:00
Recep Aslantas
425bf87c1f docs: add docs for camera 2018-02-26 23:23:31 +03:00
Recep Aslantas
23698b7e48 docs: add docs for vec4 2018-02-26 22:08:04 +03:00
Recep Aslantas
be3f117374 docs: add docs for vec3-ext 2018-02-26 17:10:33 +03:00
Recep Aslantas
77e62163ea docs: add docs for vec3 2018-02-26 16:21:04 +03:00
Recep Aslantas
96f773417a docs: add docs for mat3 2018-02-26 12:16:09 +03:00
Recep Aslantas
02ab66a8b3 docs: add docs for transforms 2018-02-24 20:12:05 +03:00
Recep Aslantas
fc424631a4 docs: add docs for api, mat4 2018-02-24 13:18:28 +03:00
Recep Aslantas
6d5734fe7e docs: update sphinx conf 2018-02-24 13:18:13 +03:00
Recep Aslantas
d95bf60b02 docs: update docs 2018-02-24 00:54:59 +03:00
Recep Aslantas
891148cbe3 Merge pull request #29 from recp/color
color: add luminance function
2018-02-23 18:00:50 +03:00
Recep Aslantas
4ce2e86d9f color: add luminance function 2018-02-23 11:12:55 +03:00
Recep Aslantas
8a16f358a3 build: fix C flags for older compiler[s] 2018-02-22 19:55:16 +03:00
Recep Aslantas
43d0837303 Update README.md 2018-02-21 11:53:31 +03:00
Recep Aslantas
c1c659489a surround macro values with parentheses 2018-02-18 11:16:03 +03:00
Recep Aslantas
681a74b39c move credits to its own file to keep LICENSE more clear 2018-02-18 10:46:17 +03:00
Recep Aslantas
5ccf80cd0e Update README.md 2018-02-05 18:13:40 +03:00
Recep Aslantas
3882b72f7f vec: helper macro for zero vectors 2018-02-05 17:46:28 +03:00
Recep Aslantas
55d1e240a2 Merge pull request #23 from recp/box
bounding box
2018-01-18 23:40:27 +03:00
Recep Aslantas
e4727e6c88 Update README.md 2018-01-18 23:39:19 +03:00
Recep Aslantas
9649a0285f fix documentation param names 2018-01-18 20:52:24 +03:00
Recep Aslantas
0f9f4748d7 box: cull frustum with aabb helper 2018-01-18 20:08:45 +03:00
Recep Aslantas
a832d58d9f box: cull frustum with aabb helper 2018-01-18 20:04:21 +03:00
Recep Aslantas
8b2c74b0cc bounding box 2018-01-18 16:36:58 +03:00
Recep Aslantas
da8bbc6536 improve minv and maxv 2018-01-18 16:24:30 +03:00
Recep Aslantas
4a7cd2eb26 cam: convenient util for crating orthographic proj with AABB 2018-01-18 16:23:34 +03:00
Recep Aslantas
565ee2d6eb frustum: fix bounding box
default value 0.0 causes to get min or max as 0 if max < 0 or min > 0
2018-01-18 16:12:44 +03:00
Recep Aslantas
c58db651a6 vec: convenient wrappers/utils for vectors (#21)
* vec: convenient wrappers/utils for vectors
* add additional convenient funcs
2018-01-16 23:10:35 +03:00
Recep Aslantas
ee78459340 add documentation to quaternion header 2018-01-15 16:33:57 +03:00
Recep Aslantas
37f6bb8725 add documentation to util header 2018-01-15 16:02:48 +03:00
Recep Aslantas
703c74b6ca add documentaiton to affine-mat header 2018-01-15 15:57:08 +03:00
Recep Aslantas
42d8f58960 update affine header
* add come documentation to affine header
* rename scale1 to scale_uni
2018-01-15 15:52:13 +03:00
Stephen Strowes
74201aaef9 add new headers to makefile.am (#20)
* add new headers to makefile.am
* add missing call headers to makefile.am
2018-01-14 23:08:46 +03:00
Recep Aslantas
c6b0d96e71 Merge pull request #19 from recp/dev
move frustum related stuff to separate frustum header
2018-01-14 15:01:33 +03:00
Recep Aslantas
8bcd6bd077 frustum: make clipspace coords configurable
* now users can override clip space coords
* add more desc to header
* add call version for _corners_at
2018-01-14 11:03:03 +03:00
Recep Aslantas
6dcd919130 Update README.md 2018-01-14 00:24:43 +03:00
Recep Aslantas
944d285e14 frustum: new util for getting a plane's corners between near and far planes
* optimize frustum box func
2018-01-13 21:40:34 +03:00
Recep Aslantas
a56da8cc4a frustum: new macros for frustum 2018-01-13 21:37:15 +03:00
Recep Aslantas
40458be41b frustum: fix array index 2018-01-13 17:27:06 +03:00
Recep Aslantas
b6dc5029dd build, win: update windows solution and proejct files 2018-01-12 16:41:34 +03:00
Recep Aslantas
2349bbff31 move frustum related stuff to frustum header
* create helpers macro which defines corner index
* func for get bounding box frustum
* add missing source to make file
* add more desc to glm_frustum_corners
2018-01-12 15:21:36 +03:00
Recep Aslantas
b76f78948b Merge pull request #18 from recp/dev
new wrappers for lookat
2018-01-12 15:05:48 +03:00
Recep Aslantas
2b7994778d fix lib call version of look_anyup 2018-01-12 12:54:33 +03:00
Recep Aslantas
4e6ab470c2 update glm_look_any to glm_look_anyup 2018-01-12 12:52:25 +03:00
Recep Aslantas
50c23ce1c0 add missing definitions, fix initizlizing vector 2018-01-10 22:42:34 +03:00
Recep Aslantas
61ac032751 new wrappers for lookat 2018-01-10 22:02:14 +03:00
Recep Aslantas
9ee79a8b13 possible orthogonal/perpendicular vector 2018-01-10 00:26:13 +03:00
Recep Aslantas
efe6729891 Merge pull request #16 from recp/dev
convenient functions for perspective projection matrix
2018-01-10 00:06:23 +03:00
Recep Aslantas
42743e3b82 use float literal suffix for numbers 2018-01-10 00:01:06 +03:00
Recep Aslantas
b3c3e3a034 fix variable names 2018-01-08 16:03:53 +03:00
Recep Aslantas
642cc8d603 perspective sizes 2018-01-04 13:54:35 +03:00
Recep Aslantas
d53f95314d apply optimizations 2018-01-04 13:52:35 +03:00
Recep Aslantas
797c4581ee extract fovy and aspect for perpective matrix 2018-01-04 11:16:09 +03:00
Recep Aslantas
6534f4a6c7 Merge pull request #14 from recp/dev
feature: extract view frustum planes and corners
2018-01-02 20:15:09 +03:00
Recep Aslantas
3e4f52b3af optimize operations, fix max sign 2018-01-02 10:16:46 +03:00
Recep Aslantas
eaf45e489d view frustum center 2017-12-31 17:17:39 +03:00
Recep Aslantas
2d0a3ad828 use frustum namespace for frustum specific funcs 2017-12-30 18:05:11 +03:00
Recep Aslantas
400fc6cbee extracting view frustum corners 2017-12-30 17:51:40 +03:00
Recep Aslantas
634e1170a3 min and max util 2017-12-30 17:50:53 +03:00
Recep Aslantas
99669a21a4 move extracting planes to camera header
* since it related to view frustum / camera it should be in thie header or separate header called frustum.h
* update LICENSE to add authors of algorithm
2017-12-30 13:55:17 +03:00
Recep Aslantas
d14627ac52 vec: fix parameter types 2017-12-30 13:14:09 +03:00
Recep Aslantas
c98340d9d2 exracting planes 2017-12-30 12:18:32 +03:00
106 changed files with 10424 additions and 1219 deletions

11
.gitignore vendored
View File

@@ -59,4 +59,13 @@ cglm_test_ios/*
cglm_test_iosTests/* cglm_test_iosTests/*
docs/build/* docs/build/*
win/cglm_test_* win/cglm_test_*
* copy.* * copy.*
*.o
*.obj
*codeanalysis.*.xml
*codeanalysis.xml
*.lib
*.tlog
win/x64
win/x85
win/Debug

View File

@@ -49,7 +49,7 @@ script:
after_success: after_success:
- if [[ "$CC" == "gcc" && "$CODE_COVERAGE" == "ON" ]]; then - if [[ "$CC" == "gcc" && "$CODE_COVERAGE" == "ON" ]]; then
pip install --user cpp-coveralls pip install --user cpp-coveralls &&
coveralls coveralls
--build-root . --build-root .
--exclude lib --exclude lib

52
CREDITS Normal file
View File

@@ -0,0 +1,52 @@
This library [initially] used some [piece of] implementations
(may include codes) from these open source projects/resources:
1. Affine Transforms
The original glm repo (g-truc), url: https://github.com/g-truc/glm
LICENSE[S]:
The Happy Bunny License (Modified MIT License)
The MIT License
Copyright (c) 2005 - 2016 G-Truc Creation
FULL LICENSE: https://github.com/g-truc/glm/blob/master/copying.txt
2. Quaternions
Anton's OpenGL 4 Tutorials book source code:
LICENSE:
OpenGL 4 Example Code.
Accompanies written series "Anton's OpenGL 4 Tutorials"
Email: anton at antongerdelan dot net
First version 27 Jan 2014
Copyright Dr Anton Gerdelan, Trinity College Dublin, Ireland.
3. Euler Angles
David Eberly
Geometric Tools, LLC http://www.geometrictools.com/
Copyright (c) 1998-2016. All Rights Reserved.
Computing Euler angles from a rotation matrix (euler.pdf)
Gregory G. Slabaugh
4. Extracting Planes
Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
Authors:
Gil Gribb (ggribb@ravensoft.com)
Klaus Hartmann (k_hartmann@osnabrueck.netsurf.de)
5. Transform AABB
Transform Axis Aligned Bounding Boxes:
http://dev.theomader.com/transform-bounding-boxes/
https://github.com/erich666/GraphicsGems/blob/master/gems/TransBox.c
6. Cull frustum
http://www.txutxi.com/?p=584
http://old.cescg.org/CESCG-2002/DSykoraJJelinek/
7. Quaternions
Initial mat4_quat is borrowed from Apple's simd library
8. Vector Rotation using Quaternion
https://gamedev.stackexchange.com/questions/28395/rotating-vector3-by-a-quaternion

33
LICENSE
View File

@@ -19,36 +19,3 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE. SOFTWARE.
-
This library [initially] used some [piece of] implementations
(may include codes) from these open source projects/resources:
1. Affine Transforms
The original glm repo (g-truc), url: https://github.com/g-truc/glm
LICENSE[S]:
The Happy Bunny License (Modified MIT License)
The MIT License
Copyright (c) 2005 - 2016 G-Truc Creation
FULL LICENSE: https://github.com/g-truc/glm/blob/master/copying.txt
2. Quaternions
Anton's OpenGL 4 Tutorials book source code:
LICENSE:
OpenGL 4 Example Code.
Accompanies written series "Anton's OpenGL 4 Tutorials"
Email: anton at antongerdelan dot net
First version 27 Jan 2014
Copyright Dr Anton Gerdelan, Trinity College Dublin, Ireland.
3. Euler Angles
David Eberly
Geometric Tools, LLC http://www.geometrictools.com/
Copyright (c) 1998-2016. All Rights Reserved.
Computing Euler angles from a rotation matrix (euler.pdf)
Gregory G. Slabaugh

140
README.md
View File

@@ -1,26 +1,54 @@
# 🎥 OpenGL Mathematics (glm) for `C` # 🎥 OpenGL Mathematics (glm) for `C`
[![Build Status](https://travis-ci.org/recp/cglm.svg?branch=master)](https://travis-ci.org/recp/cglm) [![Build Status](https://travis-ci.org/recp/cglm.svg?branch=master)](https://travis-ci.org/recp/cglm)
[![Build status](https://ci.appveyor.com/api/projects/status/av7l3gc0yhfex8y4/branch/master?svg=true)](https://ci.appveyor.com/project/recp/cglm/branch/master) [![Build status](https://ci.appveyor.com/api/projects/status/av7l3gc0yhfex8y4/branch/master?svg=true)](https://ci.appveyor.com/project/recp/cglm/branch/master)
[![Documentation Status](https://readthedocs.org/projects/cglm/badge/?version=latest)](http://cglm.readthedocs.io/en/latest/?badge=latest)
[![Coverage Status](https://coveralls.io/repos/github/recp/cglm/badge.svg?branch=master)](https://coveralls.io/github/recp/cglm?branch=master) [![Coverage Status](https://coveralls.io/repos/github/recp/cglm/badge.svg?branch=master)](https://coveralls.io/github/recp/cglm?branch=master)
[![Codacy Badge](https://api.codacy.com/project/badge/Grade/6a62b37d5f214f178ebef269dc4a6bf1)](https://www.codacy.com/app/recp/cglm?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=recp/cglm&amp;utm_campaign=Badge_Grade) [![Codacy Badge](https://api.codacy.com/project/badge/Grade/6a62b37d5f214f178ebef269dc4a6bf1)](https://www.codacy.com/app/recp/cglm?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=recp/cglm&amp;utm_campaign=Badge_Grade)
[![Backers on Open Collective](https://opencollective.com/cglm/backers/badge.svg)](#backers)
[![Sponsors on Open Collective](https://opencollective.com/cglm/sponsors/badge.svg)](#sponsors)
The original glm library is for C++ only (templates, namespaces, classes...), this library targeted to C99 but currently you can use it for C89 safely by language extensions e.g `__register` The original glm library is for C++ only (templates, namespaces, classes...), this library targeted to C99 but currently you can use it for C89 safely by language extensions e.g `__restrict`
#### Documentation #### Documentation
Almost all functions (inline versions) and parameters are documented inside related headers. <br /> Almost all functions (inline versions) and parameters are documented inside related headers. <br />
Complete documentation is in progress: http://cglm.readthedocs.io Complete documentation: http://cglm.readthedocs.io
#### Note for previous versions: #### Note for previous versions:
- _dup (duplicate) is changed to _copy. For instance `glm_vec_dup -> glm_vec_copy` - _dup (duplicate) is changed to _copy. For instance `glm_vec_dup -> glm_vec_copy`
- OpenGL related functions are dropped to make this lib platform/third-party independent - OpenGL related functions are dropped to make this lib platform/third-party independent
- make sure you have latest version and feel free to report bugs, troubles - make sure you have latest version and feel free to report bugs, troubles
- **[bugfix]** euler angles was implemented in reverse order (extrinsic) it was fixed, now they are intrinsic. Make sure that
you have the latest version
- **[major change]** by starting v0.4.0, quaternions are stored as [x, y, z, w], it was [w, x, y, z] in v0.3.5 and earlier versions
- **[api rename]** by starting v0.4.5, **glm_simd** functions are renamed to **glmm_**
- **[new option]** by starting v0.4.5, you can disable alignment requirement, check options in docs.
#### Note for C++ developers: #### Note for C++ developers:
If you don't aware about original GLM library yet, you may also want to look at: If you don't aware about original GLM library yet, you may also want to look at:
https://github.com/g-truc/glm https://github.com/g-truc/glm
#### Note for new comers (Important):
- `vec4` and `mat4` variables must be aligned. (There will be unaligned versions later)
- **in** and **[in, out]** parameters must be initialized (please). But **[out]** parameters not, initializing out param is also redundant
- All functions are inline if you don't want to use pre-compiled versions with glmc_ prefix, you can ignore build process. Just incliude headers.
- if your debugger takes you to cglm headers then make sure you are not trying to copy vec4 to vec3 or alig issues...
- Welcome!
#### Note for experienced developers:
- Since I'm testing this library in my projects, sometimes bugs occurs; finding that bug[s] and making improvements would be more easy with multiple developer/contributor and their projects or knowledge. Consider to make some tests if you suspect something is wrong and any feedbacks, contributions and bug reports are always welcome.
#### Allocations?
`cglm` doesn't alloc any memory on heap. So it doesn't provide any allocator. You should alloc memory for **out** parameters too if you pass pointer of memory location. Don't forget that **vec4** (also quat/**versor**) and **mat4** must be aligned (16-bytes), because *cglm* uses SIMD instructions to optimize most operations if available.
#### Returning vector or matrix... ?
Since almost all types are arrays and **C** doesn't allow returning arrays, so **cglm** doesn't support this feature. In the future *cglm* may use **struct** for some types for this purpose.
#### Other APIs like Vulkan, Metal, Dx?
Currently *cglm* uses default clip space configuration (-1, 1) for camera functions (perspective, extract corners...), in the future other clip space configurations will be supported
<hr/>
<table> <table>
<tbody> <tbody>
@@ -50,6 +78,9 @@ https://github.com/g-truc/glm
- euler angles / yaw-pitch-roll to matrix - euler angles / yaw-pitch-roll to matrix
- extract euler angles - extract euler angles
- inline or pre-compiled function call - inline or pre-compiled function call
- frustum (extract view frustum planes, corners...)
- bounding box (AABB in Frustum (culling), crop, merge...)
- project, unproject
<hr /> <hr />
@@ -91,6 +122,36 @@ glm_mul(T, R, modelMat);
glm_inv_tr(modelMat); glm_inv_tr(modelMat);
``` ```
## Contributors
This project exists thanks to all the people who contribute. [[Contribute](CONTRIBUTING.md)].
<a href="graphs/contributors"><img src="https://opencollective.com/cglm/contributors.svg?width=890&button=false" /></a>
## Backers
Thank you to all our backers! 🙏 [[Become a backer](https://opencollective.com/cglm#backer)]
<a href="https://opencollective.com/cglm#backers" target="_blank"><img src="https://opencollective.com/cglm/backers.svg?width=890"></a>
## Sponsors
Support this project by becoming a sponsor. Your logo will show up here with a link to your website. [[Become a sponsor](https://opencollective.com/cglm#sponsor)]
<a href="https://opencollective.com/cglm/sponsor/0/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/0/avatar.svg"></a>
<a href="https://opencollective.com/cglm/sponsor/1/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/1/avatar.svg"></a>
<a href="https://opencollective.com/cglm/sponsor/2/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/2/avatar.svg"></a>
<a href="https://opencollective.com/cglm/sponsor/3/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/3/avatar.svg"></a>
<a href="https://opencollective.com/cglm/sponsor/4/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/4/avatar.svg"></a>
<a href="https://opencollective.com/cglm/sponsor/5/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/5/avatar.svg"></a>
<a href="https://opencollective.com/cglm/sponsor/6/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/6/avatar.svg"></a>
<a href="https://opencollective.com/cglm/sponsor/7/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/7/avatar.svg"></a>
<a href="https://opencollective.com/cglm/sponsor/8/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/8/avatar.svg"></a>
<a href="https://opencollective.com/cglm/sponsor/9/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/9/avatar.svg"></a>
## License ## License
MIT. check the LICENSE file MIT. check the LICENSE file
@@ -98,13 +159,15 @@ MIT. check the LICENSE file
### Unix (Autotools) ### Unix (Autotools)
```text ```bash
$ sh ./build-deps.sh # run only once (dependencies) $ sh ./build-deps.sh # run only once (dependencies) [Optional].
$ # You can pass this step if you don't want to run `make check` for tests.
$ # cglm uses cmocka for tests and it may reqiure cmake for building it
$ $
$ sh autogen.sh $ sh autogen.sh
$ ./configure $ ./configure
$ make $ make
$ make install $ make check # [Optional] (if you run `sh ./build-deps.sh`)
$ [sudo] make install $ [sudo] make install
``` ```
@@ -122,12 +185,21 @@ if `msbuild` won't work (because of multi version VS) then try to build with `de
$ devenv cglm.sln /Build Release $ devenv cglm.sln /Build Release
``` ```
### Building Docs
First you need install Sphinx: http://www.sphinx-doc.org/en/master/usage/installation.html
then:
```bash
$ cd docs
$ sphinx-build source build
```
it will compile docs into build folder, you can run index.html inside that function.
## How to use ## How to use
If you want to use inline versions of funcstions then; include main header If you want to use inline versions of funcstions then; include main header
```C ```C
#include <cglm/cglm.h> #include <cglm/cglm.h>
``` ```
the haeder will include all headers. Then call func you want e.g. rotate vector by axis: the header will include all headers. Then call func you want e.g. rotate vector by axis:
```C ```C
glm_vec_rotate(v1, glm_rad(45), (vec3){1.0f, 0.0f, 0.0f}); glm_vec_rotate(v1, glm_rad(45), (vec3){1.0f, 0.0f, 0.0f});
``` ```
@@ -146,12 +218,60 @@ to call pre-compiled versions include header with `c` postfix, c means call. Pre
```C ```C
#include <cglm/call.h> #include <cglm/call.h>
``` ```
this header will include all heaers with c postfix. You need to call functions with c posfix: this header will include all headers with c postfix. You need to call functions with c posfix:
```C ```C
glmc_vec_normalize(vec); glmc_vec_normalize(vec);
``` ```
Function usage and parameters are documented inside related headers. Function usage and parameters are documented inside related headers. You may see same parameter passed twice in some examples like this:
```C
glm_mat4_mul(m1, m2, m1);
/* or */
glm_mat4_mul(m1, m1, m1);
```
the first two parameter are **[in]** and the last one is **[out]** parameter. After multiplied *m1* and *m2* the result is stored in *m1*. This is why we send *m1* twice. You may store result in different matrix, this just an example.
### Example: Computing MVP matrix
#### Option 1
```C
mat4 proj, view, model, mvp;
/* init proj, view and model ... */
glm_mat4_mul(proj, view, viewProj);
glm_mat4_mul(viewProj, model, mvp);
```
#### Option 2
```C
mat4 proj, view, model, mvp;
/* init proj, view and model ... */
glm_mat4_mulN((mat4 *[]){&proj, &view, &model}, 3, mvp);
```
## How to send matrix to OpenGL
mat4 is array of vec4 and vec4 is array of floats. `glUniformMatrix4fv` functions accecpts `float*` as `value` (last param), so you can cast mat4 to float* or you can pass first column of matrix as beginning of memory of matrix:
Option 1: Send first column
```C
glUniformMatrix4fv(location, 1, GL_FALSE, matrix[0]);
/* array of matrices */
glUniformMatrix4fv(location, 1, GL_FALSE, matrix[0][0]);
```
Option 2: Cast matrix to pointer type (also valid for multiple dimensional arrays)
```C
glUniformMatrix4fv(location, 1, GL_FALSE, (float *)matrix);
```
You can pass same way to another APIs e.g. Vulkan, DX...
## Notes ## Notes
- This library uses float types only, does not support Integers, Double... yet - This library uses float types only, does not support Integers, Double... yet
@@ -162,5 +282,5 @@ Function usage and parameters are documented inside related headers.
- [ ] Unit tests for comparing cglm with glm results - [ ] Unit tests for comparing cglm with glm results
- [x] Add version info - [x] Add version info
- [ ] Unaligned operations (e.g. `glm_umat4_mul`) - [ ] Unaligned operations (e.g. `glm_umat4_mul`)
- [ ] Extra documentation - [x] Extra documentation
- [ ] ARM Neon Arch (In Progress) - [ ] ARM Neon Arch (In Progress)

View File

@@ -8,17 +8,14 @@
cd $(dirname "$0") cd $(dirname "$0")
if [ "$(uname)" = "Darwin" ]; then
libtoolBin=$(which glibtoolize)
libtoolBinDir=$(dirname "${libtoolBin}")
if [ ! -f "${libtoolBinDir}/libtoolize" ]; then
ln -s $libtoolBin "${libtoolBinDir}/libtoolize"
fi
fi
autoheader autoheader
libtoolize
if [ "$(uname)" = "Darwin" ]; then
glibtoolize
else
libtoolize
fi
aclocal -I m4 aclocal -I m4
autoconf autoconf
automake --add-missing --copy automake --add-missing --copy

View File

@@ -9,21 +9,14 @@
# check if deps are pulled # check if deps are pulled
git submodule update --init --recursive git submodule update --init --recursive
# fix glibtoolize
cd $(dirname "$0") cd $(dirname "$0")
if [ "$(uname)" = "Darwin" ]; then
libtoolBin=$(which glibtoolize)
libtoolBinDir=$(dirname "${libtoolBin}")
ln -s $libtoolBin "${libtoolBinDir}/libtoolize"
fi
# general deps: gcc make autoconf automake libtool cmake # general deps: gcc make autoconf automake libtool cmake
# test - cmocka # test - cmocka
cd ./test/lib/cmocka cd ./test/lib/cmocka
mkdir build rm -rf build
mkdir -p build
cd build cd build
cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_BUILD_TYPE=Debug .. cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_BUILD_TYPE=Debug ..
make -j8 make -j8

28
cglm.podspec Normal file
View File

@@ -0,0 +1,28 @@
Pod::Spec.new do |s|
# Description
s.name = "cglm"
s.version = "0.4.6"
s.summary = "📽 Optimized OpenGL/Graphics Math (glm) for C"
s.description = <<-DESC
cglm is math library for graphics programming for C. It is similar to original glm but it is written for C instead of C++ (you can use here too). See the documentation or README for all features.
DESC
s.documentation_url = "http://cglm.readthedocs.io"
# Home
s.homepage = "https://github.com/recp/cglm"
s.license = { :type => "MIT", :file => "LICENSE" }
s.author = { "Recep Aslantas" => "recp@acm.org" }
# Sources
s.source = { :git => "https://github.com/recp/cglm.git", :tag => "v#{s.version}" }
s.source_files = "src", "include/cglm/**/*.h"
s.public_header_files = "include", "include/cglm/**/*.h"
s.exclude_files = "src/win/*", "src/dllmain.c", "src/**/*.h"
s.preserve_paths = "include", "src"
s.header_mappings_dir = "include"
# Linking
s.library = "m"
end

View File

@@ -7,7 +7,7 @@
#***************************************************************************** #*****************************************************************************
AC_PREREQ([2.69]) AC_PREREQ([2.69])
AC_INIT([cglm], [0.2.1], [info@recp.me]) AC_INIT([cglm], [0.4.6], [info@recp.me])
AM_INIT_AUTOMAKE([-Wall -Werror foreign subdir-objects]) AM_INIT_AUTOMAKE([-Wall -Werror foreign subdir-objects])
AC_CONFIG_MACRO_DIR([m4]) AC_CONFIG_MACRO_DIR([m4])

View File

@@ -0,0 +1,99 @@
.. default-domain:: C
affine transform matrix (specialized functions)
================================================================================
Header: cglm/affine-mat.h
We mostly use glm_mat4_* for 4x4 general and transform matrices. **cglm**
provides optimized version of some functions. Because affine transform matrix is
a known format, for instance all last item of first three columns is zero.
You should be careful when using these functions. For instance :c:func:`glm_mul`
assumes matrix will be this format:
.. code-block:: text
R R R X
R R R Y
R R R Z
0 0 0 W
if you override zero values here then use :c:func:`glm_mat4_mul` version.
You cannot use :c:func:`glm_mul` anymore.
Same is also true for :c:func:`glm_inv_tr` if you only have rotation and
translation then it will work as expected, otherwise you cannot use that.
In the future it may accept scale factors too but currectly it does not.
Table of contents (click func go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions:
1. :c:func:`glm_mul`
#. :c:func:`glm_mul_rot`
#. :c:func:`glm_inv_tr`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_mul(mat4 m1, mat4 m2, mat4 dest)
| this is similar to glm_mat4_mul but specialized to affine transform
Matrix format should be:
.. code-block:: text
R R R X
R R R Y
R R R Z
0 0 0 W
this reduces some multiplications. It should be faster than mat4_mul.
if you are not sure about matrix format then DON'T use this! use mat4_mul
Parameters:
| *[in]* **m1** affine matrix 1
| *[in]* **m2** affine matrix 2
| *[out]* **dest** result matrix
.. c:function:: void glm_mul_rot(mat4 m1, mat4 m2, mat4 dest)
| this is similar to glm_mat4_mul but specialized to rotation matrix
Right Matrix format should be (left is free):
.. code-block:: text
R R R 0
R R R 0
R R R 0
0 0 0 1
this reduces some multiplications. It should be faster than mat4_mul.
if you are not sure about matrix format then DON'T use this! use mat4_mul
Parameters:
| *[in]* **m1** affine matrix 1
| *[in]* **m2** affine matrix 2
| *[out]* **dest** result matrix
.. c:function:: void glm_inv_tr(mat4 mat)
| inverse orthonormal rotation + translation matrix (ridig-body)
.. code-block:: text
X = | R T | X' = | R' -R'T |
| 0 1 | | 0 1 |
use this if you only have rotation + translation, this should work faster
than :c:func:`glm_mat4_inv`
Don't use this if your matrix includes other things e.g. scale, shear...
Parameters:
| *[in,out]* **mat** affine matrix

343
docs/source/affine.rst Normal file
View File

@@ -0,0 +1,343 @@
.. default-domain:: C
affine transforms
================================================================================
Header: cglm/affine.h
Initialize Transform Matrices
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions with **_make** prefix expect you don't have a matrix and they create
a matrix for you. You don't need to pass identity matrix.
But other functions expect you have a matrix and you want to transform them. If
you didn't have any existing matrix you have to initialize matrix to identity
before sending to transfrom functions.
There are also functions to decompose transform matrix. These functions can't
decompose matrix after projected.
Rotation Center
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Rotating functions uses origin as rotation center (pivot/anchor point),
since scale factors are stored in rotation matrix, same may also true for scalling.
cglm provides some functions for rotating around at given point e.g.
**glm_rotate_at**, **glm_quat_rotate_at**. Use them or follow next section for algorihm ("Rotate or Scale around specific Point (Pivot Point / Anchor Point)").
Rotate or Scale around specific Point (Anchor Point)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you want to rotate model around arbibtrary point follow these steps:
1. Move model from pivot point to origin: **translate(-pivot.x, -pivot.y, -pivot.z)**
2. Apply rotation (or scaling maybe)
3. Move model back from origin to pivot (reverse of step-1): **translate(pivot.x, pivot.y, pivot.z)**
**glm_rotate_at**, **glm_quat_rotate_at** and their helper functions works that way.
The implementation would be:
.. code-block:: c
:linenos:
glm_translate(m, pivot);
glm_rotate(m, angle, axis);
glm_translate(m, pivotInv); /* pivotInv = -pivot */
Transforms Order
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
It is important to understand this part especially if you call transform
functions multiple times
`glm_translate`, `glm_rotate`, `glm_scale` and `glm_quat_rotate` and their
helpers functions works like this (cglm may provide reverse order too as alternative in the future):
.. code-block:: c
:linenos:
TransformMatrix = TransformMatrix * TraslateMatrix; // glm_translate()
TransformMatrix = TransformMatrix * RotateMatrix; // glm_rotate(), glm_quat_rotate()
TransformMatrix = TransformMatrix * ScaleMatrix; // glm_scale()
As you can see it is multipled as right matrix. For instance what will happen if you call `glm_translate` twice?
.. code-block:: c
:linenos:
glm_translate(transform, translate1); /* transform = transform * translate1 */
glm_translate(transform, translate2); /* transform = transform * translate2 */
glm_rotate(transform, angle, axis) /* transform = transform * rotation */
Now lets try to understand this:
1. You call translate using `translate1` and you expect it will be first transform
because you call it first, do you?
Result will be **`transform = transform * translate1`**
2. Then you call translate using `translate2` and you expect it will be second transform?
Result will be **`transform = transform * translate2`**. Now lets expand transform,
it was `transform * translate1` before second call.
Now it is **`transform = transform * translate1 * translate2`**, now do you understand what I say?
3. After last call transform will be:
**`transform = transform * translate1 * translate2 * rotation`**
The order will be; **rotation will be applied first**, then **translate2** then **translate1**
It is all about matrix multiplication order. It is similar to MVP matrix:
`MVP = Projection * View * Model`, model will be applied first, then view then projection.
**Confused?**
In the end the last function call applied first in shaders.
As alternative way, you can create transform matrices individually then combine manually,
but don't forget that `glm_translate`, `glm_rotate`, `glm_scale`... are optimized and should be faster (an smaller assembly output) than manual multiplication
.. code-block:: c
:linenos:
mat4 transform1, transform2, transform3, finalTransform;
glm_translate_make(transform1, translate1);
glm_translate_make(transform2, translate2);
glm_rotate_make(transform3, angle, axis);
/* first apply transform1, then transform2, thentransform3 */
glm_mat4_mulN((mat4 *[]){&transform3, &transform2, &transform1}, 3, finalTransform);
/* if you don't want to use mulN, same as above */
glm_mat4_mul(transform3, transform2, finalTransform);
glm_mat4_mul(finalTransform, transform1, finalTransform);
Now transform1 will be applied first, then transform2 then transform3
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions:
1. :c:func:`glm_translate_to`
#. :c:func:`glm_translate`
#. :c:func:`glm_translate_x`
#. :c:func:`glm_translate_y`
#. :c:func:`glm_translate_z`
#. :c:func:`glm_translate_make`
#. :c:func:`glm_scale_to`
#. :c:func:`glm_scale_make`
#. :c:func:`glm_scale`
#. :c:func:`glm_scale_uni`
#. :c:func:`glm_rotate_x`
#. :c:func:`glm_rotate_y`
#. :c:func:`glm_rotate_z`
#. :c:func:`glm_rotate_make`
#. :c:func:`glm_rotate`
#. :c:func:`glm_rotate_at`
#. :c:func:`glm_rotate_atm`
#. :c:func:`glm_decompose_scalev`
#. :c:func:`glm_uniscaled`
#. :c:func:`glm_decompose_rs`
#. :c:func:`glm_decompose`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_translate_to(mat4 m, vec3 v, mat4 dest)
translate existing transform matrix by *v* vector and store result in dest
Parameters:
| *[in]* **m** affine transfrom
| *[in]* **v** translate vector [x, y, z]
| *[out]* **dest** translated matrix
.. c:function:: void glm_translate(mat4 m, vec3 v)
translate existing transform matrix by *v* vector
and stores result in same matrix
Parameters:
| *[in, out]* **m** affine transfrom
| *[in]* **v** translate vector [x, y, z]
.. c:function:: void glm_translate_x(mat4 m, float x)
translate existing transform matrix by x factor
Parameters:
| *[in, out]* **m** affine transfrom
| *[in]* **v** x factor
.. c:function:: void glm_translate_y(mat4 m, float y)
translate existing transform matrix by *y* factor
Parameters:
| *[in, out]* **m** affine transfrom
| *[in]* **v** y factor
.. c:function:: void glm_translate_z(mat4 m, float z)
translate existing transform matrix by *z* factor
Parameters:
| *[in, out]* **m** affine transfrom
| *[in]* **v** z factor
.. c:function:: void glm_translate_make(mat4 m, vec3 v)
creates NEW translate transform matrix by *v* vector.
Parameters:
| *[in, out]* **m** affine transfrom
| *[in]* **v** translate vector [x, y, z]
.. c:function:: void glm_scale_to(mat4 m, vec3 v, mat4 dest)
scale existing transform matrix by *v* vector and store result in dest
Parameters:
| *[in]* **m** affine transfrom
| *[in]* **v** scale vector [x, y, z]
| *[out]* **dest** scaled matrix
.. c:function:: void glm_scale_make(mat4 m, vec3 v)
creates NEW scale matrix by v vector
Parameters:
| *[out]* **m** affine transfrom
| *[in]* **v** scale vector [x, y, z]
.. c:function:: void glm_scale(mat4 m, vec3 v)
scales existing transform matrix by v vector
and stores result in same matrix
Parameters:
| *[in, out]* **m** affine transfrom
| *[in]* **v** scale vector [x, y, z]
.. c:function:: void glm_scale_uni(mat4 m, float s)
applies uniform scale to existing transform matrix v = [s, s, s]
and stores result in same matrix
Parameters:
| *[in, out]* **m** affine transfrom
| *[in]* **v** scale factor
.. c:function:: void glm_rotate_x(mat4 m, float angle, mat4 dest)
rotate existing transform matrix around X axis by angle
and store result in dest
Parameters:
| *[in]* **m** affine transfrom
| *[in]* **angle** angle (radians)
| *[out]* **dest** rotated matrix
.. c:function:: void glm_rotate_y(mat4 m, float angle, mat4 dest)
rotate existing transform matrix around Y axis by angle
and store result in dest
Parameters:
| *[in]* **m** affine transfrom
| *[in]* **angle** angle (radians)
| *[out]* **dest** rotated matrix
.. c:function:: void glm_rotate_z(mat4 m, float angle, mat4 dest)
rotate existing transform matrix around Z axis by angle
and store result in dest
Parameters:
| *[in]* **m** affine transfrom
| *[in]* **angle** angle (radians)
| *[out]* **dest** rotated matrix
.. c:function:: void glm_rotate_make(mat4 m, float angle, vec3 axis)
creates NEW rotation matrix by angle and axis,
axis will be normalized so you don't need to normalize it
Parameters:
| *[out]* **m** affine transfrom
| *[in]* **axis** angle (radians)
| *[in]* **axis** axis
.. c:function:: void glm_rotate(mat4 m, float angle, vec3 axis)
rotate existing transform matrix around Z axis by angle and axis
Parameters:
| *[in, out]* **m** affine transfrom
| *[in]* **angle** angle (radians)
| *[in]* **axis** axis
.. c:function:: void glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis)
rotate existing transform around given axis by angle at given pivot point (rotation center)
Parameters:
| *[in, out]* **m** affine transfrom
| *[in]* **pivot** pivot, anchor point, rotation center
| *[in]* **angle** angle (radians)
| *[in]* **axis** axis
.. c:function:: void glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis)
| creates NEW rotation matrix by angle and axis at given point
| this creates rotation matrix, it assumes you don't have a matrix
| this should work faster than glm_rotate_at because it reduces one glm_translate.
Parameters:
| *[in, out]* **m** affine transfrom
| *[in]* **pivot** pivot, anchor point, rotation center
| *[in]* **angle** angle (radians)
| *[in]* **axis** axis
.. c:function:: void glm_decompose_scalev(mat4 m, vec3 s)
decompose scale vector
Parameters:
| *[in]* **m** affine transform
| *[out]* **s** scale vector (Sx, Sy, Sz)
.. c:function:: bool glm_uniscaled(mat4 m)
returns true if matrix is uniform scaled.
This is helpful for creating normal matrix.
Parameters:
| *[in]* **m** matrix
.. c:function:: void glm_decompose_rs(mat4 m, mat4 r, vec3 s)
decompose rotation matrix (mat4) and scale vector [Sx, Sy, Sz]
DON'T pass projected matrix here
Parameters:
| *[in]* **m** affine transform
| *[out]* **r** rotation matrix
| *[out]* **s** scale matrix
.. c:function:: void glm_decompose(mat4 m, vec4 t, mat4 r, vec3 s)
decompose affine transform, TODO: extract shear factors.
DON'T pass projected matrix here
Parameters:
| *[in]* **m** affine transfrom
| *[out]* **t** translation vector
| *[out]* **r** rotation matrix (mat4)
| *[out]* **s** scaling vector [X, Y, Z]

47
docs/source/api.rst Normal file
View File

@@ -0,0 +1,47 @@
API documentation
================================
Some functions may exist twice,
once for their namespace and once for global namespace
to make easier to write very common functions
For instance, in general we use :code:`glm_vec_dot` to get dot product
of two **vec3**. Now we can also do this with :code:`glm_dot`,
same for *_cross* and so on...
The original function stays where it is, the function in global namespace
of same name is just an alias, so there is no call version of those functions.
e.g there is no func like :code:`glmc_dot` because *glm_dot* is just alias for
:code:`glm_vec_dot`
By including **cglm/cglm.h** header you will include all inline version
of functions. Since functions in this header[s] are inline you don't need to
build or link *cglm* against your project.
But by including **cglm/call.h** header you will include all *non-inline*
version of functions. You need to build *cglm* and link it.
Follow the :doc:`build` documentation for this
.. toctree::
:maxdepth: 1
:caption: API categories:
affine
affine-mat
cam
frustum
box
quat
euler
mat4
mat3
vec3
vec3-ext
vec4
vec4-ext
color
plane
project
util
io
call

142
docs/source/box.rst Normal file
View File

@@ -0,0 +1,142 @@
.. default-domain:: C
axis aligned bounding box (AABB)
================================================================================
Header: cglm/box.h
Some convenient functions provided for AABB.
**Definition of box:**
cglm defines box as two dimensional array of vec3.
The first element is **min** point and the second one is **max** point.
If you have another type e.g. struct or even another representation then you must
convert it before and after call cglm box function.
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions:
1. :c:func:`glm_aabb_transform`
#. :c:func:`glm_aabb_merge`
#. :c:func:`glm_aabb_crop`
#. :c:func:`glm_aabb_crop_until`
#. :c:func:`glm_aabb_frustum`
#. :c:func:`glm_aabb_invalidate`
#. :c:func:`glm_aabb_isvalid`
#. :c:func:`glm_aabb_size`
#. :c:func:`glm_aabb_radius`
#. :c:func:`glm_aabb_center`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2])
| apply transform to Axis-Aligned Bounding Box
Parameters:
| *[in]* **box** bounding box
| *[in]* **m** transform matrix
| *[out]* **dest** transformed bounding box
.. c:function:: void glm_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2])
| merges two AABB bounding box and creates new one
two box must be in same space, if one of box is in different space then
you should consider to convert it's space by glm_box_space
Parameters:
| *[in]* **box1** bounding box 1
| *[in]* **box2** bounding box 2
| *[out]* **dest** merged bounding box
.. c:function:: void glm_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2])
| crops a bounding box with another one.
this could be useful for gettng a bbox which fits with view frustum and
object bounding boxes. In this case you crop view frustum box with objects
box
Parameters:
| *[in]* **box** bounding box 1
| *[in]* **cropBox** crop box
| *[out]* **dest** cropped bounding box
.. c:function:: void glm_aabb_crop_until(vec3 box[2], vec3 cropBox[2], vec3 clampBox[2], vec3 dest[2])
| crops a bounding box with another one.
this could be useful for gettng a bbox which fits with view frustum and
object bounding boxes. In this case you crop view frustum box with objects
box
Parameters:
| *[in]* **box** bounding box
| *[in]* **cropBox** crop box
| *[in]* **clampBox** miniumum box
| *[out]* **dest** cropped bounding box
.. c:function:: bool glm_aabb_frustum(vec3 box[2], vec4 planes[6])
| check if AABB intersects with frustum planes
this could be useful for frustum culling using AABB.
OPTIMIZATION HINT:
if planes order is similar to LEFT, RIGHT, BOTTOM, TOP, NEAR, FAR
then this method should run even faster because it would only use two
planes if object is not inside the two planes
fortunately cglm extracts planes as this order! just pass what you got!
Parameters:
| *[in]* **box** bounding box
| *[out]* **planes** frustum planes
.. c:function:: void glm_aabb_invalidate(vec3 box[2])
| invalidate AABB min and max values
| It fills *max* values with -FLT_MAX and *min* values with +FLT_MAX
Parameters:
| *[in, out]* **box** bounding box
.. c:function:: bool glm_aabb_isvalid(vec3 box[2])
| check if AABB is valid or not
Parameters:
| *[in]* **box** bounding box
Returns:
returns true if aabb is valid otherwise false
.. c:function:: float glm_aabb_size(vec3 box[2])
| distance between of min and max
Parameters:
| *[in]* **box** bounding box
Returns:
distance between min - max
.. c:function:: float glm_aabb_radius(vec3 box[2])
| radius of sphere which surrounds AABB
Parameters:
| *[in]* **box** bounding box
.. c:function:: void glm_aabb_center(vec3 box[2], vec3 dest)
| computes center point of AABB
Parameters:
| *[in]* **box** bounding box
| *[out]* **box** center of bounding box

19
docs/source/call.rst Normal file
View File

@@ -0,0 +1,19 @@
.. default-domain:: C
precompiled functions (call)
================================================================================
All funcitons in **glm_** namespace are forced to **inline**.
Most functions also have pre-compiled version.
Precompiled versions are in **glmc_** namespace. *c* in the namespace stands for
"call".
Since precompiled functions are just wrapper for inline verisons,
these functions are not documented individually.
It would be duplicate documentation also it
would be hard to sync documentation between inline and call verison for me.
By including **clgm/cglm.h** you include all inline verisons. To get precompiled
versions you need to include **cglm/call.h** header it also includes all
call versions plus *clgm/cglm.h* (inline verisons)

298
docs/source/cam.rst Normal file
View File

@@ -0,0 +1,298 @@
.. default-domain:: C
camera
======
Header: cglm/cam.h
There are many convenient functions for camera. For instance :c:func:`glm_look`
is just wrapper for :c:func:`glm_lookat`. Sometimes you only have direction
instead of target, so that makes easy to build view matrix using direction.
There is also :c:func:`glm_look_anyup` function which can help build view matrix
without providing UP axis. It uses :c:func:`glm_vec_ortho` to get a UP axis and
builds view matrix.
You can also *_default* versions of ortho and perspective to build projection
fast if you don't care specific projection values.
*_decomp* means decompose; these function can help to decompose projection
matrices.
**NOTE**: Be careful when working with high range (very small near, very large
far) projection matrices. You may not get exact value you gave.
**float** type cannot store very high precision so you will lose precision.
Also your projection matrix will be inaccurate due to losing precision
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions:
1. :c:func:`glm_frustum`
#. :c:func:`glm_ortho`
#. :c:func:`glm_ortho_aabb`
#. :c:func:`glm_ortho_aabb_p`
#. :c:func:`glm_ortho_aabb_pz`
#. :c:func:`glm_ortho_default`
#. :c:func:`glm_ortho_default_s`
#. :c:func:`glm_perspective`
#. :c:func:`glm_perspective_default`
#. :c:func:`glm_perspective_resize`
#. :c:func:`glm_lookat`
#. :c:func:`glm_look`
#. :c:func:`glm_look_anyup`
#. :c:func:`glm_persp_decomp`
#. :c:func:`glm_persp_decompv`
#. :c:func:`glm_persp_decomp_x`
#. :c:func:`glm_persp_decomp_y`
#. :c:func:`glm_persp_decomp_z`
#. :c:func:`glm_persp_decomp_far`
#. :c:func:`glm_persp_decomp_near`
#. :c:func:`glm_persp_fovy`
#. :c:func:`glm_persp_aspect`
#. :c:func:`glm_persp_sizes`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_frustum(float left, float right, float bottom, float top, float nearVal, float farVal, mat4 dest)
| set up perspective peprojection matrix
Parameters:
| *[in]* **left** viewport.left
| *[in]* **right** viewport.right
| *[in]* **bottom** viewport.bottom
| *[in]* **top** viewport.top
| *[in]* **nearVal** near clipping plane
| *[in]* **farVal** far clipping plane
| *[out]* **dest** result matrix
.. c:function:: void glm_ortho(float left, float right, float bottom, float top, float nearVal, float farVal, mat4 dest)
| set up orthographic projection matrix
Parameters:
| *[in]* **left** viewport.left
| *[in]* **right** viewport.right
| *[in]* **bottom** viewport.bottom
| *[in]* **top** viewport.top
| *[in]* **nearVal** near clipping plane
| *[in]* **farVal** far clipping plane
| *[out]* **dest** result matrix
.. c:function:: void glm_ortho_aabb(vec3 box[2], mat4 dest)
| set up orthographic projection matrix using bounding box
| bounding box (AABB) must be in view space
Parameters:
| *[in]* **box** AABB
| *[in]* **dest** result matrix
.. c:function:: void glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest)
| set up orthographic projection matrix using bounding box
| bounding box (AABB) must be in view space
this version adds padding to box
Parameters:
| *[in]* **box** AABB
| *[in]* **padding** padding
| *[out]* **d** result matrix
.. c:function:: void glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest)
| set up orthographic projection matrix using bounding box
| bounding box (AABB) must be in view space
this version adds Z padding to box
Parameters:
| *[in]* **box** AABB
| *[in]* **padding** padding for near and far
| *[out]* **d** result matrix
Returns:
square of norm / magnitude
.. c:function:: void glm_ortho_default(float aspect, mat4 dest)
| set up unit orthographic projection matrix
Parameters:
| *[in]* **aspect** aspect ration ( width / height )
| *[out]* **dest** result matrix
.. c:function:: void glm_ortho_default_s(float aspect, float size, mat4 dest)
| set up orthographic projection matrix with given CUBE size
Parameters:
| *[in]* **aspect** aspect ration ( width / height )
| *[in]* **size** cube size
| *[out]* **dest** result matrix
.. c:function:: void glm_perspective(float fovy, float aspect, float nearVal, float farVal, mat4 dest)
| set up perspective projection matrix
Parameters:
| *[in]* **fovy** field of view angle
| *[in]* **aspect** aspect ratio ( width / height )
| *[in]* **nearVal** near clipping plane
| *[in]* **farVal** far clipping planes
| *[out]* **dest** result matrix
.. c:function:: void glm_perspective_default(float aspect, mat4 dest)
| set up perspective projection matrix with default near/far
and angle values
Parameters:
| *[in]* **aspect** aspect aspect ratio ( width / height )
| *[out]* **dest** result matrix
.. c:function:: void glm_perspective_resize(float aspect, mat4 proj)
| resize perspective matrix by aspect ratio ( width / height )
this makes very easy to resize proj matrix when window / viewport reized
Parameters:
| *[in]* **aspect** aspect ratio ( width / height )
| *[in, out]* **proj** perspective projection matrix
.. c:function:: void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest)
| set up view matrix
Parameters:
| *[in]* **eye** eye vector
| *[in]* **center** center vector
| *[in]* **up** up vector
| *[out]* **dest** result matrix
.. c:function:: void glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest)
| set up view matrix
convenient wrapper for :c:func:`glm_lookat`: if you only have direction not
target self then this might be useful. Because you need to get target
from direction.
Parameters:
| *[in]* **eye** eye vector
| *[in]* **center** direction vector
| *[in]* **up** up vector
| *[out]* **dest** result matrix
.. c:function:: void glm_look_anyup(vec3 eye, vec3 dir, mat4 dest)
| set up view matrix
convenient wrapper for :c:func:`glm_look` if you only have direction
and if you don't care what UP vector is then this might be useful
to create view matrix
Parameters:
| *[in]* **eye** eye vector
| *[in]* **center** direction vector
| *[out]* **dest** result matrix
.. c:function:: void glm_persp_decomp(mat4 proj, float *nearVal, float *farVal, float *top, float *bottom, float *left, float *right)
| decomposes frustum values of perspective projection.
Parameters:
| *[in]* **eye** perspective projection matrix
| *[out]* **nearVal** near
| *[out]* **farVal** far
| *[out]* **top** top
| *[out]* **bottom** bottom
| *[out]* **left** left
| *[out]* **right** right
.. c:function:: void glm_persp_decompv(mat4 proj, float dest[6])
| decomposes frustum values of perspective projection.
| this makes easy to get all values at once
Parameters:
| *[in]* **proj** perspective projection matrix
| *[out]* **dest** array
.. c:function:: void glm_persp_decomp_x(mat4 proj, float *left, float *right)
| decomposes left and right values of perspective projection.
| x stands for x axis (left / right axis)
Parameters:
| *[in]* **proj** perspective projection matrix
| *[out]* **left** left
| *[out]* **right** right
.. c:function:: void glm_persp_decomp_y(mat4 proj, float *top, float *bottom)
| decomposes top and bottom values of perspective projection.
| y stands for y axis (top / botom axis)
Parameters:
| *[in]* **proj** perspective projection matrix
| *[out]* **top** top
| *[out]* **bottom** bottom
.. c:function:: void glm_persp_decomp_z(mat4 proj, float *nearVal, float *farVal)
| decomposes near and far values of perspective projection.
| z stands for z axis (near / far axis)
Parameters:
| *[in]* **proj** perspective projection matrix
| *[out]* **nearVal** near
| *[out]* **farVal** far
.. c:function:: void glm_persp_decomp_far(mat4 proj, float * __restrict farVal)
| decomposes far value of perspective projection.
Parameters:
| *[in]* **proj** perspective projection matrix
| *[out]* **farVal** far
.. c:function:: void glm_persp_decomp_near(mat4 proj, float * __restrict nearVal)
| decomposes near value of perspective projection.
Parameters:
| *[in]* **proj** perspective projection matrix
| *[out]* **nearVal** near
.. c:function:: float glm_persp_fovy(mat4 proj)
| returns field of view angle along the Y-axis (in radians)
if you need to degrees, use glm_deg to convert it or use this:
fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
Parameters:
| *[in]* **proj** perspective projection matrix
Returns:
| fovy in radians
.. c:function:: float glm_persp_aspect(mat4 proj)
| returns aspect ratio of perspective projection
Parameters:
| *[in]* **proj** perspective projection matrix
.. c:function:: void glm_persp_sizes(mat4 proj, float fovy, vec4 dest)
| returns sizes of near and far planes of perspective projection
Parameters:
| *[in]* **proj** perspective projection matrix
| *[in]* **fovy** fovy (see brief)
| *[out]* **dest** sizes order: [Wnear, Hnear, Wfar, Hfar]

BIN
docs/source/cglm-intro.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

34
docs/source/color.rst Normal file
View File

@@ -0,0 +1,34 @@
.. default-domain:: C
color
================================================================================
Header: cglm/color.h
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions:
1. :c:func:`glm_luminance`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: float glm_luminance(vec3 rgb)
| averages the color channels into one value
This function uses formula in COLLADA 1.5 spec which is
.. code-block:: text
luminance = (color.r * 0.212671) +
(color.g * 0.715160) +
(color.b * 0.072169)
It is based on the ISO/CIE color standards (see ITU-R Recommendation BT.709-4),
that averages the color channels into one value
Parameters:
| *[in]* **rgb** RGB color

View File

@@ -30,7 +30,15 @@
# Add any Sphinx extension module names here, as strings. They can be # Add any Sphinx extension module names here, as strings. They can be
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom # extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
# ones. # ones.
extensions = [] extensions = [
'sphinx.ext.doctest',
'sphinx.ext.todo',
'sphinx.ext.coverage',
'sphinx.ext.mathjax',
'sphinx.ext.ifconfig',
'sphinx.ext.viewcode',
'sphinx.ext.githubpages'
]
# Add any paths that contain templates here, relative to this directory. # Add any paths that contain templates here, relative to this directory.
templates_path = ['_templates'] templates_path = ['_templates']
@@ -54,9 +62,9 @@ author = u'Recep Aslantas'
# built documents. # built documents.
# #
# The short X.Y version. # The short X.Y version.
version = u'0.2.1' version = u'0.4.6'
# The full version, including alpha/beta/rc tags. # The full version, including alpha/beta/rc tags.
release = u'0.2.1' release = u'0.4.6'
# The language for content autogenerated by Sphinx. Refer to documentation # The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages. # for a list of supported languages.
@@ -161,3 +169,31 @@ texinfo_documents = [
author, 'cglm', 'One line description of project.', author, 'cglm', 'One line description of project.',
'Miscellaneous'), 'Miscellaneous'),
] ]
# -- Options for Epub output -------------------------------------------------
# Bibliographic Dublin Core info.
epub_title = project
epub_author = author
epub_publisher = author
epub_copyright = copyright
# The unique identifier of the text. This can be a ISBN number
# or the project homepage.
#
# epub_identifier = ''
# A unique identification for the text.
#
# epub_uid = ''
# A list of files that should not be packed into the epub file.
epub_exclude_files = ['search.html']
# -- Extension configuration -------------------------------------------------
# -- Options for todo extension ----------------------------------------------
# If true, `todo` and `todoList` produce output, else they produce nothing.
todo_include_todos = True

182
docs/source/euler.rst Normal file
View File

@@ -0,0 +1,182 @@
.. default-domain:: C
euler angles
============
Header: cglm/euler.h
You may wonder what **glm_euler_sq** type ( **_sq** stands for sequence ) and
:c:func:`glm_euler_by_order` do.
I used them to convert euler angles in one coordinate system to another. For
instance if you have **Z_UP** euler angles and if you want to convert it
to **Y_UP** axis then :c:func:`glm_euler_by_order` is your friend. For more
information check :c:func:`glm_euler_order` documentation
You must pass arrays as array, if you use C compiler then you can use something
like this:
.. code-block:: c
float pitch, yaw, roll;
mat4 rot;
/* pitch = ...; yaw = ...; roll = ... */
glm_euler((vec3){pitch, yaw, roll}, rot);
Rotation Conveniention
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Current *cglm*'s euler functions uses these convention:
* TaitBryan angles (x-y-z convention)
* Intrinsic rotations (pitch, yaw and roll).
This is reserve order of extrinsic (elevation, heading and bank) rotation
* Right hand rule (actually all rotations in *cglm* use **RH**)
* All angles used in *cglm* are **RADIANS** not degrees
**NOTE**: The default :c:func:`glm_euler` function is the short name of
:c:func:`glm_euler_xyz` this is why you can't see :c:func:`glm_euler_xyz`.
When you see an euler function which doesn't have any X, Y, Z suffix then
assume that uses **_xyz** (or instead it accept order as parameter).
If rotation doesn't work properly, your options:
1. If you use (or paste) degrees convert it to radians before calling an euler function
.. code-block:: c
float pitch, yaw, roll;
mat4 rot;
/* pitch = degrees; yaw = degrees; roll = degrees */
glm_euler((vec3){glm_rad(pitch), glm_rad(yaw), glm_rad(roll)}, rot);
2. Convention mismatch. You may have extrinsic angles,
if you do (if you must) then consider to use reverse order e.g if you have
**xyz** extrinsic then use **zyx**
3. *cglm* may implemented it wrong, consider to create an issue to report it
or pull request to fix it
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Types:
1. glm_euler_sq
Functions:
1. :c:func:`glm_euler_order`
#. :c:func:`glm_euler_angles`
#. :c:func:`glm_euler`
#. :c:func:`glm_euler_xyz`
#. :c:func:`glm_euler_zyx`
#. :c:func:`glm_euler_zxy`
#. :c:func:`glm_euler_xzy`
#. :c:func:`glm_euler_yzx`
#. :c:func:`glm_euler_yxz`
#. :c:func:`glm_euler_by_order`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: glm_euler_sq glm_euler_order(int ord[3])
| packs euler angles order to glm_euler_sq enum.
To use :c:func:`glm_euler_by_order` function you need *glm_euler_sq*. You
can get it with this function.
You can build param like this:
| X = 0, Y = 1, Z = 2
if you have ZYX order then you pass this: [2, 1, 0] = ZYX.
if you have YXZ order then you pass this: [1, 0, 2] = YXZ
As you can see first item specifies which axis will be first then the
second one specifies which one will be next an so on.
Parameters:
| *[in]* **ord** euler angles order [Angle1, Angle2, Angle2]
Returns:
packed euler order
.. c:function:: void glm_euler_angles(mat4 m, vec3 dest)
| extract euler angles (in radians) using xyz order
Parameters:
| *[in]* **m** affine transform
| *[out]* **dest** angles vector [x, y, z]
.. c:function:: void glm_euler(vec3 angles, mat4 dest)
| build rotation matrix from euler angles
this is alias of glm_euler_xyz function
Parameters:
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
| *[in]* **dest** rotation matrix
.. c:function:: void glm_euler_xyz(vec3 angles, mat4 dest)
| build rotation matrix from euler angles
Parameters:
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
| *[in]* **dest** rotation matrix
.. c:function:: void glm_euler_zyx(vec3 angles, mat4 dest)
| build rotation matrix from euler angles
Parameters:
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
| *[in]* **dest** rotation matrix
.. c:function:: void glm_euler_zxy(vec3 angles, mat4 dest)
| build rotation matrix from euler angles
Parameters:
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
| *[in]* **dest** rotation matrix
.. c:function:: void glm_euler_xzy(vec3 angles, mat4 dest)
| build rotation matrix from euler angles
Parameters:
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
| *[in]* **dest** rotation matrix
.. c:function:: void glm_euler_yzx(vec3 angles, mat4 dest)
build rotation matrix from euler angles
Parameters:
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
| *[in]* **dest** rotation matrix
.. c:function:: void glm_euler_yxz(vec3 angles, mat4 dest)
| build rotation matrix from euler angles
Parameters:
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
| *[in]* **dest** rotation matrix
.. c:function:: void glm_euler_by_order(vec3 angles, glm_euler_sq ord, mat4 dest)
| build rotation matrix from euler angles with given euler order.
Use :c:func:`glm_euler_order` function to build *ord* parameter
Parameters:
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
| *[in]* **ord** euler order
| *[in]* **dest** rotation matrix

168
docs/source/frustum.rst Normal file
View File

@@ -0,0 +1,168 @@
.. default-domain:: C
frustum
=============
Header: cglm/frustum.h
cglm provides convenient functions to extract frustum planes, corners...
All extracted corners are **vec4** so you must create array of **vec4**
not **vec3**. If you want to store them to save space you msut convert them
yourself.
**vec4** is used to speed up functions need to corners. This is why frustum
fucntions use *vec4* instead of *vec3*
Currenty related-functions use [-1, 1] clip space configuration to extract
corners but you can override it by prodiving **GLM_CUSTOM_CLIPSPACE** macro.
If you provide it then you have to all bottom macros as *vec4*
Current configuration:
.. code-block:: c
/* near */
GLM_CSCOORD_LBN {-1.0f, -1.0f, -1.0f, 1.0f}
GLM_CSCOORD_LTN {-1.0f, 1.0f, -1.0f, 1.0f}
GLM_CSCOORD_RTN { 1.0f, 1.0f, -1.0f, 1.0f}
GLM_CSCOORD_RBN { 1.0f, -1.0f, -1.0f, 1.0f}
/* far */
GLM_CSCOORD_LBF {-1.0f, -1.0f, 1.0f, 1.0f}
GLM_CSCOORD_LTF {-1.0f, 1.0f, 1.0f, 1.0f}
GLM_CSCOORD_RTF { 1.0f, 1.0f, 1.0f, 1.0f}
GLM_CSCOORD_RBF { 1.0f, -1.0f, 1.0f, 1.0f}
Explain of short names:
* **LBN**: left bottom near
* **LTN**: left top near
* **RTN**: right top near
* **RBN**: right bottom near
* **LBF**: left bottom far
* **LTF**: left top far
* **RTF**: right top far
* **RBF**: right bottom far
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Macros:
.. code-block:: c
GLM_LBN 0 /* left bottom near */
GLM_LTN 1 /* left top near */
GLM_RTN 2 /* right top near */
GLM_RBN 3 /* right bottom near */
GLM_LBF 4 /* left bottom far */
GLM_LTF 5 /* left top far */
GLM_RTF 6 /* right top far */
GLM_RBF 7 /* right bottom far */
GLM_LEFT 0
GLM_RIGHT 1
GLM_BOTTOM 2
GLM_TOP 3
GLM_NEAR 4
GLM_FAR 5
Functions:
1. :c:func:`glm_frustum_planes`
#. :c:func:`glm_frustum_corners`
#. :c:func:`glm_frustum_center`
#. :c:func:`glm_frustum_box`
#. :c:func:`glm_frustum_corners_at`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_frustum_planes(mat4 m, vec4 dest[6])
| extracts view frustum planes
planes' space:
- if m = proj: View Space
- if m = viewProj: World Space
- if m = MVP: Object Space
You probably want to extract planes in world space so use viewProj as m
Computing viewProj:
.. code-block:: c
glm_mat4_mul(proj, view, viewProj);
Exracted planes order: [left, right, bottom, top, near, far]
Parameters:
| *[in]* **m** matrix
| *[out]* **dest** exracted view frustum planes
.. c:function:: void glm_frustum_corners(mat4 invMat, vec4 dest[8])
| extracts view frustum corners using clip-space coordinates
corners' space:
- if m = invViewProj: World Space
- if m = invMVP: Object Space
You probably want to extract corners in world space so use **invViewProj**
Computing invViewProj:
.. code-block:: c
glm_mat4_mul(proj, view, viewProj);
...
glm_mat4_inv(viewProj, invViewProj);
if you have a near coord at **i** index,
you can get it's far coord by i + 4;
follow example below to understand that
For instance to find center coordinates between a near and its far coord:
.. code-block:: c
for (j = 0; j < 4; j++) {
glm_vec_center(corners[i], corners[i + 4], centerCorners[i]);
}
corners[i + 4] is far of corners[i] point.
Parameters:
| *[in]* **invMat** matrix
| *[out]* **dest** exracted view frustum corners
.. c:function:: void glm_frustum_center(vec4 corners[8], vec4 dest)
| finds center of view frustum
Parameters:
| *[in]* **corners** view frustum corners
| *[out]* **dest** view frustum center
.. c:function:: void glm_frustum_box(vec4 corners[8], mat4 m, vec3 box[2])
| finds bounding box of frustum relative to given matrix e.g. view mat
Parameters:
| *[in]* **corners** view frustum corners
| *[in]* **m** matrix to convert existing conners
| *[out]* **box** bounding box as array [min, max]
.. c:function:: void glm_frustum_corners_at(vec4 corners[8], float splitDist, float farDist, vec4 planeCorners[4])
| finds planes corners which is between near and far planes (parallel)
this will be helpful if you want to split a frustum e.g. CSM/PSSM. This will
find planes' corners but you will need to one more plane.
Actually you have it, it is near, far or created previously with this func ;)
Parameters:
| *[in]* **corners** frustum corners
| *[in]* **splitDist** split distance
| *[in]* **farDist** far distance (zFar)
| *[out]* **planeCorners** plane corners [LB, LT, RT, RB]

View File

@@ -1,6 +1,9 @@
Getting Started Getting Started
================================ ================================
Types:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**cglm** uses **glm** prefix for all functions e.g. glm_lookat. You can see supported types in common header file: **cglm** uses **glm** prefix for all functions e.g. glm_lookat. You can see supported types in common header file:
.. code-block:: c .. code-block:: c
@@ -18,23 +21,57 @@ Getting Started
As you can see types don't store extra informations in favor of space. As you can see types don't store extra informations in favor of space.
You can send these values e.g. matrix to OpenGL directly without casting or calling a function like *value_ptr* You can send these values e.g. matrix to OpenGL directly without casting or calling a function like *value_ptr*
*vec4* and *mat4* requires 16 byte aligment because vec4 and mat4 operations are Alignment is Required:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**vec4** and **mat4** requires 16 byte alignment because vec4 and mat4 operations are
vectorized by SIMD instructions (SSE/AVX). vectorized by SIMD instructions (SSE/AVX).
**UPDATE:**
By starting v0.4.5 cglm provides an option to disable alignment requirement, it is enabled as default
| Check :doc:`opt` page for more details
Also alignment is disabled for older msvc verisons as default. Now alignment is only required in Visual Studio 2017 version 15.6+ if CGLM_ALL_UNALIGNED macro is not defined.
Allocations:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*cglm* doesn't alloc any memory on heap. So it doesn't provide any allocator.
You must allocate memory yourself. You should alloc memory for out parameters too if you pass pointer of memory location.
When allocating memory don't forget that **vec4** and **mat4** requires alignment.
**NOTE:** Unaligned vec4 and unaligned mat4 operations will be supported in the future. Check todo list. **NOTE:** Unaligned vec4 and unaligned mat4 operations will be supported in the future. Check todo list.
Because you may want to multiply a CGLM matrix with external matrix. Because you may want to multiply a CGLM matrix with external matrix.
There is no guarantee that non-CGLM matrix is aligned. Unaligned types will have *u* prefix e.g. **umat4** There is no guarantee that non-CGLM matrix is aligned. Unaligned types will have *u* prefix e.g. **umat4**
Array vs Struct:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*cglm* uses arrays for vector and matrix types. So you can't access individual
elements like vec.x, vec.y, vec.z... You must use subscript to access vector elements
e.g. vec[0], vec[1], vec[2].
Also I think it is more meaningful to access matrix elements with subscript
e.g **matrix[2][3]** instead of **matrix._23**. Since matrix is array of vectors,
vectors are also defined as array. This makes types homogeneous.
**Return arrays?**
Since C doesn't support return arrays, cglm also doesn't support this feature.
Function design:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. image:: cglm-intro.png
:width: 492px
:height: 297px
:align: center
cglm provides a few way to call a function to do same operation. cglm provides a few way to call a function to do same operation.
* Inline - *glm_, glm_u* * Inline - *glm_, glm_u*
* aligned
* unaligned (todo)
* Pre-compiled - *glmc_, glmc_u* * Pre-compiled - *glmc_, glmc_u*
* aligned
* unaligned (todo)
For instance **glm_mat4_mul** is inline (all *glm_* functions are inline), to make it non-inline (pre-compiled) For instance **glm_mat4_mul** is inline (all *glm_* functions are inline), to make it non-inline (pre-compiled),
call it as **glmc_mat4_mul** from library, to use unaligned version use **glm_umat4_mul** (todo). call it as **glmc_mat4_mul** from library, to use unaligned version use **glm_umat4_mul** (todo).
Most functions have **dest** parameter for output. For instance mat4_mul func looks like this: Most functions have **dest** parameter for output. For instance mat4_mul func looks like this:

View File

@@ -9,7 +9,7 @@ Welcome to cglm's documentation!
**cglm** is optimized 3D math library written in C99 (compatible with C89). **cglm** is optimized 3D math library written in C99 (compatible with C89).
It is similar to original **glm** library except this is mainly for **C** It is similar to original **glm** library except this is mainly for **C**
This library stores matrices as row-major order but in the future column-major This library stores matrices as column-major order but in the future row-major
is considered to be supported as optional. is considered to be supported as optional.
Also currently only **float** type is supported for most operations. Also currently only **float** type is supported for most operations.
@@ -28,14 +28,20 @@ Also currently only **float** type is supported for most operations.
* euler angles / yaw-pitch-roll to matrix * euler angles / yaw-pitch-roll to matrix
* extract euler angles * extract euler angles
* inline or pre-compiled function call * inline or pre-compiled function call
* more features (todo) * frustum (extract view frustum planes, corners...)
* bounding box (AABB in Frustum (culling), crop, merge...)
.. toctree:: .. toctree::
:maxdepth: 2 :maxdepth: 1
:caption: Table Of Contents: :caption: Table Of Contents:
build build
getting_started getting_started
opengl
api
opt
troubleshooting
Indices and tables Indices and tables
================== ==================

102
docs/source/io.rst Normal file
View File

@@ -0,0 +1,102 @@
.. default-domain:: C
io (input / output e.g. print)
================================================================================
Header: cglm/io.h
There are some built-in print functions which may save your time,
especially for debugging.
All functions accept **FILE** parameter which makes very flexible.
You can even print it to file on disk.
In general you will want to print them to console to see results.
You can use **stdout** and **stderr** to write results to console.
Some programs may occupy **stdout** but you can still use **stderr**.
Using **stderr** is suggested.
Example to print mat4 matrix:
.. code-block:: c
mat4 transform;
/* ... */
glm_mat4_print(transform, stderr);
**NOTE:** print functions use **%0.4f** precision if you need more
(you probably will in some cases), you can change it temporary.
cglm may provide precision parameter in the future
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions:
1. :c:func:`glm_mat4_print`
#. :c:func:`glm_mat3_print`
#. :c:func:`glm_vec4_print`
#. :c:func:`glm_vec3_print`
#. :c:func:`glm_ivec3_print`
#. :c:func:`glm_versor_print`
#. :c:func:`glm_aabb_print`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_mat4_print(mat4 matrix, FILE * __restrict ostream)
| print mat4 to given stream
Parameters:
| *[in]* **matrix** matrix
| *[in]* **ostream** FILE to write
.. c:function:: void glm_mat3_print(mat3 matrix, FILE * __restrict ostream)
| print mat3 to given stream
Parameters:
| *[in]* **matrix** matrix
| *[in]* **ostream** FILE to write
.. c:function:: void glm_vec4_print(vec4 vec, FILE * __restrict ostream)
| print vec4 to given stream
Parameters:
| *[in]* **vec** vector
| *[in]* **ostream** FILE to write
.. c:function:: void glm_vec3_print(vec3 vec, FILE * __restrict ostream)
| print vec3 to given stream
Parameters:
| *[in]* **vec** vector
| *[in]* **ostream** FILE to write
.. c:function:: void glm_ivec3_print(ivec3 vec, FILE * __restrict ostream)
| print ivec3 to given stream
Parameters:
| *[in]* **vec** vector
| *[in]* **ostream** FILE to write
.. c:function:: void glm_versor_print(versor vec, FILE * __restrict ostream)
| print quaternion to given stream
Parameters:
| *[in]* **vec** quaternion
| *[in]* **ostream** FILE to write
.. c:function:: void glm_aabb_print(versor vec, const char * __restrict tag, FILE * __restrict ostream)
| print aabb to given stream
Parameters:
| *[in]* **vec** aabb (axis-aligned bounding box)
| *[in]* **tag** tag to find it more easly in logs
| *[in]* **ostream** FILE to write

143
docs/source/mat3.rst Normal file
View File

@@ -0,0 +1,143 @@
.. default-domain:: C
mat3
====
Header: cglm/mat3.h
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Macros:
1. GLM_MAT3_IDENTITY_INIT
#. GLM_MAT3_ZERO_INIT
#. GLM_MAT3_IDENTITY
#. GLM_MAT3_ZERO
#. glm_mat3_dup(mat, dest)
Functions:
1. :c:func:`glm_mat3_copy`
#. :c:func:`glm_mat3_identity`
#. :c:func:`glm_mat3_mul`
#. :c:func:`glm_mat3_transpose_to`
#. :c:func:`glm_mat3_transpose`
#. :c:func:`glm_mat3_mulv`
#. :c:func:`glm_mat3_quat`
#. :c:func:`glm_mat3_scale`
#. :c:func:`glm_mat3_det`
#. :c:func:`glm_mat3_inv`
#. :c:func:`glm_mat3_swap_col`
#. :c:func:`glm_mat3_swap_row`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_mat3_copy(mat3 mat, mat3 dest)
copy mat3 to another one (dest).
Parameters:
| *[in]* **mat** source
| *[out]* **dest** destination
.. c:function:: void glm_mat3_identity(mat3 mat)
copy identity mat3 to mat, or makes mat to identiy
Parameters:
| *[out]* **mat** matrix
.. c:function:: void glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest)
multiply m1 and m2 to dest
m1, m2 and dest matrices can be same matrix, it is possible to write this:
.. code-block:: c
mat3 m = GLM_MAT3_IDENTITY_INIT;
glm_mat3_mul(m, m, m);
Parameters:
| *[in]* **m1** left matrix
| *[in]* **m2** right matrix
| *[out]* **dest** destination matrix
.. c:function:: void glm_mat3_transpose_to(mat3 m, mat3 dest)
transpose mat4 and store in dest
source matrix will not be transposed unless dest is m
Parameters:
| *[in]* **mat** source
| *[out]* **dest** destination
.. c:function:: void glm_mat3_transpose(mat3 m)
tranpose mat3 and store result in same matrix
Parameters:
| *[in]* **mat** source
| *[out]* **dest** destination
.. c:function:: void glm_mat3_mulv(mat3 m, vec3 v, vec3 dest)
multiply mat4 with vec4 (column vector) and store in dest vector
Parameters:
| *[in]* **mat** mat3 (left)
| *[in]* **v** vec3 (right, column vector)
| *[out]* **dest** destination (result, column vector)
.. c:function:: void glm_mat3_quat(mat3 m, versor dest)
convert mat3 to quaternion
Parameters:
| *[in]* **m** rotation matrix
| *[out]* **dest** destination quaternion
.. c:function:: void glm_mat3_scale(mat3 m, float s)
multiply matrix with scalar
Parameters:
| *[in, out]* **mat** matrix
| *[in]* **dest** scalar
.. c:function:: float glm_mat3_det(mat3 mat)
returns mat3 determinant
Parameters:
| *[in]* **mat** matrix
Returns:
mat3 determinant
.. c:function:: void glm_mat3_inv(mat3 mat, mat3 dest)
inverse mat3 and store in dest
Parameters:
| *[in]* **mat** matrix
| *[out]* **dest** destination (inverse matrix)
.. c:function:: void glm_mat3_swap_col(mat3 mat, int col1, int col2)
swap two matrix columns
Parameters:
| *[in, out]* **mat** matrix
| *[in]* **col1** col1
| *[in]* **col2** col2
.. c:function:: void glm_mat3_swap_row(mat3 mat, int row1, int row2)
swap two matrix rows
Parameters:
| *[in, out]* **mat** matrix
| *[in]* **row1** row1
| *[in]* **row2** row2

240
docs/source/mat4.rst Normal file
View File

@@ -0,0 +1,240 @@
.. default-domain:: C
mat4
====
Header: cglm/mat4.h
Important: :c:func:`glm_mat4_scale` multiplies mat4 with scalar, if you need to
apply scale transform use :c:func:`glm_scale` functions.
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Macros:
1. GLM_MAT4_IDENTITY_INIT
#. GLM_MAT4_ZERO_INIT
#. GLM_MAT4_IDENTITY
#. GLM_MAT4_ZERO
#. glm_mat4_udup(mat, dest)
#. glm_mat4_dup(mat, dest)
Functions:
1. :c:func:`glm_mat4_ucopy`
#. :c:func:`glm_mat4_copy`
#. :c:func:`glm_mat4_identity`
#. :c:func:`glm_mat4_pick3`
#. :c:func:`glm_mat4_pick3t`
#. :c:func:`glm_mat4_ins3`
#. :c:func:`glm_mat4_mul`
#. :c:func:`glm_mat4_mulN`
#. :c:func:`glm_mat4_mulv`
#. :c:func:`glm_mat4_mulv3`
#. :c:func:`glm_mat4_quat`
#. :c:func:`glm_mat4_transpose_to`
#. :c:func:`glm_mat4_transpose`
#. :c:func:`glm_mat4_scale_p`
#. :c:func:`glm_mat4_scale`
#. :c:func:`glm_mat4_det`
#. :c:func:`glm_mat4_inv`
#. :c:func:`glm_mat4_inv_fast`
#. :c:func:`glm_mat4_swap_col`
#. :c:func:`glm_mat4_swap_row`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_mat4_ucopy(mat4 mat, mat4 dest)
copy mat4 to another one (dest). u means align is not required for dest
Parameters:
| *[in]* **mat** source
| *[out]* **dest** destination
.. c:function:: void glm_mat4_copy(mat4 mat, mat4 dest)
copy mat4 to another one (dest).
Parameters:
| *[in]* **mat** source
| *[out]* **dest** destination
.. c:function:: void glm_mat4_identity(mat4 mat)
copy identity mat4 to mat, or makes mat to identiy
Parameters:
| *[out]* **mat** matrix
.. c:function:: void glm_mat4_pick3(mat4 mat, mat3 dest)
copy upper-left of mat4 to mat3
Parameters:
| *[in]* **mat** source
| *[out]* **dest** destination
.. c:function:: void glm_mat4_pick3t(mat4 mat, mat4 dest)
copy upper-left of mat4 to mat3 (transposed)
the postfix t stands for transpose
Parameters:
| *[in]* **mat** source
| *[out]* **dest** destination
.. c:function:: void glm_mat4_ins3(mat3 mat, mat4 dest)
copy mat3 to mat4's upper-left. this function does not fill mat4's other
elements. To do that use glm_mat4.
Parameters:
| *[in]* **mat** source
| *[out]* **dest** destination
.. c:function:: void glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest)
multiply m1 and m2 to dest
m1, m2 and dest matrices can be same matrix, it is possible to write this:
.. code-block:: c
mat4 m = GLM_MAT4_IDENTITY_INIT;
glm_mat4_mul(m, m, m);
Parameters:
| *[in]* **m1** left matrix
| *[in]* **m2** right matrix
| *[out]* **dest** destination matrix
.. c:function:: void glm_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest)
mupliply N mat4 matrices and store result in dest
| this function lets you multiply multiple (more than two or more...)
| matrices
| multiplication will be done in loop, this may reduce instructions
| size but if **len** is too small then compiler may unroll whole loop
.. code-block:: c
mat m1, m2, m3, m4, res;
glm_mat4_mulN((mat4 *[]){&m1, &m2, &m3, &m4}, 4, res);
Parameters:
| *[in]* **matrices** array of mat4
| *[in]* **len** matrices count
| *[out]* **dest** destination matrix
.. c:function:: void glm_mat4_mulv(mat4 m, vec4 v, vec4 dest)
multiply mat4 with vec4 (column vector) and store in dest vector
Parameters:
| *[in]* **m** mat4 (left)
| *[in]* **v** vec4 (right, column vector)
| *[out]* **dest** vec4 (result, column vector)
.. c:function:: void glm_mat4_mulv3(mat4 m, vec3 v, vec3 dest)
multiply vector with mat4's mat3 part(rotation)
Parameters:
| *[in]* **m** mat4 (left)
| *[in]* **v** vec3 (right, column vector)
| *[out]* **dest** vec3 (result, column vector)
.. c:function:: void glm_mat4_quat(mat4 m, versor dest)
convert mat4's rotation part to quaternion
Parameters:
| *[in]* **m** affine matrix
| *[out]* **dest** destination quaternion
.. c:function:: void glm_mat4_transpose_to(mat4 m, mat4 dest)
transpose mat4 and store in dest
source matrix will not be transposed unless dest is m
Parameters:
| *[in]* **m** matrix
| *[out]* **dest** destination matrix
.. c:function:: void glm_mat4_transpose(mat4 m)
tranpose mat4 and store result in same matrix
Parameters:
| *[in]* **m** source
| *[out]* **dest** destination matrix
.. c:function:: void glm_mat4_scale_p(mat4 m, float s)
scale (multiply with scalar) matrix without simd optimization
Parameters:
| *[in, out]* **m** matrix
| *[in]* **s** scalar
.. c:function:: void glm_mat4_scale(mat4 m, float s)
scale (multiply with scalar) matrix
THIS IS NOT SCALE TRANSFORM, use glm_scale for that.
Parameters:
| *[in, out]* **m** matrix
| *[in]* **s** scalar
.. c:function:: float glm_mat4_det(mat4 mat)
mat4 determinant
Parameters:
| *[in]* **mat** matrix
Return:
| determinant
.. c:function:: void glm_mat4_inv(mat4 mat, mat4 dest)
inverse mat4 and store in dest
Parameters:
| *[in]* **mat** source
| *[out]* **dest** destination matrix (inverse matrix)
.. c:function:: void glm_mat4_inv_fast(mat4 mat, mat4 dest)
inverse mat4 and store in dest
| this func uses reciprocal approximation without extra corrections
| e.g Newton-Raphson. this should work faster than normal,
| to get more precise use glm_mat4_inv version.
| NOTE: You will lose precision, glm_mat4_inv is more accurate
Parameters:
| *[in]* **mat** source
| *[out]* **dest** destination
.. c:function:: void glm_mat4_swap_col(mat4 mat, int col1, int col2)
swap two matrix columns
Parameters:
| *[in, out]* **mat** matrix
| *[in]* **col1** col1
| *[in]* **col2** col2
.. c:function:: void glm_mat4_swap_row(mat4 mat, int row1, int row2)
swap two matrix rows
Parameters:
| *[in, out]* **mat** matrix
| *[in]* **row1** row1
| *[in]* **row2** row2

61
docs/source/opengl.rst Normal file
View File

@@ -0,0 +1,61 @@
How to send vector or matrix to OpenGL like API
==================================================
*cglm*'s vector and matrix types are arrays. So you can send them directly to a
function which accecpts pointer. But you may got warnings for matrix because it is
two dimensional array.
Passing / Uniforming Matrix to OpenGL:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**glUniformMatrix4fv** accepts float pointer, you can pass matrix to that parameter
and it should work but with warnings. "You can pass" doesn't mean that you must pass like that.
**Correct options:**
Correct doesn't mean correct way to use OpenGL it is just shows correct way to pass cglm type to it.
1. Pass first column
---------------------
The goal is that pass address of matrix, first element of matrix is also address of matrix,
because it is array of vectors and vector is array of floats.
.. code-block:: c
mat4 matrix;
/* ... */
glUniformMatrix4fv(location, 1, GL_FALSE, matrix[0]);
array of matrices:
.. code-block:: c
mat4 matrix;
/* ... */
glUniformMatrix4fv(location, count, GL_FALSE, matrix[0][0]);
1. Cast matrix to pointer
--------------------------
.. code-block:: c
mat4 matrix;
/* ... */
glUniformMatrix4fv(location, count, GL_FALSE, (float *)matrix);
in this way, passing aray of matrices is same
Passing / Uniforming Vectors to OpenGL:¶
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
You don't need to do extra thing when passing cglm vectors to OpengL or other APIs.
Because a function like **glUniform4fv** accepts vector as pointer. cglm's vectors
are array of floats. So you can pass it directly ot those functions:
.. code-block:: c
vec4 vec;
/* ... */
glUniform4fv(location, 1, vec);
this show how to pass **vec4** others are same.

42
docs/source/opt.rst Normal file
View File

@@ -0,0 +1,42 @@
.. default-domain:: C
Options
===============================================================================
A few options are provided via macros.
Alignment Option
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As default, cglm requires types to be aligned. Alignment requirements:
vec3: 8 byte
vec4: 16 byte
mat4: 16 byte
versor: 16 byte
By starting **v0.4.5** cglm provides an option to disable alignment requirement.
To enable this option define **CGLM_ALL_UNALIGNED** macro before all headers.
You can define it in Xcode, Visual Studio (or other IDEs) or you can also prefer
to define it in build system. If you use pre-compiled verisons then you
have to compile cglm with **CGLM_ALL_UNALIGNED** macro.
**VERY VERY IMPORTANT:** If you use cglm in multiple projects and
those projects are depends on each other, then
| *ALWAYS* or *NEVER USE* **CGLM_ALL_UNALIGNED** macro in linked projects
if you do not know what you are doing. Because a cglm header included
via 'project A' may force types to be aligned and another cglm header
included via 'project B' may not require alignment. In this case
cglm functions will read from and write to **INVALID MEMORY LOCATIONs**.
ALWAYS USE SAME CONFIGURATION / OPTION for **cglm** if you have multiple projects.
For instance if you set CGLM_ALL_UNALIGNED in a project then set it in other projects too
SSE and SSE2 Shuffle Option
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**_mm_shuffle_ps** generates **shufps** instruction even if registers are same.
You can force it to generate **pshufd** instruction by defining
**CGLM_USE_INT_DOMAIN** macro. As default it is not defined.

33
docs/source/plane.rst Normal file
View File

@@ -0,0 +1,33 @@
.. default-domain:: C
plane
================================================================================
Header: cglm/plane.h
Plane extract functions are in frustum header and documented
in :doc:`frustum` page.
**Definition of plane:**
Plane equation: **Ax + By + Cz + D = 0**
Plan is stored in **vec4** as **[A, B, C, D]**. (A, B, C) is normal and D is distance
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions:
1. :c:func:`glm_plane_normalize`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_plane_normalize(vec4 plane)
| normalizes a plane
Parameters:
| *[in, out]* **plane** pnale to normalize

102
docs/source/project.rst Normal file
View File

@@ -0,0 +1,102 @@
.. default-domain:: C
Project / UnProject
================================================================================
Header: cglm/project.h
Viewport is required as *vec4* **[X, Y, Width, Height]** but this doesn't mean
that you should store it as **vec4**. You can convert your data representation
to vec4 before passing it to related functions.
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions:
1. :c:func:`glm_unprojecti`
#. :c:func:`glm_unproject`
#. :c:func:`glm_project`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest)
| maps the specified viewport coordinates into specified space [1]
the matrix should contain projection matrix.
if you don't have ( and don't want to have ) an inverse matrix then use
glm_unproject version. You may use existing inverse of matrix in somewhere
else, this is why glm_unprojecti exists to save save inversion cost
[1] space:
- if m = invProj: View Space
- if m = invViewProj: World Space
- if m = invMVP: Object Space
You probably want to map the coordinates into object space
so use invMVP as m
Computing viewProj:
.. code-block:: c
glm_mat4_mul(proj, view, viewProj);
glm_mat4_mul(viewProj, model, MVP);
glm_mat4_inv(viewProj, invMVP);
Parameters:
| *[in]* **pos** point/position in viewport coordinates
| *[in]* **invMat** matrix (see brief)
| *[in]* **vp** viewport as [x, y, width, height]
| *[out]* **dest** unprojected coordinates
.. c:function:: void glm_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest)
| maps the specified viewport coordinates into specified space [1]
the matrix should contain projection matrix.
this is same as glm_unprojecti except this function get inverse matrix for
you.
[1] space:
- if m = proj: View Space
- if m = viewProj: World Space
- if m = MVP: Object Space
You probably want to map the coordinates into object space so use MVP as m
Computing viewProj and MVP:
.. code-block:: c
glm_mat4_mul(proj, view, viewProj);
glm_mat4_mul(viewProj, model, MVP);
Parameters:
| *[in]* **pos** point/position in viewport coordinates
| *[in]* **m** matrix (see brief)
| *[in]* **vp** viewport as [x, y, width, height]
| *[out]* **dest** unprojected coordinates
.. c:function:: void glm_project(vec3 pos, mat4 m, vec4 vp, vec3 dest)
| map object coordinates to window coordinates
Computing MVP:
.. code-block:: c
glm_mat4_mul(proj, view, viewProj);
glm_mat4_mul(viewProj, model, MVP);
this could be useful for gettng a bbox which fits with view frustum and
object bounding boxes. In this case you crop view frustum box with objects
box
Parameters:
| *[in]* **pos** object coordinates
| *[in]* **m** MVP matrix
| *[in]* **vp** viewport as [x, y, width, height]
| *[out]* **dest** projected coordinates

380
docs/source/quat.rst Normal file
View File

@@ -0,0 +1,380 @@
.. default-domain:: C
quaternions
===========
Header: cglm/quat.h
**Important:** *cglm* stores quaternion as **[x, y, z, w]** in memory
since **v0.4.0** it was **[w, x, y, z]**
before v0.4.0 ( **v0.3.5 and earlier** ). w is real part.
What you can do with quaternions with existing functions is (Some of them):
- You can rotate transform matrix using quaterion
- You can rotate vector using quaterion
- You can create view matrix using quaterion
- You can create a lookrotation (from source point to dest)
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Macros:
1. GLM_QUAT_IDENTITY_INIT
#. GLM_QUAT_IDENTITY
Functions:
1. :c:func:`glm_quat_identity`
#. :c:func:`glm_quat_init`
#. :c:func:`glm_quat`
#. :c:func:`glm_quatv`
#. :c:func:`glm_quat_copy`
#. :c:func:`glm_quat_norm`
#. :c:func:`glm_quat_normalize`
#. :c:func:`glm_quat_normalize_to`
#. :c:func:`glm_quat_dot`
#. :c:func:`glm_quat_conjugate`
#. :c:func:`glm_quat_inv`
#. :c:func:`glm_quat_add`
#. :c:func:`glm_quat_sub`
#. :c:func:`glm_quat_real`
#. :c:func:`glm_quat_imag`
#. :c:func:`glm_quat_imagn`
#. :c:func:`glm_quat_imaglen`
#. :c:func:`glm_quat_angle`
#. :c:func:`glm_quat_axis`
#. :c:func:`glm_quat_mul`
#. :c:func:`glm_quat_mat4`
#. :c:func:`glm_quat_mat4t`
#. :c:func:`glm_quat_mat3`
#. :c:func:`glm_quat_mat3t`
#. :c:func:`glm_quat_lerp`
#. :c:func:`glm_quat_slerp`
#. :c:func:`glm_quat_look`
#. :c:func:`glm_quat_for`
#. :c:func:`glm_quat_forp`
#. :c:func:`glm_quat_rotatev`
#. :c:func:`glm_quat_rotate`
#. :c:func:`glm_quat_rotate_at`
#. :c:func:`glm_quat_rotate_atm`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_quat_identity(versor q)
| makes given quat to identity
Parameters:
| *[in, out]* **q** quaternion
.. c:function:: void glm_quat_init(versor q, float x, float y, float z, float w)
| inits quaternion with given values
Parameters:
| *[out]* **q** quaternion
| *[in]* **x** imag.x
| *[in]* **y** imag.y
| *[in]* **z** imag.z
| *[in]* **w** w (real part)
.. c:function:: void glm_quat(versor q, float angle, float x, float y, float z)
| creates NEW quaternion with individual axis components
| given axis will be normalized
Parameters:
| *[out]* **q** quaternion
| *[in]* **angle** angle (radians)
| *[in]* **x** axis.x
| *[in]* **y** axis.y
| *[in]* **z** axis.z
.. c:function:: void glm_quatv(versor q, float angle, vec3 axis)
| creates NEW quaternion with axis vector
| given axis will be normalized
Parameters:
| *[out]* **q** quaternion
| *[in]* **angle** angle (radians)
| *[in]* **axis** axis (will be normalized)
.. c:function:: void glm_quat_copy(versor q, versor dest)
| copy quaternion to another one
Parameters:
| *[in]* **q** source quaternion
| *[out]* **dest** destination quaternion
.. c:function:: float glm_quat_norm(versor q)
| returns norm (magnitude) of quaternion
Parameters:
| *[in]* **a** quaternion
Returns:
norm (magnitude)
.. c:function:: void glm_quat_normalize_to(versor q, versor dest)
| normalize quaternion and store result in dest, original one will not be normalized
Parameters:
| *[in]* **q** quaternion to normalize into
| *[out]* **dest** destination quaternion
.. c:function:: void glm_quat_normalize(versor q)
| normalize quaternion
Parameters:
| *[in, out]* **q** quaternion
.. c:function:: float glm_quat_dot(versor p, versor q)
dot product of two quaternion
Parameters:
| *[in]* **p** quaternion 1
| *[in]* **q** quaternion 2
Returns:
dot product
.. c:function:: void glm_quat_conjugate(versor q, versor dest)
conjugate of quaternion
Parameters:
| *[in]* **q** quaternion
| *[in]* **dest** conjugate
.. c:function:: void glm_quat_inv(versor q, versor dest)
inverse of non-zero quaternion
Parameters:
| *[in]* **q** quaternion
| *[in]* **dest** inverse quaternion
.. c:function:: void glm_quat_add(versor p, versor q, versor dest)
add (componentwise) two quaternions and store result in dest
Parameters:
| *[in]* **p** quaternion 1
| *[in]* **q** quaternion 2
| *[in]* **dest** result quaternion
.. c:function:: void glm_quat_sub(versor p, versor q, versor dest)
subtract (componentwise) two quaternions and store result in dest
Parameters:
| *[in]* **p** quaternion 1
| *[in]* **q** quaternion 2
| *[in]* **dest** result quaternion
.. c:function:: float glm_quat_real(versor q)
returns real part of quaternion
Parameters:
| *[in]* **q** quaternion
Returns:
real part (quat.w)
.. c:function:: void glm_quat_imag(versor q, vec3 dest)
returns imaginary part of quaternion
Parameters:
| *[in]* **q** quaternion
| *[out]* **dest** imag
.. c:function:: void glm_quat_imagn(versor q, vec3 dest)
returns normalized imaginary part of quaternion
Parameters:
| *[in]* **q** quaternion
| *[out]* **dest** imag
.. c:function:: float glm_quat_imaglen(versor q)
returns length of imaginary part of quaternion
Parameters:
| *[in]* **q** quaternion
Returns:
norm of imaginary part
.. c:function:: float glm_quat_angle(versor q)
returns angle of quaternion
Parameters:
| *[in]* **q** quaternion
Returns:
angles of quat (radians)
.. c:function:: void glm_quat_axis(versor q, versor dest)
axis of quaternion
Parameters:
| *[in]* **p** quaternion
| *[out]* **dest** axis of quaternion
.. c:function:: void glm_quat_mul(versor p, versor q, versor dest)
| multiplies two quaternion and stores result in dest
| this is also called Hamilton Product
| According to WikiPedia:
| The product of two rotation quaternions [clarification needed] will be
equivalent to the rotation q followed by the rotation p
Parameters:
| *[in]* **p** quaternion 1 (first rotation)
| *[in]* **q** quaternion 2 (second rotation)
| *[out]* **dest** result quaternion
.. c:function:: void glm_quat_mat4(versor q, mat4 dest)
| convert quaternion to mat4
Parameters:
| *[in]* **q** quaternion
| *[out]* **dest** result matrix
.. c:function:: void glm_quat_mat4t(versor q, mat4 dest)
| convert quaternion to mat4 (transposed). This is transposed version of glm_quat_mat4
Parameters:
| *[in]* **q** quaternion
| *[out]* **dest** result matrix
.. c:function:: void glm_quat_mat3(versor q, mat3 dest)
| convert quaternion to mat3
Parameters:
| *[in]* **q** quaternion
| *[out]* **dest** result matrix
.. c:function:: void glm_quat_mat3t(versor q, mat3 dest)
| convert quaternion to mat3 (transposed). This is transposed version of glm_quat_mat3
Parameters:
| *[in]* **q** quaternion
| *[out]* **dest** result matrix
.. c:function:: void glm_quat_lerp(versor from, versor to, float t, versor dest)
| interpolates between two quaternions
| using spherical linear interpolation (LERP)
Parameters:
| *[in]* **from** from
| *[in]* **to** to
| *[in]* **t** interpolant (amount) clamped between 0 and 1
| *[out]* **dest** result quaternion
.. c:function:: void glm_quat_slerp(versor q, versor r, float t, versor dest)
| interpolates between two quaternions
| using spherical linear interpolation (SLERP)
Parameters:
| *[in]* **from** from
| *[in]* **to** to
| *[in]* **t** interpolant (amount) clamped between 0 and 1
| *[out]* **dest** result quaternion
.. c:function:: void glm_quat_look(vec3 eye, versor ori, mat4 dest)
| creates view matrix using quaternion as camera orientation
Parameters:
| *[in]* **eye** eye
| *[in]* **ori** orientation in world space as quaternion
| *[out]* **dest** result matrix
.. c:function:: void glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest)
| creates look rotation quaternion
Parameters:
| *[in]* **dir** direction to look
| *[in]* **fwd** forward vector
| *[in]* **up** up vector
| *[out]* **dest** result matrix
.. c:function:: void glm_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest)
| creates look rotation quaternion using source and destination positions p suffix stands for position
| this is similar to glm_quat_for except this computes direction for glm_quat_for for you.
Parameters:
| *[in]* **from** source point
| *[in]* **to** destination point
| *[in]* **fwd** forward vector
| *[in]* **up** up vector
| *[out]* **dest** result matrix
.. c:function:: void glm_quat_rotatev(versor q, vec3 v, vec3 dest)
| crotate vector using using quaternion
Parameters:
| *[in]* **q** quaternion
| *[in]* **v** vector to rotate
| *[out]* **dest** rotated vector
.. c:function:: void glm_quat_rotate(mat4 m, versor q, mat4 dest)
| rotate existing transform matrix using quaternion
instead of passing identity matrix, consider to use quat_mat4 functions
Parameters:
| *[in]* **m** existing transform matrix to rotate
| *[in]* **q** quaternion
| *[out]* **dest** rotated matrix/transform
.. c:function:: void glm_quat_rotate_at(mat4 m, versor q, vec3 pivot)
| rotate existing transform matrix using quaternion at pivot point
Parameters:
| *[in, out]* **m** existing transform matrix to rotate
| *[in]* **q** quaternion
| *[in]* **pivot** pivot
.. c:function:: void glm_quat_rotate(mat4 m, versor q, mat4 dest)
| rotate NEW transform matrix using quaternion at pivot point
| this creates rotation matrix, it assumes you don't have a matrix
| this should work faster than glm_quat_rotate_at because it reduces one glm_translate.
Parameters:
| *[in, out]* **m** existing transform matrix to rotate
| *[in]* **q** quaternion
| *[in]* **pivot** pivot

View File

@@ -0,0 +1,79 @@
.. default-domain:: C
Troubleshooting
================================================================================
It is possible that sometimes you may get crashes or wrong results.
Follow these topics
Memory Allocation:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Again, **cglm** doesn't alloc any memory on heap.
cglm functions works like memcpy; it copies data from src,
makes calculations then copy the result to dest.
You are responsible for allocation of **src** and **dest** parameters.
Alignment:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**vec4** and **mat4** types requires 16 byte alignment.
These types are marked with align attribute to let compiler know about this
requirement.
But since MSVC (Windows) throws the error:
**"formal parameter with requested alignment of 16 won't be aligned"**
The alignment attribute has been commented for MSVC
.. code-block:: c
#if defined(_MSC_VER)
# define CGLM_ALIGN(X) /* __declspec(align(X)) */
#else
# define CGLM_ALIGN(X) __attribute((aligned(X)))
#endif.
So MSVC may not know about alignment requirements when creating variables.
The interesting thing is that, if I remember correctly Visual Studio 2017
doesn't throw the above error. So we may uncomment that line for Visual Studio 2017,
you may do it yourself.
**This MSVC issue is still in TODOs.**
**UPDATE:** By starting v0.4.5 cglm provides an option to disable alignment requirement.
Also alignment is disabled for older msvc verisons as default. Now alignment is only required in Visual Studio 2017 version 15.6+ if CGLM_ALL_UNALIGNED macro is not defined.
Crashes, Invalid Memory Access:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Probably you are trying to write to invalid memory location.
You may used wrong function for what you want to do.
For instance you may called **glm_vec4_** functions for **vec3** data type.
It will try to write 32 byte but since **vec3** is 24 byte it should throw
memory access error or exit the app without saying anything.
Wrong Results:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Again, you may used wrong function.
For instance if you use **glm_normalize()** or **glm_vec_normalize()** for **vec4**,
it will assume that passed param is **vec3** and will normalize it for **vec3**.
Since you need to **vec4** to be normalized in your case, you will get wrong results.
Accessing vec4 type with vec3 functions is valid, you will not get any error, exception or crash.
You only get wrong results if you don't know what you are doing!
So be carefull, when your IDE (Xcode, Visual Studio ...) tried to autocomplete function names, READ IT :)
**Also implementation may be wrong please let us know by creating an issue on Github.**
Other Issues?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**Please let us know by creating an issue on Github.**

138
docs/source/util.rst Normal file
View File

@@ -0,0 +1,138 @@
.. default-domain:: C
utils / helpers
================================================================================
Header: cglm/util.h
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions:
1. :c:func:`glm_sign`
#. :c:func:`glm_signf`
#. :c:func:`glm_rad`
#. :c:func:`glm_deg`
#. :c:func:`glm_make_rad`
#. :c:func:`glm_make_deg`
#. :c:func:`glm_pow2`
#. :c:func:`glm_min`
#. :c:func:`glm_max`
#. :c:func:`glm_clamp`
#. :c:func:`glm_lerp`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: int glm_sign(int val)
| returns sign of 32 bit integer as +1, -1, 0
| **Important**: It returns 0 for zero input
Parameters:
| *[in]* **val** an integer
Returns:
sign of given number
.. c:function:: float glm_signf(float val)
| returns sign of 32 bit integer as +1.0, -1.0, 0.0
| **Important**: It returns 0.0f for zero input
Parameters:
| *[in]* **val** a float
Returns:
sign of given number
.. c:function:: float glm_rad(float deg)
| convert degree to radians
Parameters:
| *[in]* **deg** angle in degrees
.. c:function:: float glm_deg(float rad)
| convert radians to degree
Parameters:
| *[in]* **rad** angle in radians
.. c:function:: void glm_make_rad(float *degm)
| convert exsisting degree to radians. this will override degrees value
Parameters:
| *[in, out]* **deg** pointer to angle in degrees
.. c:function:: void glm_make_deg(float *rad)
| convert exsisting radians to degree. this will override radians value
Parameters:
| *[in, out]* **rad** pointer to angle in radians
.. c:function:: float glm_pow2(float x)
| multiplies given parameter with itself = x * x or powf(x, 2)
Parameters:
| *[in]* **x** value
Returns:
square of a given number
.. c:function:: float glm_min(float a, float b)
| returns minimum of given two values
Parameters:
| *[in]* **a** number 1
| *[in]* **b** number 2
Returns:
minimum value
.. c:function:: float glm_max(float a, float b)
| returns maximum of given two values
Parameters:
| *[in]* **a** number 1
| *[in]* **b** number 2
Returns:
maximum value
.. c:function:: void glm_clamp(float val, float minVal, float maxVal)
constrain a value to lie between two further values
Parameters:
| *[in]* **val** input value
| *[in]* **minVal** minimum value
| *[in]* **maxVal** maximum value
Returns:
clamped value
.. c:function:: float glm_lerp(float from, float to, float t)
linear interpolation between two number
| formula: from + s * (to - from)
Parameters:
| *[in]* **from** from value
| *[in]* **to** to value
| *[in]* **t** interpolant (amount) clamped between 0 and 1
Returns:
interpolated value

143
docs/source/vec3-ext.rst Normal file
View File

@@ -0,0 +1,143 @@
.. default-domain:: C
vec3 extra
==========
Header: cglm/vec3-ext.h
There are some functions are in called in extra header. These are called extra
because they are not used like other functions in vec3.h in the future some of
these functions ma be moved to vec3 header.
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions:
1. :c:func:`glm_vec_mulv`
#. :c:func:`glm_vec_broadcast`
#. :c:func:`glm_vec_eq`
#. :c:func:`glm_vec_eq_eps`
#. :c:func:`glm_vec_eq_all`
#. :c:func:`glm_vec_eqv`
#. :c:func:`glm_vec_eqv_eps`
#. :c:func:`glm_vec_max`
#. :c:func:`glm_vec_min`
#. :c:func:`glm_vec_isnan`
#. :c:func:`glm_vec_isinf`
#. :c:func:`glm_vec_isvalid`
#. :c:func:`glm_vec_sign`
#. :c:func:`glm_vec_sqrt`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_vec_mulv(vec3 a, vec3 b, vec3 d)
multiplies individual items
Parameters:
| *[in]* **a** vec1
| *[in]* **b** vec2
| *[out]* **d** destination (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2])
.. c:function:: void glm_vec_broadcast(float val, vec3 d)
fill a vector with specified value
Parameters:
| *[in]* **val** value
| *[out]* **dest** destination
.. c:function:: bool glm_vec_eq(vec3 v, float val)
check if vector is equal to value (without epsilon)
Parameters:
| *[in]* **v** vector
| *[in]* **val** value
.. c:function:: bool glm_vec_eq_eps(vec3 v, float val)
check if vector is equal to value (with epsilon)
Parameters:
| *[in]* **v** vector
| *[in]* **val** value
.. c:function:: bool glm_vec_eq_all(vec3 v)
check if vectors members are equal (without epsilon)
Parameters:
| *[in]* **v** vector
.. c:function:: bool glm_vec_eqv(vec3 v1, vec3 v2)
check if vector is equal to another (without epsilon) vector
Parameters:
| *[in]* **vec** vector 1
| *[in]* **vec** vector 2
.. c:function:: bool glm_vec_eqv_eps(vec3 v1, vec3 v2)
check if vector is equal to another (with epsilon)
Parameters:
| *[in]* **v1** vector1
| *[in]* **v2** vector2
.. c:function:: float glm_vec_max(vec3 v)
max value of vector
Parameters:
| *[in]* **v** vector
.. c:function:: float glm_vec_min(vec3 v)
min value of vector
Parameters:
| *[in]* **v** vector
.. c:function:: bool glm_vec_isnan(vec3 v)
| check if one of items is NaN (not a number)
| you should only use this in DEBUG mode or very critical asserts
Parameters:
| *[in]* **v** vector
.. c:function:: bool glm_vec_isinf(vec3 v)
| check if one of items is INFINITY
| you should only use this in DEBUG mode or very critical asserts
Parameters:
| *[in]* **v** vector
.. c:function:: bool glm_vec_isvalid(vec3 v)
| check if all items are valid number
| you should only use this in DEBUG mode or very critical asserts
Parameters:
| *[in]* **v** vector
.. c:function:: void glm_vec_sign(vec3 v, vec3 dest)
get sign of 32 bit float as +1, -1, 0
Parameters:
| *[in]* **v** vector
| *[out]* **dest** sign vector (only keeps signs as -1, 0, -1)
.. c:function:: void glm_vec_sqrt(vec3 v, vec3 dest)
square root of each vector item
Parameters:
| *[in]* **v** vector
| *[out]* **dest** destination vector (sqrt(v))

425
docs/source/vec3.rst Normal file
View File

@@ -0,0 +1,425 @@
.. default-domain:: C
vec3
====
Header: cglm/vec3.h
We mostly use vectors in graphics math, to make writing code faster
and easy to read, some *vec3* functions are aliased in global namespace.
For instance :c:func:`glm_dot` is alias of :c:func:`glm_vec_dot`,
alias means inline wrapper here. There is no call verison of alias functions
There are also functions for rotating *vec3* vector. **_m4**, **_m3** prefixes
rotate *vec3* with matrix.
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Macros:
1. glm_vec_dup(v, dest)
#. GLM_VEC3_ONE_INIT
#. GLM_VEC3_ZERO_INIT
#. GLM_VEC3_ONE
#. GLM_VEC3_ZERO
#. GLM_YUP
#. GLM_ZUP
#. GLM_XUP
Functions:
1. :c:func:`glm_vec3`
#. :c:func:`glm_vec_copy`
#. :c:func:`glm_vec_zero`
#. :c:func:`glm_vec_one`
#. :c:func:`glm_vec_dot`
#. :c:func:`glm_vec_cross`
#. :c:func:`glm_vec_norm2`
#. :c:func:`glm_vec_norm`
#. :c:func:`glm_vec_add`
#. :c:func:`glm_vec_adds`
#. :c:func:`glm_vec_sub`
#. :c:func:`glm_vec_subs`
#. :c:func:`glm_vec_mul`
#. :c:func:`glm_vec_scale`
#. :c:func:`glm_vec_scale_as`
#. :c:func:`glm_vec_div`
#. :c:func:`glm_vec_divs`
#. :c:func:`glm_vec_addadd`
#. :c:func:`glm_vec_subadd`
#. :c:func:`glm_vec_muladd`
#. :c:func:`glm_vec_muladds`
#. :c:func:`glm_vec_flipsign`
#. :c:func:`glm_vec_flipsign_to`
#. :c:func:`glm_vec_inv`
#. :c:func:`glm_vec_inv_to`
#. :c:func:`glm_vec_normalize`
#. :c:func:`glm_vec_normalize_to`
#. :c:func:`glm_vec_distance`
#. :c:func:`glm_vec_angle`
#. :c:func:`glm_vec_rotate`
#. :c:func:`glm_vec_rotate_m4`
#. :c:func:`glm_vec_rotate_m3`
#. :c:func:`glm_vec_proj`
#. :c:func:`glm_vec_center`
#. :c:func:`glm_vec_maxv`
#. :c:func:`glm_vec_minv`
#. :c:func:`glm_vec_ortho`
#. :c:func:`glm_vec_clamp`
#. :c:func:`glm_vec_lerp`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_vec3(vec4 v4, vec3 dest)
init vec3 using vec4
Parameters:
| *[in]* **v4** vector4
| *[out]* **dest** destination
.. c:function:: void glm_vec_copy(vec3 a, vec3 dest)
copy all members of [a] to [dest]
Parameters:
| *[in]* **a** source
| *[out]* **dest** destination
.. c:function:: void glm_vec_zero(vec3 v)
makes all members 0.0f (zero)
Parameters:
| *[in, out]* **v** vector
.. c:function:: void glm_vec_one(vec3 v)
makes all members 1.0f (one)
Parameters:
| *[in, out]* **v** vector
.. c:function:: float glm_vec_dot(vec3 a, vec3 b)
dot product of vec3
Parameters:
| *[in]* **a** vector1
| *[in]* **b** vector2
Returns:
dot product
.. c:function:: void glm_vec_cross(vec3 a, vec3 b, vec3 d)
cross product
Parameters:
| *[in]* **a** source 1
| *[in]* **b** source 2
| *[out]* **d** destination
.. c:function:: float glm_vec_norm2(vec3 v)
norm * norm (magnitude) of vector
we can use this func instead of calling norm * norm, because it would call
sqrtf fuction twice but with this func we can avoid func call, maybe this is
not good name for this func
Parameters:
| *[in]* **v** vector
Returns:
square of norm / magnitude
.. c:function:: float glm_vec_norm(vec3 vec)
norm (magnitude) of vec3
Parameters:
| *[in]* **vec** vector
.. c:function:: void glm_vec_add(vec3 a, vec3 b, vec3 dest)
add a vector to b vector store result in dest
Parameters:
| *[in]* **a** vector1
| *[in]* **b** vector2
| *[out]* **dest** destination vector
.. c:function:: void glm_vec_adds(vec3 a, float s, vec3 dest)
add scalar to v vector store result in dest (d = v + vec(s))
Parameters:
| *[in]* **v** vector
| *[in]* **s** scalar
| *[out]* **dest** destination vector
.. c:function:: void glm_vec_sub(vec3 v1, vec3 v2, vec3 dest)
subtract b vector from a vector store result in dest (d = v1 - v2)
Parameters:
| *[in]* **a** vector1
| *[in]* **b** vector2
| *[out]* **dest** destination vector
.. c:function:: void glm_vec_subs(vec3 v, float s, vec3 dest)
subtract scalar from v vector store result in dest (d = v - vec(s))
Parameters:
| *[in]* **v** vector
| *[in]* **s** scalar
| *[out]* **dest** destination vector
.. c:function:: void glm_vec_mul(vec3 a, vec3 b, vec3 d)
multiply two vector (component-wise multiplication)
Parameters:
| *[in]* **a** vector
| *[in]* **b** scalar
| *[out]* **d** result = (a[0] * b[0], a[1] * b[1], a[2] * b[2])
.. c:function:: void glm_vec_scale(vec3 v, float s, vec3 dest)
multiply/scale vec3 vector with scalar: result = v * s
Parameters:
| *[in]* **v** vector
| *[in]* **s** scalar
| *[out]* **dest** destination vector
.. c:function:: void glm_vec_scale_as(vec3 v, float s, vec3 dest)
make vec3 vector scale as specified: result = unit(v) * s
Parameters:
| *[in]* **v** vector
| *[in]* **s** scalar
| *[out]* **dest** destination vector
.. c:function:: void glm_vec_div(vec3 a, vec3 b, vec3 dest)
div vector with another component-wise division: d = a / b
Parameters:
| *[in]* **a** vector 1
| *[in]* **b** vector 2
| *[out]* **dest** result = (a[0] / b[0], a[1] / b[1], a[2] / b[2])
.. c:function:: void glm_vec_divs(vec3 v, float s, vec3 dest)
div vector with scalar: d = v / s
Parameters:
| *[in]* **v** vector
| *[in]* **s** scalar
| *[out]* **dest** result = (a[0] / s, a[1] / s, a[2] / s])
.. c:function:: void glm_vec_addadd(vec3 a, vec3 b, vec3 dest)
| add two vectors and add result to sum
| it applies += operator so dest must be initialized
Parameters:
| *[in]* **a** vector 1
| *[in]* **b** vector 2
| *[out]* **dest** dest += (a + b)
.. c:function:: void glm_vec_subadd(vec3 a, vec3 b, vec3 dest)
| sub two vectors and add result to sum
| it applies += operator so dest must be initialized
Parameters:
| *[in]* **a** vector 1
| *[in]* **b** vector 2
| *[out]* **dest** dest += (a - b)
.. c:function:: void glm_vec_muladd(vec3 a, vec3 b, vec3 dest)
| mul two vectors and add result to sum
| it applies += operator so dest must be initialized
Parameters:
| *[in]* **a** vector 1
| *[in]* **b** vector 2
| *[out]* **dest** dest += (a * b)
.. c:function:: void glm_vec_muladds(vec3 a, float s, vec3 dest)
| mul vector with scalar and add result to sum
| it applies += operator so dest must be initialized
Parameters:
| *[in]* **a** vector
| *[in]* **s** scalar
| *[out]* **dest** dest += (a * b)
.. c:function:: void glm_vec_flipsign(vec3 v)
flip sign of all vec3 members
Parameters:
| *[in, out]* **v** vector
.. c:function:: void glm_vec_flipsign_to(vec3 v, vec3 dest)
flip sign of all vec3 members and store result in dest
Parameters:
| *[in]* **v** vector
| *[out]* **dest** negated vector
.. c:function:: void glm_vec_inv(vec3 v)
make vector as inverse/opposite of itself
Parameters:
| *[in, out]* **v** vector
.. c:function:: void glm_vec_inv_to(vec3 v, vec3 dest)
inverse/opposite vector
Parameters:
| *[in]* **v** source
| *[out]* **dest** destination
.. c:function:: void glm_vec_normalize(vec3 v)
normalize vec3 and store result in same vec
Parameters:
| *[in, out]* **v** vector
.. c:function:: void glm_vec_normalize_to(vec3 vec, vec3 dest)
normalize vec3 to dest
Parameters:
| *[in]* **vec** source
| *[out]* **dest** destination
.. c:function:: float glm_vec_angle(vec3 v1, vec3 v2)
angle betwen two vector
Parameters:
| *[in]* **v1** vector1
| *[in]* **v2** vector2
Return:
| angle as radians
.. c:function:: void glm_vec_rotate(vec3 v, float angle, vec3 axis)
rotate vec3 around axis by angle using Rodrigues' rotation formula
Parameters:
| *[in, out]* **v** vector
| *[in]* **axis** axis vector (will be normalized)
| *[out]* **angle** angle (radians)
.. c:function:: void glm_vec_rotate_m4(mat4 m, vec3 v, vec3 dest)
apply rotation matrix to vector
Parameters:
| *[in]* **m** affine matrix or rot matrix
| *[in]* **v** vector
| *[out]* **dest** rotated vector
.. c:function:: void glm_vec_rotate_m3(mat3 m, vec3 v, vec3 dest)
apply rotation matrix to vector
Parameters:
| *[in]* **m** affine matrix or rot matrix
| *[in]* **v** vector
| *[out]* **dest** rotated vector
.. c:function:: void glm_vec_proj(vec3 a, vec3 b, vec3 dest)
project a vector onto b vector
Parameters:
| *[in]* **a** vector1
| *[in]* **b** vector2
| *[out]* **dest** projected vector
.. c:function:: void glm_vec_center(vec3 v1, vec3 v2, vec3 dest)
find center point of two vector
Parameters:
| *[in]* **v1** vector1
| *[in]* **v2** vector2
| *[out]* **dest** center point
.. c:function:: float glm_vec_distance(vec3 v1, vec3 v2)
distance between two vectors
Parameters:
| *[in]* **mat** vector1
| *[in]* **row1** vector2
Returns:
| distance
.. c:function:: void glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest)
max values of vectors
Parameters:
| *[in]* **v1** vector1
| *[in]* **v2** vector2
| *[out]* **dest** destination
.. c:function:: void glm_vec_minv(vec3 v1, vec3 v2, vec3 dest)
min values of vectors
Parameters:
| *[in]* **v1** vector1
| *[in]* **v2** vector2
| *[out]* **dest** destination
.. c:function:: void glm_vec_ortho(vec3 v, vec3 dest)
possible orthogonal/perpendicular vector
Parameters:
| *[in]* **mat** vector
| *[out]* **dest** orthogonal/perpendicular vector
.. c:function:: void glm_vec_clamp(vec3 v, float minVal, float maxVal)
constrain a value to lie between two further values
Parameters:
| *[in, out]* **v** vector
| *[in]* **minVal** minimum value
| *[in]* **maxVal** maximum value
.. c:function:: void glm_vec_lerp(vec3 from, vec3 to, float t, vec3 dest)
linear interpolation between two vector
| formula: from + s * (to - from)
Parameters:
| *[in]* **from** from value
| *[in]* **to** to value
| *[in]* **t** interpolant (amount) clamped between 0 and 1
| *[out]* **dest** destination

138
docs/source/vec4-ext.rst Normal file
View File

@@ -0,0 +1,138 @@
.. default-domain:: C
vec4 extra
==========
Header: cglm/vec4-ext.h
There are some functions are in called in extra header. These are called extra
because they are not used like other functions in vec4.h in the future some of
these functions ma be moved to vec4 header.
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functions:
1. :c:func:`glm_vec4_mulv`
#. :c:func:`glm_vec4_broadcast`
#. :c:func:`glm_vec4_eq`
#. :c:func:`glm_vec4_eq_eps`
#. :c:func:`glm_vec4_eq_all`
#. :c:func:`glm_vec4_eqv`
#. :c:func:`glm_vec4_eqv_eps`
#. :c:func:`glm_vec4_max`
#. :c:func:`glm_vec4_min`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_vec4_mulv(vec4 a, vec4 b, vec4 d)
multiplies individual items
Parameters:
| *[in]* **a** vec1
| *[in]* **b** vec2
| *[out]* **d** destination
.. c:function:: void glm_vec4_broadcast(float val, vec4 d)
fill a vector with specified value
Parameters:
| *[in]* **val** value
| *[out]* **dest** destination
.. c:function:: bool glm_vec4_eq(vec4 v, float val)
check if vector is equal to value (without epsilon)
Parameters:
| *[in]* **v** vector
| *[in]* **val** value
.. c:function:: bool glm_vec4_eq_eps(vec4 v, float val)
check if vector is equal to value (with epsilon)
Parameters:
| *[in]* **v** vector
| *[in]* **val** value
.. c:function:: bool glm_vec4_eq_all(vec4 v)
check if vectors members are equal (without epsilon)
Parameters:
| *[in]* **v** vector
.. c:function:: bool glm_vec4_eqv(vec4 v1, vec4 v2)
check if vector is equal to another (without epsilon) vector
Parameters:
| *[in]* **vec** vector 1
| *[in]* **vec** vector 2
.. c:function:: bool glm_vec4_eqv_eps(vec4 v1, vec4 v2)
check if vector is equal to another (with epsilon)
Parameters:
| *[in]* **v1** vector1
| *[in]* **v2** vector2
.. c:function:: float glm_vec4_max(vec4 v)
max value of vector
Parameters:
| *[in]* **v** vector
.. c:function:: float glm_vec4_min(vec4 v)
min value of vector
Parameters:
| *[in]* **v** vector
.. c:function:: bool glm_vec4_isnan(vec4 v)
| check if one of items is NaN (not a number)
| you should only use this in DEBUG mode or very critical asserts
Parameters:
| *[in]* **v** vector
.. c:function:: bool glm_vec4_isinf(vec4 v)
| check if one of items is INFINITY
| you should only use this in DEBUG mode or very critical asserts
Parameters:
| *[in]* **v** vector
.. c:function:: bool glm_vec4_isvalid(vec4 v)
| check if all items are valid number
| you should only use this in DEBUG mode or very critical asserts
Parameters:
| *[in]* **v** vector
.. c:function:: void glm_vec4_sign(vec4 v, vec4 dest)
get sign of 32 bit float as +1, -1, 0
Parameters:
| *[in]* **v** vector
| *[out]* **dest** sign vector (only keeps signs as -1, 0, -1)
.. c:function:: void glm_vec4_sqrt(vec4 v, vec4 dest)
square root of each vector item
Parameters:
| *[in]* **v** vector
| *[out]* **dest** destination vector (sqrt(v))

345
docs/source/vec4.rst Normal file
View File

@@ -0,0 +1,345 @@
.. default-domain:: C
vec4
====
Header: cglm/vec4.h
Table of contents (click to go):
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Macros:
1. glm_vec4_dup3(v, dest)
#. glm_vec4_dup(v, dest)
#. GLM_VEC4_ONE_INIT
#. GLM_VEC4_BLACK_INIT
#. GLM_VEC4_ZERO_INIT
#. GLM_VEC4_ONE
#. GLM_VEC4_BLACK
#. GLM_VEC4_ZERO
Functions:
1. :c:func:`glm_vec4`
#. :c:func:`glm_vec4_copy3`
#. :c:func:`glm_vec4_copy`
#. :c:func:`glm_vec4_zero`
#. :c:func:`glm_vec4_one`
#. :c:func:`glm_vec4_dot`
#. :c:func:`glm_vec4_norm2`
#. :c:func:`glm_vec4_norm`
#. :c:func:`glm_vec4_add`
#. :c:func:`glm_vec4_adds`
#. :c:func:`glm_vec4_sub`
#. :c:func:`glm_vec4_subs`
#. :c:func:`glm_vec4_mul`
#. :c:func:`glm_vec4_scale`
#. :c:func:`glm_vec4_scale_as`
#. :c:func:`glm_vec4_div`
#. :c:func:`glm_vec4_divs`
#. :c:func:`glm_vec4_addadd`
#. :c:func:`glm_vec4_subadd`
#. :c:func:`glm_vec4_muladd`
#. :c:func:`glm_vec4_muladds`
#. :c:func:`glm_vec4_flipsign`
#. :c:func:`glm_vec_flipsign_to`
#. :c:func:`glm_vec4_inv`
#. :c:func:`glm_vec4_inv_to`
#. :c:func:`glm_vec4_normalize`
#. :c:func:`glm_vec4_normalize_to`
#. :c:func:`glm_vec4_distance`
#. :c:func:`glm_vec4_maxv`
#. :c:func:`glm_vec4_minv`
#. :c:func:`glm_vec4_clamp`
#. :c:func:`glm_vec4_lerp`
#. :c:func:`glm_vec4_isnan`
#. :c:func:`glm_vec4_isinf`
#. :c:func:`glm_vec4_isvalid`
#. :c:func:`glm_vec4_sign`
#. :c:func:`glm_vec4_sqrt`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
.. c:function:: void glm_vec4(vec3 v3, float last, vec4 dest)
init vec4 using vec3, since you are initializing vec4 with vec3
you need to set last item. cglm could set it zero but making it parameter
gives more control
Parameters:
| *[in]* **v3** vector4
| *[in]* **last** last item of vec4
| *[out]* **dest** destination
.. c:function:: void glm_vec4_copy3(vec4 a, vec3 dest)
copy first 3 members of [a] to [dest]
Parameters:
| *[in]* **a** source
| *[out]* **dest** destination
.. c:function:: void glm_vec4_copy(vec4 v, vec4 dest)
copy all members of [a] to [dest]
Parameters:
| *[in]* **v** source
| *[in]* **dest** destination
.. c:function:: void glm_vec4_zero(vec4 v)
makes all members zero
Parameters:
| *[in, out]* **v** vector
.. c:function:: float glm_vec4_dot(vec4 a, vec4 b)
dot product of vec4
Parameters:
| *[in]* **a** vector1
| *[in]* **b** vector2
Returns:
dot product
.. c:function:: float glm_vec4_norm2(vec4 v)
norm * norm (magnitude) of vector
we can use this func instead of calling norm * norm, because it would call
sqrtf fuction twice but with this func we can avoid func call, maybe this is
not good name for this func
Parameters:
| *[in]* **v** vector
Returns:
square of norm / magnitude
.. c:function:: float glm_vec4_norm(vec4 vec)
norm (magnitude) of vec4
Parameters:
| *[in]* **vec** vector
.. c:function:: void glm_vec4_add(vec4 a, vec4 b, vec4 dest)
add a vector to b vector store result in dest
Parameters:
| *[in]* **a** vector1
| *[in]* **b** vector2
| *[out]* **dest** destination vector
.. c:function:: void glm_vec4_adds(vec4 v, float s, vec4 dest)
add scalar to v vector store result in dest (d = v + vec(s))
Parameters:
| *[in]* **v** vector
| *[in]* **s** scalar
| *[out]* **dest** destination vector
.. c:function:: void glm_vec4_sub(vec4 a, vec4 b, vec4 dest)
subtract b vector from a vector store result in dest (d = v1 - v2)
Parameters:
| *[in]* **a** vector1
| *[in]* **b** vector2
| *[out]* **dest** destination vector
.. c:function:: void glm_vec4_subs(vec4 v, float s, vec4 dest)
subtract scalar from v vector store result in dest (d = v - vec(s))
Parameters:
| *[in]* **v** vector
| *[in]* **s** scalar
| *[out]* **dest** destination vector
.. c:function:: void glm_vec4_mul(vec4 a, vec4 b, vec4 d)
multiply two vector (component-wise multiplication)
Parameters:
| *[in]* **a** vector1
| *[in]* **b** vector2
| *[out]* **dest** result = (a[0] * b[0], a[1] * b[1], a[2] * b[2], a[3] * b[3])
.. c:function:: void glm_vec4_scale(vec4 v, float s, vec4 dest)
multiply/scale vec4 vector with scalar: result = v * s
Parameters:
| *[in]* **v** vector
| *[in]* **s** scalar
| *[out]* **dest** destination vector
.. c:function:: void glm_vec4_scale_as(vec4 v, float s, vec4 dest)
make vec4 vector scale as specified: result = unit(v) * s
Parameters:
| *[in]* **v** vector
| *[in]* **s** scalar
| *[out]* **dest** destination vector
.. c:function:: void glm_vec4_div(vec4 a, vec4 b, vec4 dest)
div vector with another component-wise division: d = v1 / v2
Parameters:
| *[in]* **a** vector1
| *[in]* **b** vector2
| *[out]* **dest** result = (a[0] / b[0], a[1] / b[1], a[2] / b[2], a[3] / b[3])
.. c:function:: void glm_vec4_divs(vec4 v, float s, vec4 dest)
div vector with scalar: d = v / s
Parameters:
| *[in]* **v** vector
| *[in]* **s** scalar
| *[out]* **dest** result = (a[0] / s, a[1] / s, a[2] / s, a[3] / s)
.. c:function:: void glm_vec4_addadd(vec4 a, vec4 b, vec4 dest)
| add two vectors and add result to sum
| it applies += operator so dest must be initialized
Parameters:
| *[in]* **a** vector 1
| *[in]* **b** vector 2
| *[out]* **dest** dest += (a + b)
.. c:function:: void glm_vec4_subadd(vec4 a, vec4 b, vec4 dest)
| sub two vectors and add result to sum
| it applies += operator so dest must be initialized
Parameters:
| *[in]* **a** vector 1
| *[in]* **b** vector 2
| *[out]* **dest** dest += (a - b)
.. c:function:: void glm_vec4_muladd(vec4 a, vec4 b, vec4 dest)
| mul two vectors and add result to sum
| it applies += operator so dest must be initialized
Parameters:
| *[in]* **a** vector 1
| *[in]* **b** vector 2
| *[out]* **dest** dest += (a * b)
.. c:function:: void glm_vec4_muladds(vec4 a, float s, vec4 dest)
| mul vector with scalar and add result to sum
| it applies += operator so dest must be initialized
Parameters:
| *[in]* **a** vector
| *[in]* **s** scalar
| *[out]* **dest** dest += (a * b)
.. c:function:: void glm_vec4_flipsign(vec4 v)
flip sign of all vec4 members
Parameters:
| *[in, out]* **v** vector
.. c:function:: void glm_vec4_flipsign_to(vec4 v, vec4 dest)
flip sign of all vec4 members and store result in dest
Parameters:
| *[in]* **v** vector
| *[out]* **dest** negated vector
.. c:function:: void glm_vec4_inv(vec4 v)
make vector as inverse/opposite of itself
Parameters:
| *[in, out]* **v** vector
.. c:function:: void glm_vec4_inv_to(vec4 v, vec4 dest)
inverse/opposite vector
Parameters:
| *[in]* **v** source
| *[out]* **dest** destination
.. c:function:: void glm_vec4_normalize(vec4 v)
normalize vec4 and store result in same vec
Parameters:
| *[in, out]* **v** vector
.. c:function:: void glm_vec4_normalize_to(vec4 vec, vec4 dest)
normalize vec4 to dest
Parameters:
| *[in]* **vec** source
| *[out]* **dest** destination
.. c:function:: float glm_vec4_distance(vec4 v1, vec4 v2)
distance between two vectors
Parameters:
| *[in]* **mat** vector1
| *[in]* **row1** vector2
Returns:
| distance
.. c:function:: void glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest)
max values of vectors
Parameters:
| *[in]* **v1** vector1
| *[in]* **v2** vector2
| *[out]* **dest** destination
.. c:function:: void glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest)
min values of vectors
Parameters:
| *[in]* **v1** vector1
| *[in]* **v2** vector2
| *[out]* **dest** destination
.. c:function:: void glm_vec4_clamp(vec4 v, float minVal, float maxVal)
constrain a value to lie between two further values
Parameters:
| *[in, out]* **v** vector
| *[in]* **minVal** minimum value
| *[in]* **maxVal** maximum value
.. c:function:: void glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest)
linear interpolation between two vector
| formula: from + s * (to - from)
Parameters:
| *[in]* **from** from value
| *[in]* **to** to value
| *[in]* **t** interpolant (amount) clamped between 0 and 1
| *[out]* **dest** destination

View File

@@ -16,6 +16,7 @@
#include "common.h" #include "common.h"
#include "mat4.h" #include "mat4.h"
#include "mat3.h"
#ifdef CGLM_SSE_FP #ifdef CGLM_SSE_FP
# include "simd/sse2/affine.h" # include "simd/sse2/affine.h"
@@ -25,8 +26,22 @@
# include "simd/avx/affine.h" # include "simd/avx/affine.h"
#endif #endif
#include <assert.h> /*!
* @brief this is similar to glm_mat4_mul but specialized to affine transform
*
* Matrix format should be:
* R R R X
* R R R Y
* R R R Z
* 0 0 0 W
*
* this reduces some multiplications. It should be faster than mat4_mul.
* if you are not sure about matrix format then DON'T use this! use mat4_mul
*
* @param[in] m1 affine matrix 1
* @param[in] m2 affine matrix 2
* @param[out] dest result matrix
*/
CGLM_INLINE CGLM_INLINE
void void
glm_mul(mat4 m1, mat4 m2, mat4 dest) { glm_mul(mat4 m1, mat4 m2, mat4 dest) {
@@ -67,6 +82,59 @@ glm_mul(mat4 m1, mat4 m2, mat4 dest) {
#endif #endif
} }
/*!
* @brief this is similar to glm_mat4_mul but specialized to affine transform
*
* Right Matrix format should be:
* R R R 0
* R R R 0
* R R R 0
* 0 0 0 1
*
* this reduces some multiplications. It should be faster than mat4_mul.
* if you are not sure about matrix format then DON'T use this! use mat4_mul
*
* @param[in] m1 affine matrix 1
* @param[in] m2 affine matrix 2
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mul_rot_sse2(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3],
a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3],
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2];
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02;
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12;
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22;
dest[3][0] = a30;
dest[3][1] = a31;
dest[3][2] = a32;
dest[3][3] = a33;
#endif
}
/*! /*!
* @brief inverse orthonormal rotation + translation matrix (ridig-body) * @brief inverse orthonormal rotation + translation matrix (ridig-body)
* *

View File

@@ -16,14 +16,14 @@
CGLM_INLINE void glm_scale_to(mat4 m, vec3 v, mat4 dest); CGLM_INLINE void glm_scale_to(mat4 m, vec3 v, mat4 dest);
CGLM_INLINE void glm_scale_make(mat4 m, vec3 v); CGLM_INLINE void glm_scale_make(mat4 m, vec3 v);
CGLM_INLINE void glm_scale(mat4 m, vec3 v); CGLM_INLINE void glm_scale(mat4 m, vec3 v);
CGLM_INLINE void glm_scale1(mat4 m, float s); CGLM_INLINE void glm_scale_uni(mat4 m, float s);
CGLM_INLINE void glm_rotate_x(mat4 m, float rad, mat4 dest); CGLM_INLINE void glm_rotate_x(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_y(mat4 m, float rad, mat4 dest); CGLM_INLINE void glm_rotate_y(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_z(mat4 m, float rad, mat4 dest); CGLM_INLINE void glm_rotate_z(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc);
CGLM_INLINE void glm_rotate_make(mat4 m, float angle, vec3 axis); CGLM_INLINE void glm_rotate_make(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_ndc(mat4 m, float angle, vec3 axis_ndc);
CGLM_INLINE void glm_rotate(mat4 m, float angle, vec3 axis); CGLM_INLINE void glm_rotate(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_decompose_scalev(mat4 m, vec3 s); CGLM_INLINE void glm_decompose_scalev(mat4 m, vec3 s);
CGLM_INLINE bool glm_uniscaled(mat4 m); CGLM_INLINE bool glm_uniscaled(mat4 m);
CGLM_INLINE void glm_decompose_rs(mat4 m, mat4 r, vec3 s); CGLM_INLINE void glm_decompose_rs(mat4 m, mat4 r, vec3 s);
@@ -34,56 +34,35 @@
#define cglm_affine_h #define cglm_affine_h
#include "common.h" #include "common.h"
#include "vec4.h"
#include "affine-mat.h"
#include "util.h" #include "util.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
#include "affine-mat.h"
CGLM_INLINE CGLM_INLINE
void void
glm_translate_to(mat4 m, vec3 v, mat4 dest) { glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest);
mat4 t = GLM_MAT4_IDENTITY_INIT;
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_load_ps(t[0]),
_mm_set1_ps(v[0])),
_mm_mul_ps(_mm_load_ps(t[1]),
_mm_set1_ps(v[1]))),
_mm_add_ps(_mm_mul_ps(_mm_load_ps(t[2]),
_mm_set1_ps(v[2])),
_mm_load_ps(t[3]))))
;
_mm_store_ps(dest[0], _mm_load_ps(m[0]));
_mm_store_ps(dest[1], _mm_load_ps(m[1]));
_mm_store_ps(dest[2], _mm_load_ps(m[2]));
#else
vec4 v1, v2, v3;
glm_vec4_scale(t[0], v[0], v1);
glm_vec4_scale(t[1], v[1], v2);
glm_vec4_scale(t[2], v[2], v3);
glm_vec4_add(v1, t[3], t[3]);
glm_vec4_add(v2, t[3], t[3]);
glm_vec4_add(v3, t[3], t[3]);
glm__memcpy(float, dest, t, sizeof(mat4));
#endif
}
/*!
* @brief translate existing transform matrix by v vector
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] v translate vector [x, y, z]
*/
CGLM_INLINE CGLM_INLINE
void void
glm_translate(mat4 m, vec3 v) { glm_translate(mat4 m, vec3 v) {
#if defined( __SSE__ ) || defined( __SSE2__ ) #if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(m[3], glmm_store(m[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]), _mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_load(m[0]),
_mm_set1_ps(v[0])), _mm_set1_ps(v[0])),
_mm_mul_ps(_mm_load_ps(m[1]), _mm_mul_ps(glmm_load(m[1]),
_mm_set1_ps(v[1]))), _mm_set1_ps(v[1]))),
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]), _mm_add_ps(_mm_mul_ps(glmm_load(m[2]),
_mm_set1_ps(v[2])), _mm_set1_ps(v[2])),
_mm_load_ps(m[3])))) glmm_load(m[3]))))
; ;
#else #else
vec4 v1, v2, v3; vec4 v1, v2, v3;
@@ -98,63 +77,110 @@ glm_translate(mat4 m, vec3 v) {
#endif #endif
} }
/*!
* @brief translate existing transform matrix by v vector
* and store result in dest
*
* source matrix will remain same
*
* @param[in] m affine transfrom
* @param[in] v translate vector [x, y, z]
* @param[out] dest translated matrix
*/
CGLM_INLINE CGLM_INLINE
void void
glm_translate_x(mat4 m, float to) { glm_translate_to(mat4 m, vec3 v, mat4 dest) {
glm_mat4_copy(m, dest);
glm_translate(dest, v);
}
/*!
* @brief translate existing transform matrix by x factor
*
* @param[in, out] m affine transfrom
* @param[in] x x factor
*/
CGLM_INLINE
void
glm_translate_x(mat4 m, float x) {
#if defined( __SSE__ ) || defined( __SSE2__ ) #if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(m[3], glmm_store(m[3],
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]), _mm_add_ps(_mm_mul_ps(glmm_load(m[0]),
_mm_set1_ps(to)), _mm_set1_ps(x)),
_mm_load_ps(m[3]))) glmm_load(m[3])))
; ;
#else #else
vec4 v1; vec4 v1;
glm_vec4_scale(m[0], to, v1); glm_vec4_scale(m[0], x, v1);
glm_vec4_add(v1, m[3], m[3]); glm_vec4_add(v1, m[3], m[3]);
#endif #endif
} }
/*!
* @brief translate existing transform matrix by y factor
*
* @param[in, out] m affine transfrom
* @param[in] y y factor
*/
CGLM_INLINE CGLM_INLINE
void void
glm_translate_y(mat4 m, float to) { glm_translate_y(mat4 m, float y) {
#if defined( __SSE__ ) || defined( __SSE2__ ) #if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(m[3], glmm_store(m[3],
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[1]), _mm_add_ps(_mm_mul_ps(glmm_load(m[1]),
_mm_set1_ps(to)), _mm_set1_ps(y)),
_mm_load_ps(m[3]))) glmm_load(m[3])))
; ;
#else #else
vec4 v1; vec4 v1;
glm_vec4_scale(m[1], to, v1); glm_vec4_scale(m[1], y, v1);
glm_vec4_add(v1, m[3], m[3]); glm_vec4_add(v1, m[3], m[3]);
#endif #endif
} }
/*!
* @brief translate existing transform matrix by z factor
*
* @param[in, out] m affine transfrom
* @param[in] z z factor
*/
CGLM_INLINE CGLM_INLINE
void void
glm_translate_z(mat4 m, float to) { glm_translate_z(mat4 m, float z) {
#if defined( __SSE__ ) || defined( __SSE2__ ) #if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(m[3], glmm_store(m[3],
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]), _mm_add_ps(_mm_mul_ps(glmm_load(m[2]),
_mm_set1_ps(to)), _mm_set1_ps(z)),
_mm_load_ps(m[3]))) glmm_load(m[3])))
; ;
#else #else
vec4 v1; vec4 v1;
glm_vec4_scale(m[2], to, v1); glm_vec4_scale(m[2], z, v1);
glm_vec4_add(v1, m[3], m[3]); glm_vec4_add(v1, m[3], m[3]);
#endif #endif
} }
/*!
* @brief creates NEW translate transform matrix by v vector
*
* @param[out] m affine transfrom
* @param[in] v translate vector [x, y, z]
*/
CGLM_INLINE CGLM_INLINE
void void
glm_translate_make(mat4 m, vec3 v) { glm_translate_make(mat4 m, vec3 v) {
mat4 t = GLM_MAT4_IDENTITY_INIT; glm_mat4_identity(m);
glm_translate_to(t, v, m); glm_vec_copy(v, m[3]);
} }
/* scale */ /*!
* @brief scale existing transform matrix by v vector
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] v scale vector [x, y, z]
* @param[out] dest scaled matrix
*/
CGLM_INLINE CGLM_INLINE
void void
glm_scale_to(mat4 m, vec3 v, mat4 dest) { glm_scale_to(mat4 m, vec3 v, mat4 dest) {
@@ -165,166 +191,222 @@ glm_scale_to(mat4 m, vec3 v, mat4 dest) {
glm_vec4_copy(m[3], dest[3]); glm_vec4_copy(m[3], dest[3]);
} }
/*!
* @brief creates NEW scale matrix by v vector
*
* @param[out] m affine transfrom
* @param[in] v scale vector [x, y, z]
*/
CGLM_INLINE CGLM_INLINE
void void
glm_scale_make(mat4 m, vec3 v) { glm_scale_make(mat4 m, vec3 v) {
mat4 t = GLM_MAT4_IDENTITY_INIT; glm_mat4_identity(m);
glm_scale_to(t, v, m); m[0][0] = v[0];
m[1][1] = v[1];
m[2][2] = v[2];
} }
/*!
* @brief scales existing transform matrix by v vector
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] v scale vector [x, y, z]
*/
CGLM_INLINE CGLM_INLINE
void void
glm_scale(mat4 m, vec3 v) { glm_scale(mat4 m, vec3 v) {
glm_scale_to(m, v, m); glm_scale_to(m, v, m);
} }
/*!
* @brief applies uniform scale to existing transform matrix v = [s, s, s]
* and stores result in same matrix
*
* @param[in, out] m affine transfrom
* @param[in] s scale factor
*/
CGLM_INLINE CGLM_INLINE
void void
glm_scale1(mat4 m, float s) { glm_scale_uni(mat4 m, float s) {
vec3 v = { s, s, s }; CGLM_ALIGN(8) vec3 v = { s, s, s };
glm_scale_to(m, v, m); glm_scale_to(m, v, m);
} }
/*!
* @brief rotate existing transform matrix around X axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
CGLM_INLINE CGLM_INLINE
void void
glm_rotate_x(mat4 m, float rad, mat4 dest) { glm_rotate_x(mat4 m, float angle, mat4 dest) {
float cosVal; CGLM_ALIGN(16) mat4 t = GLM_MAT4_IDENTITY_INIT;
float sinVal; float c, s;
mat4 t = GLM_MAT4_IDENTITY_INIT;
cosVal = cosf(rad); c = cosf(angle);
sinVal = sinf(rad); s = sinf(angle);
t[1][1] = cosVal; t[1][1] = c;
t[1][2] = sinVal; t[1][2] = s;
t[2][1] = -sinVal; t[2][1] = -s;
t[2][2] = cosVal; t[2][2] = c;
glm_mat4_mul(m, t, dest); glm_mul_rot(m, t, dest);
} }
/*!
* @brief rotate existing transform matrix around Y axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
CGLM_INLINE CGLM_INLINE
void void
glm_rotate_y(mat4 m, float rad, mat4 dest) { glm_rotate_y(mat4 m, float angle, mat4 dest) {
float cosVal; CGLM_ALIGN(16) mat4 t = GLM_MAT4_IDENTITY_INIT;
float sinVal; float c, s;
mat4 t = GLM_MAT4_IDENTITY_INIT;
cosVal = cosf(rad); c = cosf(angle);
sinVal = sinf(rad); s = sinf(angle);
t[0][0] = cosVal; t[0][0] = c;
t[0][2] = -sinVal; t[0][2] = -s;
t[2][0] = sinVal; t[2][0] = s;
t[2][2] = cosVal; t[2][2] = c;
glm_mat4_mul(m, t, dest); glm_mul_rot(m, t, dest);
} }
/*!
* @brief rotate existing transform matrix around Z axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[out] dest rotated matrix
*/
CGLM_INLINE CGLM_INLINE
void void
glm_rotate_z(mat4 m, float rad, mat4 dest) { glm_rotate_z(mat4 m, float angle, mat4 dest) {
float cosVal; CGLM_ALIGN(16) mat4 t = GLM_MAT4_IDENTITY_INIT;
float sinVal; float c, s;
mat4 t = GLM_MAT4_IDENTITY_INIT;
cosVal = cosf(rad); c = cosf(angle);
sinVal = sinf(rad); s = sinf(angle);
t[0][0] = cosVal; t[0][0] = c;
t[0][1] = sinVal; t[0][1] = s;
t[1][0] = -sinVal; t[1][0] = -s;
t[1][1] = cosVal; t[1][1] = c;
glm_mat4_mul(m, t, dest); glm_mul_rot(m, t, dest);
} }
/*!
* @brief creates NEW rotation matrix by angle and axis
*
* axis will be normalized so you don't need to normalize it
*
* @param[out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE CGLM_INLINE
void void
glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc) { glm_rotate_make(mat4 m, float angle, vec3 axis) {
/* https://www.opengl.org/sdk/docs/man2/xhtml/glRotate.xml */ CGLM_ALIGN(8) vec3 axisn, v, vs;
vec3 v, vs;
float c; float c;
c = cosf(angle); c = cosf(angle);
glm_vec_scale(axis_ndc, 1.0f - c, v); glm_vec_normalize_to(axis, axisn);
glm_vec_scale(axis_ndc, sinf(angle), vs); glm_vec_scale(axisn, 1.0f - c, v);
glm_vec_scale(axisn, sinf(angle), vs);
glm_vec_scale(axis_ndc, v[0], m[0]); glm_vec_scale(axisn, v[0], m[0]);
glm_vec_scale(axis_ndc, v[1], m[1]); glm_vec_scale(axisn, v[1], m[1]);
glm_vec_scale(axis_ndc, v[2], m[2]); glm_vec_scale(axisn, v[2], m[2]);
m[0][0] += c; m[0][0] += c; m[1][0] -= vs[2]; m[2][0] += vs[1];
m[0][1] += vs[2]; m[0][1] += vs[2]; m[1][1] += c; m[2][1] -= vs[0];
m[0][2] -= vs[1]; m[0][2] -= vs[1]; m[1][2] += vs[0]; m[2][2] += c;
m[1][0] -= vs[2];
m[1][1] += c;
m[1][2] += vs[0];
m[2][0] += vs[1];
m[2][1] -= vs[0];
m[2][2] += c;
m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0f; m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0f;
m[3][3] = 1.0f; m[3][3] = 1.0f;
} }
CGLM_INLINE /*!
void * @brief rotate existing transform matrix around given axis by angle
glm_rotate_make(mat4 m, float angle, vec3 axis) { *
vec3 axis_ndc; * @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
glm_vec_normalize_to(axis, axis_ndc); * @param[in] axis axis
glm_rotate_ndc_make(m, angle, axis_ndc); */
}
CGLM_INLINE
void
glm_rotate_ndc(mat4 m, float angle, vec3 axis_ndc) {
mat4 rot, tmp;
glm_rotate_ndc_make(rot, angle, axis_ndc);
glm_vec4_scale(m[0], rot[0][0], tmp[1]);
glm_vec4_scale(m[1], rot[0][1], tmp[0]);
glm_vec4_add(tmp[1], tmp[0], tmp[1]);
glm_vec4_scale(m[2], rot[0][2], tmp[0]);
glm_vec4_add(tmp[1], tmp[0], tmp[1]);
glm_vec4_scale(m[0], rot[1][0], tmp[2]);
glm_vec4_scale(m[1], rot[1][1], tmp[0]);
glm_vec4_add(tmp[2], tmp[0], tmp[2]);
glm_vec4_scale(m[2], rot[1][2], tmp[0]);
glm_vec4_add(tmp[2], tmp[0], tmp[2]);
glm_vec4_scale(m[0], rot[2][0], tmp[3]);
glm_vec4_scale(m[1], rot[2][1], tmp[0]);
glm_vec4_add(tmp[3], tmp[0], tmp[3]);
glm_vec4_scale(m[2], rot[2][2], tmp[0]);
glm_vec4_add(tmp[3], tmp[0], tmp[3]);
glm_vec4_copy(tmp[1], m[0]);
glm_vec4_copy(tmp[2], m[1]);
glm_vec4_copy(tmp[3], m[2]);
}
CGLM_INLINE CGLM_INLINE
void void
glm_rotate(mat4 m, float angle, vec3 axis) { glm_rotate(mat4 m, float angle, vec3 axis) {
vec3 axis_ndc; CGLM_ALIGN(16) mat4 rot;
glm_rotate_make(rot, angle, axis);
glm_mul_rot(m, rot, m);
}
glm_vec_normalize_to(axis, axis_ndc); /*!
glm_rotate_ndc(m, angle, axis_ndc); * @brief rotate existing transform
* around given axis by angle at given pivot point (rotation center)
*
* @param[in, out] m affine transfrom
* @param[in] pivot rotation center
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec_inv_to(pivot, pivotInv);
glm_translate(m, pivot);
glm_rotate(m, angle, axis);
glm_translate(m, pivotInv);
}
/*!
* @brief creates NEW rotation matrix by angle and axis at given point
*
* this creates rotation matrix, it assumes you don't have a matrix
*
* this should work faster than glm_rotate_at because it reduces
* one glm_translate.
*
* @param[out] m affine transfrom
* @param[in] pivot rotation center
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec_inv_to(pivot, pivotInv);
glm_translate_make(m, pivot);
glm_rotate(m, angle, axis);
glm_translate(m, pivotInv);
} }
/*! /*!
* @brief decompose scale vector * @brief decompose scale vector
* *
* @param[in] m affine transform * @param[in] m affine transform
* @param[out] s scale vector (Sx, Sy, Sz) * @param[out] s scale vector (Sx, Sy, Sz)
*/ */
CGLM_INLINE CGLM_INLINE
void void
@@ -335,7 +417,7 @@ glm_decompose_scalev(mat4 m, vec3 s) {
} }
/*! /*!
* @brief returns true if matrix is uniform scaled. This is helpful for * @brief returns true if matrix is uniform scaled. This is helpful for
* creating normal matrix. * creating normal matrix.
* *
* @param[in] m m * @param[in] m m
@@ -345,9 +427,8 @@ glm_decompose_scalev(mat4 m, vec3 s) {
CGLM_INLINE CGLM_INLINE
bool bool
glm_uniscaled(mat4 m) { glm_uniscaled(mat4 m) {
vec3 s; CGLM_ALIGN(8) vec3 s;
glm_decompose_scalev(m, s); glm_decompose_scalev(m, s);
return glm_vec_eq_all(s); return glm_vec_eq_all(s);
} }
@@ -362,8 +443,8 @@ glm_uniscaled(mat4 m) {
CGLM_INLINE CGLM_INLINE
void void
glm_decompose_rs(mat4 m, mat4 r, vec3 s) { glm_decompose_rs(mat4 m, mat4 r, vec3 s) {
vec4 t = {0.0f, 0.0f, 0.0f, 1.0f}; CGLM_ALIGN(16) vec4 t = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 v; CGLM_ALIGN(8) vec3 v;
glm_vec4_copy(m[0], r[0]); glm_vec4_copy(m[0], r[0]);
glm_vec4_copy(m[1], r[1]); glm_vec4_copy(m[1], r[1]);

215
include/cglm/box.h Normal file
View File

@@ -0,0 +1,215 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_box_h
#define cglm_box_h
#include "common.h"
#include "vec3.h"
#include "vec4.h"
#include "util.h"
/*!
* @brief apply transform to Axis-Aligned Bounding Box
*
* @param[in] box bounding box
* @param[in] m transform matrix
* @param[out] dest transformed bounding box
*/
CGLM_INLINE
void
glm_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]) {
vec3 v[2], xa, xb, ya, yb, za, zb, tmp;
glm_vec_scale(m[0], box[0][0], xa);
glm_vec_scale(m[0], box[1][0], xb);
glm_vec_scale(m[1], box[0][1], ya);
glm_vec_scale(m[1], box[1][1], yb);
glm_vec_scale(m[2], box[0][2], za);
glm_vec_scale(m[2], box[1][2], zb);
/* min(xa, xb) + min(ya, yb) + min(za, zb) + translation */
glm_vec_minv(xa, xb, v[0]);
glm_vec_minv(ya, yb, tmp);
glm_vec_add(v[0], tmp, v[0]);
glm_vec_minv(za, zb, tmp);
glm_vec_add(v[0], tmp, v[0]);
glm_vec_add(v[0], m[3], v[0]);
/* max(xa, xb) + max(ya, yb) + max(za, zb) + translation */
glm_vec_maxv(xa, xb, v[1]);
glm_vec_maxv(ya, yb, tmp);
glm_vec_add(v[1], tmp, v[1]);
glm_vec_maxv(za, zb, tmp);
glm_vec_add(v[1], tmp, v[1]);
glm_vec_add(v[1], m[3], v[1]);
glm_vec_copy(v[0], dest[0]);
glm_vec_copy(v[1], dest[1]);
}
/*!
* @brief merges two AABB bounding box and creates new one
*
* two box must be in same space, if one of box is in different space then
* you should consider to convert it's space by glm_box_space
*
* @param[in] box1 bounding box 1
* @param[in] box2 bounding box 2
* @param[out] dest merged bounding box
*/
CGLM_INLINE
void
glm_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2]) {
dest[0][0] = glm_min(box1[0][0], box2[0][0]);
dest[0][1] = glm_min(box1[0][1], box2[0][1]);
dest[0][2] = glm_min(box1[0][2], box2[0][2]);
dest[1][0] = glm_max(box1[1][0], box2[1][0]);
dest[1][1] = glm_max(box1[1][1], box2[1][1]);
dest[1][2] = glm_max(box1[1][2], box2[1][2]);
}
/*!
* @brief crops a bounding box with another one.
*
* this could be useful for gettng a bbox which fits with view frustum and
* object bounding boxes. In this case you crop view frustum box with objects
* box
*
* @param[in] box bounding box 1
* @param[in] cropBox crop box
* @param[out] dest cropped bounding box
*/
CGLM_INLINE
void
glm_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2]) {
dest[0][0] = glm_max(box[0][0], cropBox[0][0]);
dest[0][1] = glm_max(box[0][1], cropBox[0][1]);
dest[0][2] = glm_max(box[0][2], cropBox[0][2]);
dest[1][0] = glm_min(box[1][0], cropBox[1][0]);
dest[1][1] = glm_min(box[1][1], cropBox[1][1]);
dest[1][2] = glm_min(box[1][2], cropBox[1][2]);
}
/*!
* @brief crops a bounding box with another one.
*
* this could be useful for gettng a bbox which fits with view frustum and
* object bounding boxes. In this case you crop view frustum box with objects
* box
*
* @param[in] box bounding box
* @param[in] cropBox crop box
* @param[in] clampBox miniumum box
* @param[out] dest cropped bounding box
*/
CGLM_INLINE
void
glm_aabb_crop_until(vec3 box[2],
vec3 cropBox[2],
vec3 clampBox[2],
vec3 dest[2]) {
glm_aabb_crop(box, cropBox, dest);
glm_aabb_merge(clampBox, dest, dest);
}
/*!
* @brief check if AABB intersects with frustum planes
*
* this could be useful for frustum culling using AABB.
*
* OPTIMIZATION HINT:
* if planes order is similar to LEFT, RIGHT, BOTTOM, TOP, NEAR, FAR
* then this method should run even faster because it would only use two
* planes if object is not inside the two planes
* fortunately cglm extracts planes as this order! just pass what you got!
*
* @param[in] box bounding box
* @param[in] planes frustum planes
*/
CGLM_INLINE
bool
glm_aabb_frustum(vec3 box[2], vec4 planes[6]) {
float *p, dp;
int i;
for (i = 0; i < 6; i++) {
p = planes[i];
dp = p[0] * box[p[0] > 0.0f][0]
+ p[1] * box[p[1] > 0.0f][1]
+ p[2] * box[p[2] > 0.0f][2];
if (dp < -p[3])
return false;
}
return true;
}
/*!
* @brief invalidate AABB min and max values
*
* @param[in, out] box bounding box
*/
CGLM_INLINE
void
glm_aabb_invalidate(vec3 box[2]) {
glm_vec_broadcast(FLT_MAX, box[0]);
glm_vec_broadcast(-FLT_MAX, box[1]);
}
/*!
* @brief check if AABB is valid or not
*
* @param[in] box bounding box
*/
CGLM_INLINE
bool
glm_aabb_isvalid(vec3 box[2]) {
return glm_vec_max(box[0]) != FLT_MAX
&& glm_vec_min(box[1]) != -FLT_MAX;
}
/*!
* @brief distance between of min and max
*
* @param[in] box bounding box
*/
CGLM_INLINE
float
glm_aabb_size(vec3 box[2]) {
return glm_vec_distance(box[0], box[1]);
}
/*!
* @brief radius of sphere which surrounds AABB
*
* @param[in] box bounding box
*/
CGLM_INLINE
float
glm_aabb_radius(vec3 box[2]) {
return glm_aabb_size(box) * 0.5f;
}
/*!
* @brief computes center point of AABB
*
* @param[in] box bounding box
* @param[out] dest center of bounding box
*/
CGLM_INLINE
void
glm_aabb_center(vec3 box[2], vec3 dest) {
glm_vec_center(box[0], box[1], dest);
}
#endif /* cglm_box_h */

View File

@@ -20,7 +20,11 @@ extern "C" {
#include "call/cam.h" #include "call/cam.h"
#include "call/quat.h" #include "call/quat.h"
#include "call/euler.h" #include "call/euler.h"
#include "call/plane.h"
#include "call/frustum.h"
#include "call/box.h"
#include "call/io.h" #include "call/io.h"
#include "call/project.h"
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@@ -13,6 +13,10 @@ extern "C" {
#include "../cglm.h" #include "../cglm.h"
CGLM_EXPORT
void
glmc_translate_make(mat4 m, vec3 v);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_translate_to(mat4 m, vec3 v, mat4 dest); glmc_translate_to(mat4 m, vec3 v, mat4 dest);
@@ -33,6 +37,10 @@ CGLM_EXPORT
void void
glmc_translate_z(mat4 m, float to); glmc_translate_z(mat4 m, float to);
CGLM_EXPORT
void
glmc_scale_make(mat4 m, vec3 v);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_scale_to(mat4 m, vec3 v, mat4 dest); glmc_scale_to(mat4 m, vec3 v, mat4 dest);
@@ -43,7 +51,7 @@ glmc_scale(mat4 m, vec3 v);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_scale1(mat4 m, float s); glmc_scale_uni(mat4 m, float s);
CGLM_EXPORT CGLM_EXPORT
void void
@@ -57,26 +65,30 @@ CGLM_EXPORT
void void
glmc_rotate_z(mat4 m, float rad, mat4 dest); glmc_rotate_z(mat4 m, float rad, mat4 dest);
CGLM_EXPORT
void
glmc_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_rotate_make(mat4 m, float angle, vec3 axis); glmc_rotate_make(mat4 m, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_rotate_ndc(mat4 m, float angle, vec3 axis_ndc);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_rotate(mat4 m, float angle, vec3 axis); glmc_rotate(mat4 m, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_decompose_scalev(mat4 m, vec3 s); glmc_decompose_scalev(mat4 m, vec3 s);
CGLM_EXPORT
bool
glmc_uniscaled(mat4 m);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_decompose_rs(mat4 m, mat4 r, vec3 s); glmc_decompose_rs(mat4 m, mat4 r, vec3 s);
@@ -85,6 +97,20 @@ CGLM_EXPORT
void void
glmc_decompose(mat4 m, vec4 t, mat4 r, vec3 s); glmc_decompose(mat4 m, vec4 t, mat4 r, vec3 s);
/* affine-mat */
CGLM_EXPORT
void
glmc_mul(mat4 m1, mat4 m2, mat4 dest);
CGLM_EXPORT
void
glmc_mul_rot(mat4 m1, mat4 m2, mat4 dest);
CGLM_EXPORT
void
glmc_inv_tr(mat4 mat);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

63
include/cglm/call/box.h Normal file
View File

@@ -0,0 +1,63 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_box_h
#define cglmc_box_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]);
CGLM_EXPORT
void
glmc_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2]);
CGLM_EXPORT
void
glmc_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2]);
CGLM_EXPORT
void
glmc_aabb_crop_until(vec3 box[2],
vec3 cropBox[2],
vec3 clampBox[2],
vec3 dest[2]);
CGLM_EXPORT
bool
glmc_aabb_frustum(vec3 box[2], vec4 planes[6]);
CGLM_EXPORT
void
glmc_aabb_invalidate(vec3 box[2]);
CGLM_EXPORT
bool
glmc_aabb_isvalid(vec3 box[2]);
CGLM_EXPORT
float
glmc_aabb_size(vec3 box[2]);
CGLM_EXPORT
float
glmc_aabb_radius(vec3 box[2]);
CGLM_EXPORT
void
glmc_aabb_center(vec3 box[2], vec3 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_box_h */

View File

@@ -33,6 +33,26 @@ glmc_ortho(float left,
float farVal, float farVal,
mat4 dest); mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb(vec3 box[2], mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_p(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_s(float aspect, float size, mat4 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_perspective(float fovy, glmc_perspective(float fovy,
@@ -43,10 +63,75 @@ glmc_perspective(float fovy,
CGLM_EXPORT CGLM_EXPORT
void void
glmc_lookat(vec3 eye, glmc_perspective_default(float aspect, mat4 dest);
vec3 center,
vec3 up, CGLM_EXPORT
mat4 dest); void
glmc_perspective_resize(float aspect, mat4 proj);
CGLM_EXPORT
void
glmc_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look(vec3 eye, vec3 dir, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_anyup(vec3 eye, vec3 dir, mat4 dest);
CGLM_EXPORT
void
glmc_persp_decomp(mat4 proj,
float * __restrict nearVal,
float * __restrict farVal,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decompv(mat4 proj, float dest[6]);
CGLM_EXPORT
void
glmc_persp_decomp_x(mat4 proj,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decomp_y(mat4 proj,
float * __restrict top,
float * __restrict bottom);
CGLM_EXPORT
void
glmc_persp_decomp_z(mat4 proj,
float * __restrict nearVal,
float * __restrict farVal);
CGLM_EXPORT
void
glmc_persp_decomp_far(mat4 proj, float * __restrict farVal);
CGLM_EXPORT
void
glmc_persp_decomp_near(mat4 proj, float * __restrict nearVal);
CGLM_EXPORT
float
glmc_persp_fovy(mat4 proj);
CGLM_EXPORT
float
glmc_persp_aspect(mat4 proj);
CGLM_EXPORT
void
glmc_persp_sizes(mat4 proj, float fovy, vec4 dest);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@@ -21,6 +21,10 @@ CGLM_EXPORT
void void
glmc_euler(vec3 angles, mat4 dest); glmc_euler(vec3 angles, mat4 dest);
CGLM_EXPORT
void
glmc_euler_xyz(vec3 angles, mat4 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_euler_zyx(vec3 angles, mat4 dest); glmc_euler_zyx(vec3 angles, mat4 dest);

View File

@@ -0,0 +1,41 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_frustum_h
#define cglmc_frustum_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_frustum_planes(mat4 m, vec4 dest[6]);
CGLM_EXPORT
void
glmc_frustum_corners(mat4 invMat, vec4 dest[8]);
CGLM_EXPORT
void
glmc_frustum_center(vec4 corners[8], vec4 dest);
CGLM_EXPORT
void
glmc_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]);
CGLM_EXPORT
void
glmc_frustum_corners_at(vec4 corners[8],
float splitDist,
float farDist,
vec4 planeCorners[4]);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_frustum_h */

View File

@@ -40,6 +40,10 @@ CGLM_EXPORT
void void
glmc_mat3_mulv(mat3 m, vec3 v, vec3 dest); glmc_mat3_mulv(mat3 m, vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_mat3_quat(mat3 m, versor dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_mat3_scale(mat3 m, float s); glmc_mat3_scale(mat3 m, float s);

View File

@@ -47,12 +47,20 @@ glmc_mat4_mul(mat4 m1, mat4 m2, mat4 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest); glmc_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_mat4_mulv(mat4 m, vec4 v, vec4 dest); glmc_mat4_mulv(mat4 m, vec4 v, vec4 dest);
CGLM_EXPORT
void
glmc_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest);
CGLM_EXPORT
void
glmc_mat4_quat(mat4 m, versor dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_mat4_transpose_to(mat4 m, mat4 dest); glmc_mat4_transpose_to(mat4 m, mat4 dest);
@@ -81,6 +89,10 @@ CGLM_EXPORT
void void
glmc_mat4_inv_precise(mat4 mat, mat4 dest); glmc_mat4_inv_precise(mat4 mat, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_inv_fast(mat4 mat, mat4 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_mat4_swap_col(mat4 mat, int col1, int col2); glmc_mat4_swap_col(mat4 mat, int col1, int col2);

23
include/cglm/call/plane.h Normal file
View File

@@ -0,0 +1,23 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_plane_h
#define cglmc_plane_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_plane_normalize(vec4 plane);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_plane_h */

View File

@@ -0,0 +1,33 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_project_h
#define cglmc_project_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest);
CGLM_EXPORT
void
glmc_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest);
CGLM_EXPORT
void
glmc_project(vec3 pos, mat4 m, vec4 vp, vec3 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_project_h */

View File

@@ -19,33 +19,79 @@ glmc_quat_identity(versor q);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_quat(versor q, glmc_quat_init(versor q, float x, float y, float z, float w);
float angle,
float x,
float y,
float z);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_quatv(versor q, glmc_quat(versor q, float angle, float x, float y, float z);
float angle,
vec3 v); CGLM_EXPORT
void
glmc_quatv(versor q, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_quat_copy(versor q, versor dest);
CGLM_EXPORT CGLM_EXPORT
float float
glmc_quat_norm(versor q); glmc_quat_norm(versor q);
CGLM_EXPORT
void
glmc_quat_normalize_to(versor q, versor dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_quat_normalize(versor q); glmc_quat_normalize(versor q);
CGLM_EXPORT CGLM_EXPORT
float float
glmc_quat_dot(versor q, versor r); glmc_quat_dot(versor p, versor q);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_quat_mulv(versor q1, versor q2, versor dest); glmc_quat_conjugate(versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_inv(versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_add(versor p, versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_sub(versor p, versor q, versor dest);
CGLM_EXPORT
float
glmc_quat_real(versor q);
CGLM_EXPORT
void
glmc_quat_imag(versor q, vec3 dest);
CGLM_EXPORT
void
glmc_quat_imagn(versor q, vec3 dest);
CGLM_EXPORT
float
glmc_quat_imaglen(versor q);
CGLM_EXPORT
float
glmc_quat_angle(versor q);
CGLM_EXPORT
void
glmc_quat_axis(versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_mul(versor p, versor q, versor dest);
CGLM_EXPORT CGLM_EXPORT
void void
@@ -53,10 +99,51 @@ glmc_quat_mat4(versor q, mat4 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_quat_slerp(versor q, glmc_quat_mat4t(versor q, mat4 dest);
versor r,
float t, CGLM_EXPORT
versor dest); void
glmc_quat_mat3(versor q, mat3 dest);
CGLM_EXPORT
void
glmc_quat_mat3t(versor q, mat3 dest);
CGLM_EXPORT
void
glmc_quat_lerp(versor from, versor to, float t, versor dest);
CGLM_EXPORT
void
glmc_quat_slerp(versor q, versor r, float t, versor dest);
CGLM_EXPORT
void
glmc_quat_look(vec3 eye, versor ori, mat4 dest);
CGLM_EXPORT
void
glmc_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
CGLM_EXPORT
void
glmc_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest);
CGLM_EXPORT
void
glmc_quat_rotatev(versor from, vec3 to, vec3 dest);
CGLM_EXPORT
void
glmc_quat_rotate(mat4 m, versor q, mat4 dest);
CGLM_EXPORT
void
glmc_quat_rotate_at(mat4 model, versor q, vec3 pivot);
CGLM_EXPORT
void
glmc_quat_rotate_atm(mat4 m, versor q, vec3 pivot);
#ifdef __cplusplus #ifdef __cplusplus
} }

View File

@@ -16,10 +16,22 @@ extern "C" {
/* DEPRECATED! use _copy, _ucopy versions */ /* DEPRECATED! use _copy, _ucopy versions */
#define glmc_vec_dup(v, dest) glmc_vec_copy(v, dest) #define glmc_vec_dup(v, dest) glmc_vec_copy(v, dest)
CGLM_EXPORT
void
glmc_vec3(vec4 v4, vec3 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec_copy(vec3 a, vec3 dest); glmc_vec_copy(vec3 a, vec3 dest);
CGLM_EXPORT
void
glmc_vec_zero(vec3 v);
CGLM_EXPORT
void
glmc_vec_one(vec3 v);
CGLM_EXPORT CGLM_EXPORT
float float
glmc_vec_dot(vec3 a, vec3 b); glmc_vec_dot(vec3 a, vec3 b);
@@ -50,7 +62,19 @@ glmc_vec_add(vec3 v1, vec3 v2, vec3 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec_sub(vec3 v1, vec3 v2, vec3 dest); glmc_vec_adds(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec_sub(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec_subs(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec_mul(vec3 a, vec3 b, vec3 d);
CGLM_EXPORT CGLM_EXPORT
void void
@@ -60,10 +84,38 @@ CGLM_EXPORT
void void
glmc_vec_scale_as(vec3 v, float s, vec3 dest); glmc_vec_scale_as(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec_div(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec_divs(vec3 a, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec_addadd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec_subadd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec_muladd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec_muladds(vec3 a, float s, vec3 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec_flipsign(vec3 v); glmc_vec_flipsign(vec3 v);
CGLM_EXPORT
void
glmc_vec_flipsign_to(vec3 v, vec3 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec_inv(vec3 v); glmc_vec_inv(vec3 v);
@@ -84,6 +136,10 @@ CGLM_EXPORT
void void
glmc_vec_rotate_m4(mat4 m, vec3 v, vec3 dest); glmc_vec_rotate_m4(mat4 m, vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec_rotate_m3(mat3 m, vec3 v, vec3 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec_proj(vec3 a, vec3 b, vec3 dest); glmc_vec_proj(vec3 a, vec3 b, vec3 dest);
@@ -104,6 +160,76 @@ CGLM_EXPORT
void void
glmc_vec_minv(vec3 v1, vec3 v2, vec3 dest); glmc_vec_minv(vec3 v1, vec3 v2, vec3 dest);
CGLM_EXPORT
void
glmc_vec_clamp(vec3 v, float minVal, float maxVal);
CGLM_EXPORT
void
glmc_vec_ortho(vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec_lerp(vec3 from, vec3 to, float t, vec3 dest);
/* ext */
CGLM_EXPORT
void
glmc_vec_mulv(vec3 a, vec3 b, vec3 d);
CGLM_EXPORT
void
glmc_vec_broadcast(float val, vec3 d);
CGLM_EXPORT
bool
glmc_vec_eq(vec3 v, float val);
CGLM_EXPORT
bool
glmc_vec_eq_eps(vec3 v, float val);
CGLM_EXPORT
bool
glmc_vec_eq_all(vec3 v);
CGLM_EXPORT
bool
glmc_vec_eqv(vec3 v1, vec3 v2);
CGLM_EXPORT
bool
glmc_vec_eqv_eps(vec3 v1, vec3 v2);
CGLM_EXPORT
float
glmc_vec_max(vec3 v);
CGLM_EXPORT
float
glmc_vec_min(vec3 v);
CGLM_EXPORT
bool
glmc_vec_isnan(vec3 v);
CGLM_EXPORT
bool
glmc_vec_isinf(vec3 v);
CGLM_EXPORT
bool
glmc_vec_isvalid(vec3 v);
CGLM_EXPORT
void
glmc_vec_sign(vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec_sqrt(vec3 v, vec3 dest);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@@ -17,6 +17,18 @@ extern "C" {
#define glmc_vec4_dup3(v, dest) glmc_vec4_copy3(v, dest) #define glmc_vec4_dup3(v, dest) glmc_vec4_copy3(v, dest)
#define glmc_vec4_dup(v, dest) glmc_vec4_copy(v, dest) #define glmc_vec4_dup(v, dest) glmc_vec4_copy(v, dest)
CGLM_EXPORT
void
glmc_vec4(vec3 v3, float last, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_zero(vec4 v);
CGLM_EXPORT
void
glmc_vec4_one(vec4 v);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec4_copy3(vec4 a, vec3 dest); glmc_vec4_copy3(vec4 a, vec3 dest);
@@ -47,11 +59,23 @@ glmc_vec4_normalize(vec4 v);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec4_add(vec4 v1, vec4 v2, vec4 dest); glmc_vec4_add(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec4_sub(vec4 v1, vec4 v2, vec4 dest); glmc_vec4_adds(vec4 v, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_sub(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_subs(vec4 v, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_mul(vec4 a, vec4 b, vec4 d);
CGLM_EXPORT CGLM_EXPORT
void void
@@ -61,10 +85,38 @@ CGLM_EXPORT
void void
glmc_vec4_scale_as(vec3 v, float s, vec3 dest); glmc_vec4_scale_as(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec4_div(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_divs(vec4 v, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_addadd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_subadd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_muladd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_muladds(vec4 a, float s, vec4 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec4_flipsign(vec4 v); glmc_vec4_flipsign(vec4 v);
CGLM_EXPORT
void
glmc_vec4_flipsign_to(vec4 v, vec4 dest);
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec4_inv(vec4 v); glmc_vec4_inv(vec4 v);
@@ -85,6 +137,72 @@ CGLM_EXPORT
void void
glmc_vec4_minv(vec4 v1, vec4 v2, vec4 dest); glmc_vec4_minv(vec4 v1, vec4 v2, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_clamp(vec4 v, float minVal, float maxVal);
CGLM_EXPORT
void
glmc_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest);
/* ext */
CGLM_EXPORT
void
glmc_vec4_mulv(vec4 a, vec4 b, vec4 d);
CGLM_EXPORT
void
glmc_vec4_broadcast(float val, vec4 d);
CGLM_EXPORT
bool
glmc_vec4_eq(vec4 v, float val);
CGLM_EXPORT
bool
glmc_vec4_eq_eps(vec4 v, float val);
CGLM_EXPORT
bool
glmc_vec4_eq_all(vec4 v);
CGLM_EXPORT
bool
glmc_vec4_eqv(vec4 v1, vec4 v2);
CGLM_EXPORT
bool
glmc_vec4_eqv_eps(vec4 v1, vec4 v2);
CGLM_EXPORT
float
glmc_vec4_max(vec4 v);
CGLM_EXPORT
float
glmc_vec4_min(vec4 v);
CGLM_EXPORT
bool
glmc_vec4_isnan(vec4 v);
CGLM_EXPORT
bool
glmc_vec4_isinf(vec4 v);
CGLM_EXPORT
bool
glmc_vec4_isvalid(vec4 v);
CGLM_EXPORT
void
glmc_vec4_sign(vec4 v, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_sqrt(vec4 v, vec4 dest);
#ifdef __cplusplus #ifdef __cplusplus
} }
#endif #endif

View File

@@ -7,55 +7,60 @@
/* /*
Functions: Functions:
CGLM_INLINE void glm_frustum(float left, CGLM_INLINE void glm_frustum(float left,
float right, float right,
float bottom, float bottom,
float top, float top,
float nearVal, float nearVal,
float farVal, float farVal,
mat4 dest); mat4 dest)
CGLM_INLINE void glm_ortho(float left, CGLM_INLINE void glm_ortho(float left,
float right, float right,
float bottom, float bottom,
float top, float top,
float nearVal, float nearVal,
float farVal, float farVal,
mat4 dest); mat4 dest)
CGLM_INLINE void glm_ortho_default(float aspect, mat4 dest); CGLM_INLINE void glm_ortho_aabb(vec3 box[2], mat4 dest)
CGLM_INLINE void glm_ortho_default_s(float aspect, float size, mat4 dest); CGLM_INLINE void glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest)
CGLM_INLINE void glm_perspective(float fovy, CGLM_INLINE void glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest)
float aspect, CGLM_INLINE void glm_ortho_default(float aspect, mat4 dest)
float nearVal, CGLM_INLINE void glm_ortho_default_s(float aspect, float size, mat4 dest)
float farVal, CGLM_INLINE void glm_perspective(float fovy,
mat4 dest); float aspect,
CGLM_INLINE void glm_perspective_default(float aspect, mat4 dest); float nearVal,
CGLM_INLINE void glm_perspective_resize(float aspect, mat4 proj); float farVal,
CGLM_INLINE void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest); mat4 dest)
CGLM_INLINE void glm_persp_decomp(mat4 proj, CGLM_INLINE void glm_perspective_default(float aspect, mat4 dest)
float * __restrict nearVal, CGLM_INLINE void glm_perspective_resize(float aspect, mat4 proj)
float * __restrict farVal, CGLM_INLINE void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest)
float * __restrict top, CGLM_INLINE void glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest)
float * __restrict bottom, CGLM_INLINE void glm_look_anyup(vec3 eye, vec3 dir, mat4 dest)
float * __restrict left, CGLM_INLINE void glm_persp_decomp(mat4 proj,
float * __restrict right); float *nearVal,
CGLM_INLINE void glm_persp_decompv(mat4 proj, float dest[6]); float *farVal,
CGLM_INLINE void glm_persp_decomp_x(mat4 proj, float *top,
float * __restrict left, float *bottom,
float * __restrict right); float *left,
CGLM_INLINE void glm_persp_decomp_y(mat4 proj, float *right)
float * __restrict top, CGLM_INLINE void glm_persp_decompv(mat4 proj, float dest[6])
float * __restrict bottom); CGLM_INLINE void glm_persp_decomp_x(mat4 proj, float *left, float *right)
CGLM_INLINE void glm_persp_decomp_z(mat4 proj, CGLM_INLINE void glm_persp_decomp_y(mat4 proj, float *top, float *bottom)
float * __restrict nearVal, CGLM_INLINE void glm_persp_decomp_z(mat4 proj,
float * __restrict farVal); float *nearVal,
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float * __restrict farVal); float *farVal)
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *__restrict nearVal); CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float *farVal)
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *nearVal)
CGLM_INLINE float glm_persp_fovy(mat4 proj)
CGLM_INLINE float glm_persp_aspect(mat4 proj)
CGLM_INLINE void glm_persp_sizes(mat4 proj, float fovy, vec4 dest)
*/ */
#ifndef cglm_vcam_h #ifndef cglm_vcam_h
#define cglm_vcam_h #define cglm_vcam_h
#include "common.h" #include "common.h"
#include "plane.h"
/*! /*!
* @brief set up perspective peprojection matrix * @brief set up perspective peprojection matrix
@@ -132,6 +137,59 @@ glm_ortho(float left,
dest[3][3] = 1.0f; dest[3][3] = 1.0f;
} }
/*!
* @brief set up orthographic projection matrix using bounding box
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb(vec3 box[2], mat4 dest) {
glm_ortho(box[0][0], box[1][0],
box[0][1], box[1][1],
-box[1][2], -box[0][2],
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest) {
glm_ortho(box[0][0] - padding, box[1][0] + padding,
box[0][1] - padding, box[1][1] + padding,
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest) {
glm_ortho(box[0][0], box[1][0],
box[0][1], box[1][1],
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*! /*!
* @brief set up unit orthographic projection matrix * @brief set up unit orthographic projection matrix
* *
@@ -244,7 +302,7 @@ glm_perspective_default(float aspect,
/*! /*!
* @brief resize perspective matrix by aspect ratio ( width / height ) * @brief resize perspective matrix by aspect ratio ( width / height )
* this very make easy to resize proj matrix when window, viewport * this makes very easy to resize proj matrix when window /viewport
* reized * reized
* *
* @param[in] aspect aspect ratio ( width / height ) * @param[in] aspect aspect ratio ( width / height )
@@ -274,7 +332,7 @@ glm_lookat(vec3 eye,
vec3 center, vec3 center,
vec3 up, vec3 up,
mat4 dest) { mat4 dest) {
vec3 f, u, s; CGLM_ALIGN(8) vec3 f, u, s;
glm_vec_sub(center, eye, f); glm_vec_sub(center, eye, f);
glm_vec_normalize(f); glm_vec_normalize(f);
@@ -300,6 +358,43 @@ glm_lookat(vec3 eye,
dest[3][3] = 1.0f; dest[3][3] = 1.0f;
} }
/*!
* @brief set up view matrix
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
CGLM_ALIGN(8) vec3 target;
glm_vec_add(eye, dir, target);
glm_lookat(eye, target, up, dest);
}
/*!
* @brief set up view matrix
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
CGLM_ALIGN(8) vec3 up;
glm_vec_ortho(dir, up);
glm_look(eye, dir, up, dest);
}
/*! /*!
* @brief decomposes frustum values of perspective projection. * @brief decomposes frustum values of perspective projection.
* *
@@ -320,12 +415,28 @@ glm_persp_decomp(mat4 proj,
float * __restrict bottom, float * __restrict bottom,
float * __restrict left, float * __restrict left,
float * __restrict right) { float * __restrict right) {
*nearVal = proj[3][2] / (proj[2][2] - 1); float m00, m11, m20, m21, m22, m32, n, f;
*farVal = proj[3][2] / (proj[2][2] + 1); float n_m11, n_m00;
*bottom = *nearVal * (proj[2][1] - 1) / proj[1][1];
*top = *nearVal * (proj[2][1] + 1) / proj[1][1]; m00 = proj[0][0];
*left = *nearVal * (proj[2][0] - 1) / proj[0][0]; m11 = proj[1][1];
*right = *nearVal * (proj[2][0] + 1) / proj[0][0]; m20 = proj[2][0];
m21 = proj[2][1];
m22 = proj[2][2];
m32 = proj[3][2];
n = m32 / (m22 - 1.0f);
f = m32 / (m22 + 1.0f);
n_m11 = n / m11;
n_m00 = n / m00;
*nearVal = n;
*farVal = f;
*bottom = n_m11 * (m21 - 1.0f);
*top = n_m11 * (m21 + 1.0f);
*left = n_m00 * (m20 - 1.0f);
*right = n_m00 * (m20 + 1.0f);
} }
/*! /*!
@@ -346,7 +457,7 @@ glm_persp_decompv(mat4 proj, float dest[6]) {
* @brief decomposes left and right values of perspective projection. * @brief decomposes left and right values of perspective projection.
* x stands for x axis (left / right axis) * x stands for x axis (left / right axis)
* *
* @param[in] proj perspective projection matrix * @param[in] proj perspective projection matrix
* @param[out] left left * @param[out] left left
* @param[out] right right * @param[out] right right
*/ */
@@ -355,11 +466,14 @@ void
glm_persp_decomp_x(mat4 proj, glm_persp_decomp_x(mat4 proj,
float * __restrict left, float * __restrict left,
float * __restrict right) { float * __restrict right) {
float nearVal; float nearVal, m20, m00;
nearVal = proj[3][2] / (proj[3][3] - 1); m00 = proj[0][0];
*left = nearVal * (proj[2][0] - 1) / proj[0][0]; m20 = proj[2][0];
*right = nearVal * (proj[2][0] + 1) / proj[0][0];
nearVal = proj[3][2] / (proj[3][3] - 1.0f);
*left = nearVal * (m20 - 1.0f) / m00;
*right = nearVal * (m20 + 1.0f) / m00;
} }
/*! /*!
@@ -375,11 +489,14 @@ void
glm_persp_decomp_y(mat4 proj, glm_persp_decomp_y(mat4 proj,
float * __restrict top, float * __restrict top,
float * __restrict bottom) { float * __restrict bottom) {
float nearVal; float nearVal, m21, m11;
nearVal = proj[3][2] / (proj[3][3] - 1); m21 = proj[2][1];
*bottom = nearVal * (proj[2][1] - 1) / proj[1][1]; m11 = proj[1][1];
*top = nearVal * (proj[2][1] + 1) / proj[1][1];
nearVal = proj[3][2] / (proj[3][3] - 1.0f);
*bottom = nearVal * (m21 - 1) / m11;
*top = nearVal * (m21 + 1) / m11;
} }
/*! /*!
@@ -395,8 +512,13 @@ void
glm_persp_decomp_z(mat4 proj, glm_persp_decomp_z(mat4 proj,
float * __restrict nearVal, float * __restrict nearVal,
float * __restrict farVal) { float * __restrict farVal) {
*nearVal = proj[3][2] / (proj[2][2] - 1); float m32, m22;
*farVal = proj[3][2] / (proj[2][2] + 1);
m32 = proj[3][2];
m22 = proj[2][2];
*nearVal = m32 / (m22 - 1.0f);
*farVal = m32 / (m22 + 1.0f);
} }
/*! /*!
@@ -408,7 +530,7 @@ glm_persp_decomp_z(mat4 proj,
CGLM_INLINE CGLM_INLINE
void void
glm_persp_decomp_far(mat4 proj, float * __restrict farVal) { glm_persp_decomp_far(mat4 proj, float * __restrict farVal) {
*farVal = proj[3][2] / (proj[2][2] + 1); *farVal = proj[3][2] / (proj[2][2] + 1.0f);
} }
/*! /*!
@@ -420,6 +542,55 @@ glm_persp_decomp_far(mat4 proj, float * __restrict farVal) {
CGLM_INLINE CGLM_INLINE
void void
glm_persp_decomp_near(mat4 proj, float * __restrict nearVal) { glm_persp_decomp_near(mat4 proj, float * __restrict nearVal) {
*nearVal = proj[3][2] / (proj[2][2] - 1); *nearVal = proj[3][2] / (proj[2][2] - 1.0f);
} }
/*!
* @brief returns field of view angle along the Y-axis (in radians)
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_fovy(mat4 proj) {
return 2.0f * atanf(1.0f / proj[1][1]);
}
/*!
* @brief returns aspect ratio of perspective projection
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_aspect(mat4 proj) {
return proj[1][1] / proj[0][0];
}
/*!
* @brief returns sizes of near and far planes of perspective projection
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
void
glm_persp_sizes(mat4 proj, float fovy, vec4 dest) {
float t, a, nearVal, farVal;
t = 2.0f * tanf(fovy * 0.5f);
a = glm_persp_aspect(proj);
glm_persp_decomp_z(proj, &nearVal, &farVal);
dest[1] = t * nearVal;
dest[3] = t * farVal;
dest[0] = a * dest[1];
dest[2] = a * dest[3];
}
#endif /* cglm_vcam_h */ #endif /* cglm_vcam_h */

View File

@@ -15,9 +15,14 @@
#include "mat3.h" #include "mat3.h"
#include "affine.h" #include "affine.h"
#include "cam.h" #include "cam.h"
#include "frustum.h"
#include "quat.h" #include "quat.h"
#include "euler.h" #include "euler.h"
#include "plane.h"
#include "box.h"
#include "color.h"
#include "util.h" #include "util.h"
#include "io.h" #include "io.h"
#include "project.h"
#endif /* cglm_h */ #endif /* cglm_h */

26
include/cglm/color.h Normal file
View File

@@ -0,0 +1,26 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_color_h
#define cglm_color_h
#include "common.h"
#include "vec3.h"
/*!
* @brief averages the color channels into one value
*
* @param[in] rgb RGB color
*/
CGLM_INLINE
float
glm_luminance(vec3 rgb) {
vec3 l = {0.212671f, 0.715160f, 0.072169f};
return glm_dot(rgb, l);
}
#endif /* cglm_color_h */

View File

@@ -12,8 +12,9 @@
#include <stdint.h> #include <stdint.h>
#include <math.h> #include <math.h>
#include <float.h>
#if defined(_WIN32) #if defined(_MSC_VER)
# ifdef CGLM_DLL # ifdef CGLM_DLL
# define CGLM_EXPORT __declspec(dllexport) # define CGLM_EXPORT __declspec(dllexport)
# else # else

View File

@@ -5,21 +5,30 @@
* Full license can be found in the LICENSE file * Full license can be found in the LICENSE file
*/ */
/*
NOTE:
angles must be passed as [X-Angle, Y-Angle, Z-angle] order
For instance you don't pass angles as [Z-Angle, X-Angle, Y-angle] to
glm_euler_zxy funciton, All RELATED functions accept angles same order
which is [X, Y, Z].
*/
/* /*
Types: Types:
enum glm_euler_sq enum glm_euler_sq
Functions: Functions:
CGLM_INLINE glm_euler_sq glm_euler_order(int newOrder[3]); CGLM_INLINE glm_euler_sq glm_euler_order(int newOrder[3]);
CGLM_INLINE void glm_euler_angles(mat4 m, vec3 dest); CGLM_INLINE void glm_euler_angles(mat4 m, vec3 dest);
CGLM_INLINE void glm_euler(vec3 angles, mat4 dest); CGLM_INLINE void glm_euler(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_xyz(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_zyx(vec3 angles, mat4 dest); CGLM_INLINE void glm_euler_zyx(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_zxy(vec3 angles, mat4 dest); CGLM_INLINE void glm_euler_zxy(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_xzy(vec3 angles, mat4 dest); CGLM_INLINE void glm_euler_xzy(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_yzx(vec3 angles, mat4 dest); CGLM_INLINE void glm_euler_yzx(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_yxz(vec3 angles, mat4 dest); CGLM_INLINE void glm_euler_yxz(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_by_order(vec3 angles, CGLM_INLINE void glm_euler_by_order(vec3 angles,
glm_euler_sq axis, glm_euler_sq ord,
mat4 dest); mat4 dest);
*/ */
@@ -48,12 +57,12 @@ typedef enum glm_euler_sq {
CGLM_INLINE CGLM_INLINE
glm_euler_sq glm_euler_sq
glm_euler_order(int newOrder[3]) { glm_euler_order(int ord[3]) {
return (glm_euler_sq)(newOrder[0] | newOrder[1] << 2 | newOrder[2] << 4); return (glm_euler_sq)(ord[0] << 0 | ord[1] << 2 | ord[2] << 4);
} }
/*! /*!
* @brief euler angles (in radian) using xyz sequence * @brief extract euler angles (in radians) using xyz order
* *
* @param[in] m affine transform * @param[in] m affine transform
* @param[out] dest angles vector [x, y, z] * @param[out] dest angles vector [x, y, z]
@@ -61,225 +70,289 @@ glm_euler_order(int newOrder[3]) {
CGLM_INLINE CGLM_INLINE
void void
glm_euler_angles(mat4 m, vec3 dest) { glm_euler_angles(mat4 m, vec3 dest) {
if (m[0][2] < 1.0f) { float m00, m01, m10, m11, m20, m21, m22;
if (m[0][2] > -1.0f) { float thetaX, thetaY, thetaZ;
vec3 a[2];
float cy1, cy2;
int path;
a[0][1] = asinf(-m[0][2]);
a[1][1] = CGLM_PI - a[0][1];
cy1 = cosf(a[0][1]); m00 = m[0][0]; m10 = m[1][0]; m20 = m[2][0];
cy2 = cosf(a[1][1]); m01 = m[0][1]; m11 = m[1][1]; m21 = m[2][1];
m22 = m[2][2];
a[0][0] = atan2f(m[1][2] / cy1, m[2][2] / cy1); if (m20 < 1.0f) {
a[1][0] = atan2f(m[1][2] / cy2, m[2][2] / cy2); if (m20 > -1.0f) {
thetaY = asinf(m20);
a[0][2] = atan2f(m[0][1] / cy1, m[0][0] / cy1); thetaX = atan2f(-m21, m22);
a[1][2] = atan2f(m[0][1] / cy2, m[0][0] / cy2); thetaZ = atan2f(-m10, m00);
} else { /* m20 == -1 */
path = (fabsf(a[0][0]) + fabsf(a[0][1]) + fabsf(a[0][2])) >= /* Not a unique solution */
(fabsf(a[1][0]) + fabsf(a[1][1]) + fabsf(a[1][2])); thetaY = -CGLM_PI_2;
thetaX = -atan2f(m01, m11);
glm_vec_copy(a[path], dest); thetaZ = 0.0f;
} else {
dest[0] = atan2f(m[1][0], m[2][0]);
dest[1] = CGLM_PI_2;
dest[2] = 0.0f;
} }
} else { } else { /* m20 == +1 */
dest[0] = atan2f(-m[1][0], -m[2][0]); thetaY = CGLM_PI_2;
dest[1] =-CGLM_PI_2; thetaX = atan2f(m01, m11);
dest[2] = 0.0f; thetaZ = 0.0f;
} }
dest[0] = thetaX;
dest[1] = thetaY;
dest[2] = thetaZ;
} }
/*! /*!
* @brief build rotation matrix from euler angles(ExEyEz/RzRyRx) * @brief build rotation matrix from euler angles
* *
* @param[in] angles angles as vector [Ex, Ey, Ez] * @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_xyz(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, czsx, cxcz, sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
czsx = cz * sx;
cxcz = cx * cz;
sysz = sy * sz;
dest[0][0] = cy * cz;
dest[0][1] = czsx * sy + cx * sz;
dest[0][2] = -cxcz * sy + sx * sz;
dest[1][0] = -cy * sz;
dest[1][1] = cxcz - sx * sysz;
dest[1][2] = czsx + cx * sysz;
dest[2][0] = sy;
dest[2][1] = -cy * sx;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix * @param[out] dest rotation matrix
*/ */
CGLM_INLINE CGLM_INLINE
void void
glm_euler(vec3 angles, mat4 dest) { glm_euler(vec3 angles, mat4 dest) {
float cx, cy, cz, glm_euler_xyz(angles, dest);
sx, sy, sz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
dest[0][0] = cy * cz;
dest[0][1] = cy * sz;
dest[0][2] =-sy;
dest[1][0] = cz * sx * sy - cx * sz;
dest[1][1] = cx * cz + sx * sy * sz;
dest[1][2] = cy * sx;
dest[2][0] = cx * cz * sy + sx * sz;
dest[2][1] =-cz * sx + cx * sy * sz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
} }
/*! /*!
* @brief build rotation matrix from euler angles (EzEyEx/RxRyRz) * @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/ */
CGLM_INLINE CGLM_INLINE
void void
glm_euler_zyx(vec3 angles, glm_euler_xzy(vec3 angles, mat4 dest) {
mat4 dest) {
float cx, cy, cz, float cx, cy, cz,
sx, sy, sz; sx, sy, sz, sxsy, cysx, cxsy, cxcy;
sx = sinf(angles[0]); cx = cosf(angles[0]); sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]); sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]); sz = sinf(angles[2]); cz = cosf(angles[2]);
dest[0][0] = cy * cz; sxsy = sx * sy;
dest[0][1] = cz * sx * sy + cx * sz; cysx = cy * sx;
dest[0][2] =-cx * cz * sy + sx * sz; cxsy = cx * sy;
dest[1][0] =-cy * sz; cxcy = cx * cy;
dest[1][1] = cx * cz - sx * sy * sz;
dest[1][2] = cz * sx + cx * sy * sz; dest[0][0] = cy * cz;
dest[2][0] = sy; dest[0][1] = sxsy + cxcy * sz;
dest[2][1] =-cy * sx; dest[0][2] = -cxsy + cysx * sz;
dest[2][2] = cx * cy; dest[1][0] = -sz;
dest[0][3] = 0.0f; dest[1][1] = cx * cz;
dest[1][3] = 0.0f; dest[1][2] = cz * sx;
dest[2][3] = 0.0f; dest[2][0] = cz * sy;
dest[3][0] = 0.0f; dest[2][1] = -cysx + cxsy * sz;
dest[3][1] = 0.0f; dest[2][2] = cxcy + sxsy * sz;
dest[3][2] = 0.0f; dest[0][3] = 0.0f;
dest[3][3] = 1.0f; dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
} }
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE CGLM_INLINE
void void
glm_euler_zxy(vec3 angles, glm_euler_yxz(vec3 angles, mat4 dest) {
mat4 dest) {
float cx, cy, cz, float cx, cy, cz,
sx, sy, sz; sx, sy, sz, cycz, sysz, czsy, cysz;
sx = sinf(angles[0]); cx = cosf(angles[0]); sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]); sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]); sz = sinf(angles[2]); cz = cosf(angles[2]);
dest[0][0] = cy * cz + sx * sy * sz; cycz = cy * cz;
dest[0][1] = cx * sz; sysz = sy * sz;
dest[0][2] =-cz * sy + cy * sx * sz; czsy = cz * sy;
dest[1][0] = cz * sx * sy - cy * sz; cysz = cy * sz;
dest[1][1] = cx * cz;
dest[1][2] = cy * cz * sx + sy * sz; dest[0][0] = cycz + sx * sysz;
dest[2][0] = cx * sy; dest[0][1] = cx * sz;
dest[2][1] =-sx; dest[0][2] = -czsy + cysz * sx;
dest[2][2] = cx * cy; dest[1][0] = -cysz + czsy * sx;
dest[0][3] = 0.0f; dest[1][1] = cx * cz;
dest[1][3] = 0.0f; dest[1][2] = cycz * sx + sysz;
dest[2][3] = 0.0f; dest[2][0] = cx * sy;
dest[3][0] = 0.0f; dest[2][1] = -sx;
dest[3][1] = 0.0f; dest[2][2] = cx * cy;
dest[3][2] = 0.0f; dest[0][3] = 0.0f;
dest[3][3] = 1.0f; dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
} }
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE CGLM_INLINE
void void
glm_euler_xzy(vec3 angles, glm_euler_yzx(vec3 angles, mat4 dest) {
mat4 dest) {
float cx, cy, cz, float cx, cy, cz,
sx, sy, sz; sx, sy, sz, sxsy, cxcy, cysx, cxsy;
sx = sinf(angles[0]); cx = cosf(angles[0]); sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]); sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]); sz = sinf(angles[2]); cz = cosf(angles[2]);
dest[0][0] = cy * cz; sxsy = sx * sy;
dest[0][1] = sz; cxcy = cx * cy;
dest[0][2] =-cz * sy; cysx = cy * sx;
dest[1][0] = sx * sy - cx * cy * sz; cxsy = cx * sy;
dest[1][1] = cx * cz;
dest[1][2] = cy * sx + cx * sy * sz; dest[0][0] = cy * cz;
dest[2][0] = cx * sy + cy * sx * sz; dest[0][1] = sz;
dest[2][1] =-cz * sx; dest[0][2] = -cz * sy;
dest[2][2] = cx * cy - sx * sy * sz; dest[1][0] = sxsy - cxcy * sz;
dest[0][3] = 0.0f; dest[1][1] = cx * cz;
dest[1][3] = 0.0f; dest[1][2] = cysx + cxsy * sz;
dest[2][3] = 0.0f; dest[2][0] = cxsy + cysx * sz;
dest[3][0] = 0.0f; dest[2][1] = -cz * sx;
dest[3][1] = 0.0f; dest[2][2] = cxcy - sxsy * sz;
dest[3][2] = 0.0f; dest[0][3] = 0.0f;
dest[3][3] = 1.0f; dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
} }
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE CGLM_INLINE
void void
glm_euler_yzx(vec3 angles, glm_euler_zxy(vec3 angles, mat4 dest) {
mat4 dest) {
float cx, cy, cz, float cx, cy, cz,
sx, sy, sz; sx, sy, sz, cycz, sxsy, cysz;
sx = sinf(angles[0]); cx = cosf(angles[0]); sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]); sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]); sz = sinf(angles[2]); cz = cosf(angles[2]);
dest[0][0] = cy * cz; cycz = cy * cz;
dest[0][1] = sx * sy + cx * cy * sz; sxsy = sx * sy;
dest[0][2] =-cx * sy + cy * sx * sz; cysz = cy * sz;
dest[1][0] =-sz;
dest[1][1] = cx * cz; dest[0][0] = cycz - sxsy * sz;
dest[1][2] = cz * sx; dest[0][1] = cz * sxsy + cysz;
dest[2][0] = cz * sy; dest[0][2] = -cx * sy;
dest[2][1] =-cy * sx + cx * sy * sz; dest[1][0] = -cx * sz;
dest[2][2] = cx * cy + sx * sy * sz; dest[1][1] = cx * cz;
dest[0][3] = 0.0f; dest[1][2] = sx;
dest[1][3] = 0.0f; dest[2][0] = cz * sy + cysz * sx;
dest[2][3] = 0.0f; dest[2][1] = -cycz * sx + sy * sz;
dest[3][0] = 0.0f; dest[2][2] = cx * cy;
dest[3][1] = 0.0f; dest[0][3] = 0.0f;
dest[3][2] = 0.0f; dest[1][3] = 0.0f;
dest[3][3] = 1.0f; dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
} }
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE CGLM_INLINE
void void
glm_euler_yxz(vec3 angles, glm_euler_zyx(vec3 angles, mat4 dest) {
mat4 dest) {
float cx, cy, cz, float cx, cy, cz,
sx, sy, sz; sx, sy, sz, czsx, cxcz, sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]); sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]); sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]); sz = sinf(angles[2]); cz = cosf(angles[2]);
dest[0][0] = cy * cz - sx * sy * sz; czsx = cz * sx;
dest[0][1] = cz * sx * sy + cy * sz; cxcz = cx * cz;
dest[0][2] =-cx * sy; sysz = sy * sz;
dest[1][0] =-cx * sz;
dest[1][1] = cx * cz; dest[0][0] = cy * cz;
dest[1][2] = sx; dest[0][1] = cy * sz;
dest[2][0] = cz * sy + cy * sx * sz; dest[0][2] = -sy;
dest[2][1] =-cy * cz * sx + sy * sz; dest[1][0] = czsx * sy - cx * sz;
dest[2][2] = cx * cy; dest[1][1] = cxcz + sx * sysz;
dest[0][3] = 0.0f; dest[1][2] = cy * sx;
dest[1][3] = 0.0f; dest[2][0] = cxcz * sy + sx * sz;
dest[2][3] = 0.0f; dest[2][1] = -czsx + cx * sysz;
dest[3][0] = 0.0f; dest[2][2] = cx * cy;
dest[3][1] = 0.0f; dest[0][3] = 0.0f;
dest[3][2] = 0.0f; dest[1][3] = 0.0f;
dest[3][3] = 1.0f; dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
} }
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[in] ord euler order
* @param[out] dest rotation matrix
*/
CGLM_INLINE CGLM_INLINE
void void
glm_euler_by_order(vec3 angles, glm_euler_sq axis, mat4 dest) { glm_euler_by_order(vec3 angles, glm_euler_sq ord, mat4 dest) {
float cx, cy, cz, float cx, cy, cz,
sx, sy, sz; sx, sy, sz;
@@ -297,72 +370,72 @@ glm_euler_by_order(vec3 angles, glm_euler_sq axis, mat4 dest) {
czsx = cz * sx; cxsz = cx * sz; czsx = cz * sx; cxsz = cx * sz;
sysz = sy * sz; sysz = sy * sz;
switch (axis) { switch (ord) {
case GLM_EULER_XYZ:
dest[0][0] = cycz;
dest[0][1] = cysz;
dest[0][2] =-sy;
dest[1][0] = czsx * sy - cxsz;
dest[1][1] = cxcz + sx * sysz;
dest[1][2] = cysx;
dest[2][0] = cx * czsy + sx * sz;
dest[2][1] =-czsx + cx * sysz;
dest[2][2] = cxcy;
break;
case GLM_EULER_XZY: case GLM_EULER_XZY:
dest[0][0] = cycz; dest[0][0] = cycz;
dest[0][1] = sz; dest[0][1] = sx * sy + cx * cysz;
dest[0][2] =-czsy; dest[0][2] = -cx * sy + cysx * sz;
dest[1][0] = sx * sy - cx * cysz; dest[1][0] = -sz;
dest[1][1] = cxcz; dest[1][1] = cxcz;
dest[1][2] = cysx + cx * sysz; dest[1][2] = czsx;
dest[2][0] = cx * sy + cysx * sz; dest[2][0] = czsy;
dest[2][1] =-czsx; dest[2][1] = -cysx + cx * sysz;
dest[2][2] = cxcy - sx * sysz; dest[2][2] = cxcy + sx * sysz;
break; break;
case GLM_EULER_ZXY: case GLM_EULER_XYZ:
dest[0][0] = cycz + sx * sysz; dest[0][0] = cycz;
dest[0][1] = cxsz; dest[0][1] = czsx * sy + cxsz;
dest[0][2] =-czsy + cysx * sz; dest[0][2] = -cx * czsy + sx * sz;
dest[1][0] = czsx * sy - cysz; dest[1][0] = -cysz;
dest[1][1] = cxcz; dest[1][1] = cxcz - sx * sysz;
dest[1][2] = cycz * sx + sysz; dest[1][2] = czsx + cx * sysz;
dest[2][0] = cx * sy; dest[2][0] = sy;
dest[2][1] =-sx; dest[2][1] = -cysx;
dest[2][2] = cxcy; dest[2][2] = cxcy;
break;
case GLM_EULER_ZYX:
dest[0][0] = cycz;
dest[0][1] = czsx * sy + cxsz;
dest[0][2] =-cx * czsy + sx * sz;
dest[1][0] =-cysz;
dest[1][1] = cxcz - sx * sysz;
dest[1][2] = czsx + cx * sysz;
dest[2][0] = sy;
dest[2][1] =-cysx;
dest[2][2] = cxcy;
break; break;
case GLM_EULER_YXZ: case GLM_EULER_YXZ:
dest[0][0] = cycz - sx * sysz; dest[0][0] = cycz + sx * sysz;
dest[0][1] = czsx * sy + cysz; dest[0][1] = cxsz;
dest[0][2] =-cx * sy; dest[0][2] = -czsy + cysx * sz;
dest[1][0] =-cxsz; dest[1][0] = czsx * sy - cysz;
dest[1][1] = cxcz; dest[1][1] = cxcz;
dest[1][2] = sx; dest[1][2] = cycz * sx + sysz;
dest[2][0] = czsy + cysx * sz; dest[2][0] = cx * sy;
dest[2][1] =-cycz * sx + sysz; dest[2][1] = -sx;
dest[2][2] = cxcy; dest[2][2] = cxcy;
break; break;
case GLM_EULER_YZX: case GLM_EULER_YZX:
dest[0][0] = cycz; dest[0][0] = cycz;
dest[0][1] = sx * sy + cx * cysz; dest[0][1] = sz;
dest[0][2] =-cx * sy + cysx * sz; dest[0][2] = -czsy;
dest[1][0] =-sz; dest[1][0] = sx * sy - cx * cysz;
dest[1][1] = cxcz; dest[1][1] = cxcz;
dest[1][2] = czsx; dest[1][2] = cysx + cx * sysz;
dest[2][0] = czsy; dest[2][0] = cx * sy + cysx * sz;
dest[2][1] =-cysx + cx * sysz; dest[2][1] = -czsx;
dest[2][2] = cxcy + sx * sysz; dest[2][2] = cxcy - sx * sysz;
break;
case GLM_EULER_ZXY:
dest[0][0] = cycz - sx * sysz;
dest[0][1] = czsx * sy + cysz;
dest[0][2] = -cx * sy;
dest[1][0] = -cxsz;
dest[1][1] = cxcz;
dest[1][2] = sx;
dest[2][0] = czsy + cysx * sz;
dest[2][1] = -cycz * sx + sysz;
dest[2][2] = cxcy;
break;
case GLM_EULER_ZYX:
dest[0][0] = cycz;
dest[0][1] = cysz;
dest[0][2] = -sy;
dest[1][0] = czsx * sy - cxsz;
dest[1][1] = cxcz + sx * sysz;
dest[1][2] = cysx;
dest[2][0] = cx * czsy + sx * sz;
dest[2][1] = -czsx + cx * sysz;
dest[2][2] = cxcy;
break; break;
} }

255
include/cglm/frustum.h Normal file
View File

@@ -0,0 +1,255 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_frustum_h
#define cglm_frustum_h
#include "common.h"
#include "plane.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
#define GLM_LBN 0 /* left bottom near */
#define GLM_LTN 1 /* left top near */
#define GLM_RTN 2 /* right top near */
#define GLM_RBN 3 /* right bottom near */
#define GLM_LBF 4 /* left bottom far */
#define GLM_LTF 5 /* left top far */
#define GLM_RTF 6 /* right top far */
#define GLM_RBF 7 /* right bottom far */
#define GLM_LEFT 0
#define GLM_RIGHT 1
#define GLM_BOTTOM 2
#define GLM_TOP 3
#define GLM_NEAR 4
#define GLM_FAR 5
/* you can override clip space coords
but you have to provide all with same name
e.g.: define GLM_CSCOORD_LBN {0.0f, 0.0f, 1.0f, 1.0f} */
#ifndef GLM_CUSTOM_CLIPSPACE
/* near */
#define GLM_CSCOORD_LBN {-1.0f, -1.0f, -1.0f, 1.0f}
#define GLM_CSCOORD_LTN {-1.0f, 1.0f, -1.0f, 1.0f}
#define GLM_CSCOORD_RTN { 1.0f, 1.0f, -1.0f, 1.0f}
#define GLM_CSCOORD_RBN { 1.0f, -1.0f, -1.0f, 1.0f}
/* far */
#define GLM_CSCOORD_LBF {-1.0f, -1.0f, 1.0f, 1.0f}
#define GLM_CSCOORD_LTF {-1.0f, 1.0f, 1.0f, 1.0f}
#define GLM_CSCOORD_RTF { 1.0f, 1.0f, 1.0f, 1.0f}
#define GLM_CSCOORD_RBF { 1.0f, -1.0f, 1.0f, 1.0f}
#endif
/*!
* @brief extracts view frustum planes
*
* planes' space:
* 1- if m = proj: View Space
* 2- if m = viewProj: World Space
* 3- if m = MVP: Object Space
*
* You probably want to extract planes in world space so use viewProj as m
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
*
* Exracted planes order: [left, right, bottom, top, near, far]
*
* @param[in] m matrix (see brief)
* @param[out] dest exracted view frustum planes (see brief)
*/
CGLM_INLINE
void
glm_frustum_planes(mat4 m, vec4 dest[6]) {
mat4 t;
glm_mat4_transpose_to(m, t);
glm_vec4_add(t[3], t[0], dest[0]); /* left */
glm_vec4_sub(t[3], t[0], dest[1]); /* right */
glm_vec4_add(t[3], t[1], dest[2]); /* bottom */
glm_vec4_sub(t[3], t[1], dest[3]); /* top */
glm_vec4_add(t[3], t[2], dest[4]); /* near */
glm_vec4_sub(t[3], t[2], dest[5]); /* far */
glm_plane_normalize(dest[0]);
glm_plane_normalize(dest[1]);
glm_plane_normalize(dest[2]);
glm_plane_normalize(dest[3]);
glm_plane_normalize(dest[4]);
glm_plane_normalize(dest[5]);
}
/*!
* @brief extracts view frustum corners using clip-space coordinates
*
* corners' space:
* 1- if m = invViewProj: World Space
* 2- if m = invMVP: Object Space
*
* You probably want to extract corners in world space so use invViewProj
* Computing invViewProj:
* glm_mat4_mul(proj, view, viewProj);
* ...
* glm_mat4_inv(viewProj, invViewProj);
*
* if you have a near coord at i index, you can get it's far coord by i + 4
*
* Find center coordinates:
* for (j = 0; j < 4; j++) {
* glm_vec_center(corners[i], corners[i + 4], centerCorners[i]);
* }
*
* @param[in] invMat matrix (see brief)
* @param[out] dest exracted view frustum corners (see brief)
*/
CGLM_INLINE
void
glm_frustum_corners(mat4 invMat, vec4 dest[8]) {
vec4 c[8];
/* indexOf(nearCoord) = indexOf(farCoord) + 4 */
vec4 csCoords[8] = {
GLM_CSCOORD_LBN,
GLM_CSCOORD_LTN,
GLM_CSCOORD_RTN,
GLM_CSCOORD_RBN,
GLM_CSCOORD_LBF,
GLM_CSCOORD_LTF,
GLM_CSCOORD_RTF,
GLM_CSCOORD_RBF
};
glm_mat4_mulv(invMat, csCoords[0], c[0]);
glm_mat4_mulv(invMat, csCoords[1], c[1]);
glm_mat4_mulv(invMat, csCoords[2], c[2]);
glm_mat4_mulv(invMat, csCoords[3], c[3]);
glm_mat4_mulv(invMat, csCoords[4], c[4]);
glm_mat4_mulv(invMat, csCoords[5], c[5]);
glm_mat4_mulv(invMat, csCoords[6], c[6]);
glm_mat4_mulv(invMat, csCoords[7], c[7]);
glm_vec4_scale(c[0], 1.0f / c[0][3], dest[0]);
glm_vec4_scale(c[1], 1.0f / c[1][3], dest[1]);
glm_vec4_scale(c[2], 1.0f / c[2][3], dest[2]);
glm_vec4_scale(c[3], 1.0f / c[3][3], dest[3]);
glm_vec4_scale(c[4], 1.0f / c[4][3], dest[4]);
glm_vec4_scale(c[5], 1.0f / c[5][3], dest[5]);
glm_vec4_scale(c[6], 1.0f / c[6][3], dest[6]);
glm_vec4_scale(c[7], 1.0f / c[7][3], dest[7]);
}
/*!
* @brief finds center of view frustum
*
* @param[in] corners view frustum corners
* @param[out] dest view frustum center
*/
CGLM_INLINE
void
glm_frustum_center(vec4 corners[8], vec4 dest) {
vec4 center;
glm_vec4_copy(corners[0], center);
glm_vec4_add(corners[1], center, center);
glm_vec4_add(corners[2], center, center);
glm_vec4_add(corners[3], center, center);
glm_vec4_add(corners[4], center, center);
glm_vec4_add(corners[5], center, center);
glm_vec4_add(corners[6], center, center);
glm_vec4_add(corners[7], center, center);
glm_vec4_scale(center, 0.125f, dest);
}
/*!
* @brief finds bounding box of frustum relative to given matrix e.g. view mat
*
* @param[in] corners view frustum corners
* @param[in] m matrix to convert existing conners
* @param[out] box bounding box as array [min, max]
*/
CGLM_INLINE
void
glm_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]) {
vec4 v;
vec3 min, max;
int i;
glm_vec_broadcast(FLT_MAX, min);
glm_vec_broadcast(-FLT_MAX, max);
for (i = 0; i < 8; i++) {
glm_mat4_mulv(m, corners[i], v);
min[0] = glm_min(min[0], v[0]);
min[1] = glm_min(min[1], v[1]);
min[2] = glm_min(min[2], v[2]);
max[0] = glm_max(max[0], v[0]);
max[1] = glm_max(max[1], v[1]);
max[2] = glm_max(max[2], v[2]);
}
glm_vec_copy(min, box[0]);
glm_vec_copy(max, box[1]);
}
/*!
* @brief finds planes corners which is between near and far planes (parallel)
*
* this will be helpful if you want to split a frustum e.g. CSM/PSSM. This will
* find planes' corners but you will need to one more plane.
* Actually you have it, it is near, far or created previously with this func ;)
*
* @param[in] corners view frustum corners
* @param[in] splitDist split distance
* @param[in] farDist far distance (zFar)
* @param[out] planeCorners plane corners [LB, LT, RT, RB]
*/
CGLM_INLINE
void
glm_frustum_corners_at(vec4 corners[8],
float splitDist,
float farDist,
vec4 planeCorners[4]) {
vec4 corner;
float dist, sc;
/* because distance and scale is same for all */
dist = glm_vec_distance(corners[GLM_RTF], corners[GLM_RTN]);
sc = dist * (splitDist / farDist);
/* left bottom */
glm_vec4_sub(corners[GLM_LBF], corners[GLM_LBN], corner);
glm_vec4_scale_as(corner, sc, corner);
glm_vec4_add(corners[GLM_LBN], corner, planeCorners[0]);
/* left top */
glm_vec4_sub(corners[GLM_LTF], corners[GLM_LTN], corner);
glm_vec4_scale_as(corner, sc, corner);
glm_vec4_add(corners[GLM_LTN], corner, planeCorners[1]);
/* right top */
glm_vec4_sub(corners[GLM_RTF], corners[GLM_RTN], corner);
glm_vec4_scale_as(corner, sc, corner);
glm_vec4_add(corners[GLM_RTN], corner, planeCorners[2]);
/* right bottom */
glm_vec4_sub(corners[GLM_RBF], corners[GLM_RBN], corner);
glm_vec4_scale_as(corner, sc, corner);
glm_vec4_add(corners[GLM_RBN], corner, planeCorners[3]);
}
#endif /* cglm_frustum_h */

View File

@@ -171,4 +171,33 @@ glm_versor_print(versor vec,
#undef m #undef m
} }
CGLM_INLINE
void
glm_aabb_print(vec3 bbox[2],
const char * __restrict tag,
FILE * __restrict ostream) {
int i, j;
#define m 3
fprintf(ostream, "AABB (%s):\n", tag ? tag: "float");
for (i = 0; i < 2; i++) {
fprintf(ostream, "\t|");
for (j = 0; j < m; j++) {
fprintf(ostream, "%0.4f", bbox[i][j]);
if (j != m - 1)
fprintf(ostream, "\t");
}
fprintf(ostream, "|\n");
}
fprintf(ostream, "\n");
#undef m
}
#endif /* cglm_io_h */ #endif /* cglm_io_h */

View File

@@ -31,6 +31,7 @@
#define cglm_mat3_h #define cglm_mat3_h
#include "common.h" #include "common.h"
#include "vec3.h"
#ifdef CGLM_SSE_FP #ifdef CGLM_SSE_FP
# include "simd/sse2/mat3.h" # include "simd/sse2/mat3.h"
@@ -45,8 +46,8 @@
/* for C only */ /* for C only */
#define GLM_MAT3_IDENTITY (mat3)GLM_MAT3_IDENTITY_INIT #define GLM_MAT3_IDENTITY ((mat3)GLM_MAT3_IDENTITY_INIT)
#define GLM_MAT3_ZERO (mat3)GLM_MAT3_ZERO_INIT #define GLM_MAT3_ZERO ((mat3)GLM_MAT3_ZERO_INIT)
/* DEPRECATED! use _copy, _ucopy versions */ /* DEPRECATED! use _copy, _ucopy versions */
#define glm_mat3_dup(mat, dest) glm_mat3_copy(mat, dest) #define glm_mat3_dup(mat, dest) glm_mat3_copy(mat, dest)
@@ -80,7 +81,7 @@ glm_mat3_copy(mat3 mat, mat3 dest) {
CGLM_INLINE CGLM_INLINE
void void
glm_mat3_identity(mat3 mat) { glm_mat3_identity(mat3 mat) {
mat3 t = GLM_MAT3_IDENTITY_INIT; CGLM_ALIGN(16) mat3 t = GLM_MAT3_IDENTITY_INIT;
glm_mat3_copy(t, mat); glm_mat3_copy(t, mat);
} }
@@ -154,7 +155,7 @@ glm_mat3_transpose_to(mat3 m, mat3 dest) {
CGLM_INLINE CGLM_INLINE
void void
glm_mat3_transpose(mat3 m) { glm_mat3_transpose(mat3 m) {
mat3 tmp; CGLM_ALIGN(16) mat3 tmp;
tmp[0][1] = m[1][0]; tmp[0][1] = m[1][0];
tmp[0][2] = m[2][0]; tmp[0][2] = m[2][0];
@@ -186,6 +187,56 @@ glm_mat3_mulv(mat3 m, vec3 v, vec3 dest) {
dest[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2]; dest[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2];
} }
/*!
* @brief convert mat3 to quaternion
*
* @param[in] m rotation matrix
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_mat3_quat(mat3 m, versor dest) {
float trace, r, rinv;
/* it seems using like m12 instead of m[1][2] causes extra instructions */
trace = m[0][0] + m[1][1] + m[2][2];
if (trace >= 0.0f) {
r = sqrtf(1.0f + trace);
rinv = 0.5f / r;
dest[0] = rinv * (m[1][2] - m[2][1]);
dest[1] = rinv * (m[2][0] - m[0][2]);
dest[2] = rinv * (m[0][1] - m[1][0]);
dest[3] = r * 0.5f;
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
rinv = 0.5f / r;
dest[0] = r * 0.5f;
dest[1] = rinv * (m[0][1] + m[1][0]);
dest[2] = rinv * (m[0][2] + m[2][0]);
dest[3] = rinv * (m[1][2] - m[2][1]);
} else if (m[1][1] >= m[2][2]) {
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][1] + m[1][0]);
dest[1] = r * 0.5f;
dest[2] = rinv * (m[1][2] + m[2][1]);
dest[3] = rinv * (m[2][0] - m[0][2]);
} else {
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][2] + m[2][0]);
dest[1] = rinv * (m[1][2] + m[2][1]);
dest[2] = r * 0.5f;
dest[3] = rinv * (m[0][1] - m[1][0]);
}
}
/*! /*!
* @brief scale (multiply with scalar) matrix * @brief scale (multiply with scalar) matrix
* *

View File

@@ -45,6 +45,8 @@
#define cglm_mat_h #define cglm_mat_h
#include "common.h" #include "common.h"
#include "vec4.h"
#include "vec3.h"
#ifdef CGLM_SSE_FP #ifdef CGLM_SSE_FP
# include "simd/sse2/mat4.h" # include "simd/sse2/mat4.h"
@@ -58,7 +60,9 @@
# include "simd/neon/mat4.h" # include "simd/neon/mat4.h"
#endif #endif
#include <assert.h> #ifdef DEBUG
# include <assert.h>
#endif
#define GLM_MAT4_IDENTITY_INIT {{1.0f, 0.0f, 0.0f, 0.0f}, \ #define GLM_MAT4_IDENTITY_INIT {{1.0f, 0.0f, 0.0f, 0.0f}, \
{0.0f, 1.0f, 0.0f, 0.0f}, \ {0.0f, 1.0f, 0.0f, 0.0f}, \
@@ -71,8 +75,8 @@
{0.0f, 0.0f, 0.0f, 0.0f}} {0.0f, 0.0f, 0.0f, 0.0f}}
/* for C only */ /* for C only */
#define GLM_MAT4_IDENTITY (mat4)GLM_MAT4_IDENTITY_INIT #define GLM_MAT4_IDENTITY ((mat4)GLM_MAT4_IDENTITY_INIT)
#define GLM_MAT4_ZERO (mat4)GLM_MAT4_ZERO_INIT #define GLM_MAT4_ZERO ((mat4)GLM_MAT4_ZERO_INIT)
/* DEPRECATED! use _copy, _ucopy versions */ /* DEPRECATED! use _copy, _ucopy versions */
#define glm_mat4_udup(mat, dest) glm_mat4_ucopy(mat, dest) #define glm_mat4_udup(mat, dest) glm_mat4_ucopy(mat, dest)
@@ -106,13 +110,13 @@ CGLM_INLINE
void void
glm_mat4_copy(mat4 mat, mat4 dest) { glm_mat4_copy(mat4 mat, mat4 dest) {
#ifdef __AVX__ #ifdef __AVX__
_mm256_store_ps(dest[0], _mm256_load_ps(mat[0])); glmm_store256(dest[0], glmm_load256(mat[0]));
_mm256_store_ps(dest[2], _mm256_load_ps(mat[2])); glmm_store256(dest[2], glmm_load256(mat[2]));
#elif defined( __SSE__ ) || defined( __SSE2__ ) #elif defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest[0], _mm_load_ps(mat[0])); glmm_store(dest[0], glmm_load(mat[0]));
_mm_store_ps(dest[1], _mm_load_ps(mat[1])); glmm_store(dest[1], glmm_load(mat[1]));
_mm_store_ps(dest[2], _mm_load_ps(mat[2])); glmm_store(dest[2], glmm_load(mat[2]));
_mm_store_ps(dest[3], _mm_load_ps(mat[3])); glmm_store(dest[3], glmm_load(mat[3]));
#else #else
glm_mat4_ucopy(mat, dest); glm_mat4_ucopy(mat, dest);
#endif #endif
@@ -135,7 +139,7 @@ glm_mat4_copy(mat4 mat, mat4 dest) {
CGLM_INLINE CGLM_INLINE
void void
glm_mat4_identity(mat4 mat) { glm_mat4_identity(mat4 mat) {
mat4 t = GLM_MAT4_IDENTITY_INIT; CGLM_ALIGN(16) mat4 t = GLM_MAT4_IDENTITY_INIT;
glm_mat4_copy(t, mat); glm_mat4_copy(t, mat);
} }
@@ -281,19 +285,17 @@ glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest) {
*/ */
CGLM_INLINE CGLM_INLINE
void void
glm_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest) { glm_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest) {
int i; uint32_t i;
#ifdef DEBUG
assert(len > 1 && "there must be least 2 matrices to go!"); assert(len > 1 && "there must be least 2 matrices to go!");
#endif
glm_mat4_mul(*matrices[0], glm_mat4_mul(*matrices[0], *matrices[1], dest);
*matrices[1],
dest);
for (i = 2; i < len; i++) for (i = 2; i < len; i++)
glm_mat4_mul(dest, glm_mat4_mul(dest, *matrices[i], dest);
*matrices[i],
dest);
} }
/*! /*!
@@ -319,20 +321,69 @@ glm_mat4_mulv(mat4 m, vec4 v, vec4 dest) {
} }
/*! /*!
* @brief multiply vector with mat4's mat3 part(rotation) * @brief convert mat4's rotation part to quaternion
* *
* @param[in] m mat4(affine transform) * @param[in] m affine matrix
* @param[in] v vec3 * @param[out] dest destination quaternion
* @param[out] dest vec3
*/ */
CGLM_INLINE CGLM_INLINE
void void
glm_mat4_mulv3(mat4 m, vec3 v, vec3 dest) { glm_mat4_quat(mat4 m, versor dest) {
vec3 res; float trace, r, rinv;
res[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2];
res[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2]; /* it seems using like m12 instead of m[1][2] causes extra instructions */
res[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2];
glm_vec_copy(res, dest); trace = m[0][0] + m[1][1] + m[2][2];
if (trace >= 0.0f) {
r = sqrtf(1.0f + trace);
rinv = 0.5f / r;
dest[0] = rinv * (m[1][2] - m[2][1]);
dest[1] = rinv * (m[2][0] - m[0][2]);
dest[2] = rinv * (m[0][1] - m[1][0]);
dest[3] = r * 0.5f;
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
rinv = 0.5f / r;
dest[0] = r * 0.5f;
dest[1] = rinv * (m[0][1] + m[1][0]);
dest[2] = rinv * (m[0][2] + m[2][0]);
dest[3] = rinv * (m[1][2] - m[2][1]);
} else if (m[1][1] >= m[2][2]) {
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][1] + m[1][0]);
dest[1] = r * 0.5f;
dest[2] = rinv * (m[1][2] + m[2][1]);
dest[3] = rinv * (m[2][0] - m[0][2]);
} else {
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][2] + m[2][0]);
dest[1] = rinv * (m[1][2] + m[2][1]);
dest[2] = r * 0.5f;
dest[3] = rinv * (m[0][1] - m[1][0]);
}
}
/*!
* @brief multiply vector with mat4
*
* @param[in] m mat4(affine transform)
* @param[in] v vec3
* @param[in] last 4th item to make it vec4
* @param[out] dest result vector (vec3)
*/
CGLM_INLINE
void
glm_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest) {
vec4 res;
glm_vec4(v, last, res);
glm_mat4_mulv(m, res, res);
glm_vec3(res, dest);
} }
/*! /*!
@@ -535,7 +586,7 @@ glm_mat4_inv_fast(mat4 mat, mat4 dest) {
CGLM_INLINE CGLM_INLINE
void void
glm_mat4_swap_col(mat4 mat, int col1, int col2) { glm_mat4_swap_col(mat4 mat, int col1, int col2) {
vec4 tmp; CGLM_ALIGN(16) vec4 tmp;
glm_vec4_copy(mat[col1], tmp); glm_vec4_copy(mat[col1], tmp);
glm_vec4_copy(mat[col2], mat[col1]); glm_vec4_copy(mat[col2], mat[col1]);
glm_vec4_copy(tmp, mat[col2]); glm_vec4_copy(tmp, mat[col2]);
@@ -551,7 +602,7 @@ glm_mat4_swap_col(mat4 mat, int col1, int col2) {
CGLM_INLINE CGLM_INLINE
void void
glm_mat4_swap_row(mat4 mat, int row1, int row2) { glm_mat4_swap_row(mat4 mat, int row1, int row2) {
vec4 tmp; CGLM_ALIGN(16) vec4 tmp;
tmp[0] = mat[0][row1]; tmp[0] = mat[0][row1];
tmp[1] = mat[1][row1]; tmp[1] = mat[1][row1];
tmp[2] = mat[2][row1]; tmp[2] = mat[2][row1];
@@ -568,5 +619,4 @@ glm_mat4_swap_row(mat4 mat, int row1, int row2) {
mat[3][row2] = tmp[3]; mat[3][row2] = tmp[3];
} }
#else
#endif /* cglm_mat_h */ #endif /* cglm_mat_h */

36
include/cglm/plane.h Normal file
View File

@@ -0,0 +1,36 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_plane_h
#define cglm_plane_h
#include "common.h"
#include "vec4.h"
/*
Plane equation: Ax + By + Cz + D = 0;
It stored in vec4 as [A, B, C, D]. (A, B, C) is normal and D is distance
*/
/*
Functions:
CGLM_INLINE void glm_plane_normalize(vec4 plane);
*/
/*!
* @brief normalizes a plane
*
* @param[in, out] plane pnale to normalize
*/
CGLM_INLINE
void
glm_plane_normalize(vec4 plane) {
glm_vec4_scale(plane, 1.0f / glm_vec_norm(plane), plane);
}
#endif /* cglm_plane_h */

117
include/cglm/project.h Normal file
View File

@@ -0,0 +1,117 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_project_h
#define cglm_project_h
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* if you don't have ( and don't want to have ) an inverse matrix then use
* glm_unproject version. You may use existing inverse of matrix in somewhere
* else, this is why glm_unprojecti exists to save save inversion cost
*
* [1] space:
* 1- if m = invProj: View Space
* 2- if m = invViewProj: World Space
* 3- if m = invMVP: Object Space
*
* You probably want to map the coordinates into object space
* so use invMVP as m
*
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
* glm_mat4_inv(viewProj, invMVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] invMat matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
CGLM_INLINE
void
glm_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
vec4 v;
v[0] = 2.0f * (pos[0] - vp[0]) / vp[2] - 1.0f;
v[1] = 2.0f * (pos[1] - vp[1]) / vp[3] - 1.0f;
v[2] = 2.0f * pos[2] - 1.0f;
v[3] = 1.0f;
glm_mat4_mulv(invMat, v, v);
glm_vec4_scale(v, 1.0f / v[3], v);
glm_vec3(v, dest);
}
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* this is same as glm_unprojecti except this function get inverse matrix for
* you.
*
* [1] space:
* 1- if m = proj: View Space
* 2- if m = viewProj: World Space
* 3- if m = MVP: Object Space
*
* You probably want to map the coordinates into object space
* so use MVP as m
*
* Computing viewProj and MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] m matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
CGLM_INLINE
void
glm_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
mat4 inv;
glm_mat4_inv(m, inv);
glm_unprojecti(pos, inv, vp, dest);
}
/*!
* @brief map object coordinates to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos object coordinates
* @param[in] m MVP matrix
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest projected coordinates
*/
CGLM_INLINE
void
glm_project(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
CGLM_ALIGN(16) vec4 pos4, vone = GLM_VEC4_ONE_INIT;
glm_vec4(pos, 1.0f, pos4);
glm_mat4_mulv(m, pos4, pos4);
glm_vec4_scale(pos4, 1.0f / pos4[3], pos4); /* pos = pos / pos.w */
glm_vec4_add(pos4, vone, pos4);
glm_vec4_scale(pos4, 0.5f, pos4);
dest[0] = pos4[0] * vp[2] + vp[0];
dest[1] = pos4[1] * vp[3] + vp[1];
dest[2] = pos4[2];
}
#endif /* cglm_project_h */

View File

@@ -11,126 +11,424 @@
GLM_QUAT_IDENTITY GLM_QUAT_IDENTITY
Functions: Functions:
CGLM_INLINE void glm_quat_identity(versor q); CGLM_INLINE void glm_quat_identity(versor q);
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z); CGLM_INLINE void glm_quat_init(versor q, float x, float y, float z, float w);
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 v); CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 axis);
CGLM_INLINE void glm_quat_copy(versor q, versor dest);
CGLM_INLINE float glm_quat_norm(versor q); CGLM_INLINE float glm_quat_norm(versor q);
CGLM_INLINE void glm_quat_normalize(versor q); CGLM_INLINE void glm_quat_normalize(versor q);
CGLM_INLINE float glm_quat_dot(versor q, versor r); CGLM_INLINE void glm_quat_normalize_to(versor q, versor dest);
CGLM_INLINE void glm_quat_mulv(versor q1, versor q2, versor dest); CGLM_INLINE float glm_quat_dot(versor q1, versor q2);
CGLM_INLINE void glm_quat_mat4(versor q, mat4 dest); CGLM_INLINE void glm_quat_conjugate(versor q, versor dest);
CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest); CGLM_INLINE void glm_quat_inv(versor q, versor dest);
CGLM_INLINE void glm_quat_add(versor p, versor q, versor dest);
CGLM_INLINE void glm_quat_sub(versor p, versor q, versor dest);
CGLM_INLINE float glm_quat_real(versor q);
CGLM_INLINE void glm_quat_imag(versor q, vec3 dest);
CGLM_INLINE void glm_quat_imagn(versor q, vec3 dest);
CGLM_INLINE float glm_quat_imaglen(versor q);
CGLM_INLINE float glm_quat_angle(versor q);
CGLM_INLINE void glm_quat_axis(versor q, versor dest);
CGLM_INLINE void glm_quat_mul(versor p, versor q, versor dest);
CGLM_INLINE void glm_quat_mat4(versor q, mat4 dest);
CGLM_INLINE void glm_quat_mat4t(versor q, mat4 dest);
CGLM_INLINE void glm_quat_mat3(versor q, mat3 dest);
CGLM_INLINE void glm_quat_mat3t(versor q, mat3 dest);
CGLM_INLINE void glm_quat_lerp(versor from, versor to, float t, versor dest);
CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest);
CGLM_INLINE void glm_quat_look(vec3 eye, versor ori, mat4 dest);
CGLM_INLINE void glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
CGLM_INLINE void glm_quat_forp(vec3 from,
vec3 to,
vec3 fwd,
vec3 up,
versor dest);
CGLM_INLINE void glm_quat_rotatev(versor q, vec3 v, vec3 dest);
CGLM_INLINE void glm_quat_rotate(mat4 m, versor q, mat4 dest);
*/ */
#ifndef cglm_quat_h #ifndef cglm_quat_h
#define cglm_quat_h #define cglm_quat_h
#include "common.h" #include "common.h"
#include "vec3.h"
#include "vec4.h" #include "vec4.h"
#include "mat4.h"
#include "mat3.h"
#include "affine-mat.h"
#ifdef CGLM_SSE_FP #ifdef CGLM_SSE_FP
# include "simd/sse2/quat.h" # include "simd/sse2/quat.h"
#endif #endif
#define GLM_QUAT_IDENTITY_INIT {1.0f, 0.0f, 0.0f, 0.0f} CGLM_INLINE
#define GLM_QUAT_IDENTITY (versor){1.0f, 0.0f, 0.0f, 0.0f} void
glm_mat4_identity(mat4 mat);
CGLM_INLINE
void
glm_mat4_mulv(mat4 m, vec4 v, vec4 dest);
CGLM_INLINE
void
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest);
CGLM_INLINE
void
glm_translate(mat4 m, vec3 v);
/*
* IMPORTANT:
* ----------------------------------------------------------------------------
* cglm stores quat as [x, y, z, w] since v0.3.6
*
* it was [w, x, y, z] before v0.3.6 it has been changed to [x, y, z, w]
* with v0.3.6 version.
* ----------------------------------------------------------------------------
*/
#define GLM_QUAT_IDENTITY_INIT {0.0f, 0.0f, 0.0f, 1.0f}
#define GLM_QUAT_IDENTITY ((versor)GLM_QUAT_IDENTITY_INIT)
/*!
* @brief makes given quat to identity
*
* @param[in, out] q quaternion
*/
CGLM_INLINE CGLM_INLINE
void void
glm_quat_identity(versor q) { glm_quat_identity(versor q) {
versor v = GLM_QUAT_IDENTITY_INIT; CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
glm_vec4_copy(v, q); glm_vec4_copy(v, q);
} }
/*!
* @brief inits quaterion with raw values
*
* @param[out] q quaternion
* @param[in] x x
* @param[in] y y
* @param[in] z z
* @param[in] w w (real part)
*/
CGLM_INLINE CGLM_INLINE
void void
glm_quat(versor q, glm_quat_init(versor q, float x, float y, float z, float w) {
float angle, q[0] = x;
float x, q[1] = y;
float y, q[2] = z;
float z) { q[3] = w;
}
/*!
* @brief creates NEW quaternion with axis vector
*
* @param[out] q quaternion
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_quatv(versor q, float angle, vec3 axis) {
CGLM_ALIGN(8) vec3 k;
float a, c, s; float a, c, s;
a = angle * 0.5f; a = angle * 0.5f;
c = cosf(a); c = cosf(a);
s = sinf(a); s = sinf(a);
q[0] = c; glm_normalize_to(axis, k);
q[1] = s * x;
q[2] = s * y; q[0] = s * k[0];
q[3] = s * z; q[1] = s * k[1];
q[2] = s * k[2];
q[3] = c;
} }
/*!
* @brief creates NEW quaternion with individual axis components
*
* @param[out] q quaternion
* @param[in] angle angle (radians)
* @param[in] x axis.x
* @param[in] y axis.y
* @param[in] z axis.z
*/
CGLM_INLINE CGLM_INLINE
void void
glm_quatv(versor q, glm_quat(versor q, float angle, float x, float y, float z) {
float angle, CGLM_ALIGN(8) vec3 axis = {x, y, z};
vec3 v) { glm_quatv(q, angle, axis);
float a, c, s;
a = angle * 0.5f;
c = cosf(a);
s = sinf(a);
q[0] = c;
q[1] = s * v[0];
q[2] = s * v[1];
q[3] = s * v[2];
} }
/*!
* @brief copy quaternion to another one
*
* @param[in] q quaternion
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_quat_copy(versor q, versor dest) {
glm_vec4_copy(q, dest);
}
/*!
* @brief returns norm (magnitude) of quaternion
*
* @param[out] q quaternion
*/
CGLM_INLINE CGLM_INLINE
float float
glm_quat_norm(versor q) { glm_quat_norm(versor q) {
return glm_vec4_norm(q); return glm_vec4_norm(q);
} }
/*!
* @brief normalize quaternion and store result in dest
*
* @param[in] q quaternion to normalze
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_quat_normalize_to(versor q, versor dest) {
#if defined( __SSE2__ ) || defined( __SSE2__ )
__m128 xdot, x0;
float dot;
x0 = glmm_load(q);
xdot = glmm_dot(x0, x0);
dot = _mm_cvtss_f32(xdot);
if (dot <= 0.0f) {
glm_quat_identity(dest);
return;
}
glmm_store(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
#else
float dot;
dot = glm_vec4_norm2(q);
if (dot <= 0.0f) {
glm_quat_identity(q);
return;
}
glm_vec4_scale(q, 1.0f / sqrtf(dot), dest);
#endif
}
/*!
* @brief normalize quaternion
*
* @param[in, out] q quaternion
*/
CGLM_INLINE CGLM_INLINE
void void
glm_quat_normalize(versor q) { glm_quat_normalize(versor q) {
float sum; glm_quat_normalize_to(q, q);
sum = q[0] * q[0] + q[1] * q[1]
+ q[2] * q[2] + q[3] * q[3];
if (fabs(1.0f - sum) < 0.0001f)
return;
glm_vec4_scale(q, 1.0f / sqrtf(sum), q);
} }
/*!
* @brief dot product of two quaternion
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
*/
CGLM_INLINE CGLM_INLINE
float float
glm_quat_dot(versor q, versor r) { glm_quat_dot(versor p, versor q) {
return glm_vec4_dot(q, r); return glm_vec4_dot(p, q);
} }
/*!
* @brief conjugate of quaternion
*
* @param[in] q quaternion
* @param[out] dest conjugate
*/
CGLM_INLINE CGLM_INLINE
void void
glm_quat_mulv(versor q1, versor q2, versor dest) { glm_quat_conjugate(versor q, versor dest) {
dest[0] = q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2] - q2[3] * q1[3]; glm_vec4_flipsign_to(q, dest);
dest[1] = q2[0] * q1[1] + q2[1] * q1[0] - q2[2] * q1[3] + q2[3] * q1[2]; dest[3] = -dest[3];
dest[2] = q2[0] * q1[2] + q2[1] * q1[3] + q2[2] * q1[0] - q2[3] * q1[1];
dest[3] = q2[0] * q1[3] - q2[1] * q1[2] + q2[2] * q1[1] + q2[3] * q1[0];
glm_quat_normalize(dest);
} }
/*!
* @brief inverse of non-zero quaternion
*
* @param[in] q quaternion
* @param[out] dest inverse quaternion
*/
CGLM_INLINE
void
glm_quat_inv(versor q, versor dest) {
CGLM_ALIGN(8) versor conj;
glm_quat_conjugate(q, conj);
glm_vec4_scale(conj, 1.0f / glm_vec4_norm2(q), dest);
}
/*!
* @brief add (componentwise) two quaternions and store result in dest
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_add(versor p, versor q, versor dest) {
glm_vec4_add(p, q, dest);
}
/*!
* @brief subtract (componentwise) two quaternions and store result in dest
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_sub(versor p, versor q, versor dest) {
glm_vec4_sub(p, q, dest);
}
/*!
* @brief returns real part of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
float
glm_quat_real(versor q) {
return q[3];
}
/*!
* @brief returns imaginary part of quaternion
*
* @param[in] q quaternion
* @param[out] dest imag
*/
CGLM_INLINE
void
glm_quat_imag(versor q, vec3 dest) {
dest[0] = q[0];
dest[1] = q[1];
dest[2] = q[2];
}
/*!
* @brief returns normalized imaginary part of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
void
glm_quat_imagn(versor q, vec3 dest) {
glm_normalize_to(q, dest);
}
/*!
* @brief returns length of imaginary part of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
float
glm_quat_imaglen(versor q) {
return glm_vec_norm(q);
}
/*!
* @brief returns angle of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
float
glm_quat_angle(versor q) {
/*
sin(theta / 2) = length(x*x + y*y + z*z)
cos(theta / 2) = w
theta = 2 * atan(sin(theta / 2) / cos(theta / 2))
*/
return 2.0f * atan2f(glm_quat_imaglen(q), glm_quat_real(q));
}
/*!
* @brief axis of quaternion
*
* @param[in] q quaternion
* @param[out] dest axis of quaternion
*/
CGLM_INLINE
void
glm_quat_axis(versor q, versor dest) {
glm_quat_imagn(q, dest);
}
/*!
* @brief multiplies two quaternion and stores result in dest
* this is also called Hamilton Product
*
* According to WikiPedia:
* The product of two rotation quaternions [clarification needed] will be
* equivalent to the rotation q followed by the rotation p
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_mul(versor p, versor q, versor dest) {
/*
+ (a1 b2 + b1 a2 + c1 d2 d1 c2)i
+ (a1 c2 b1 d2 + c1 a2 + d1 b2)j
+ (a1 d2 + b1 c2 c1 b2 + d1 a2)k
a1 a2 b1 b2 c1 c2 d1 d2
*/
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_quat_mul_sse2(p, q, dest);
#else
dest[0] = p[3] * q[0] + p[0] * q[3] + p[1] * q[2] - p[2] * q[1];
dest[1] = p[3] * q[1] - p[0] * q[2] + p[1] * q[3] + p[2] * q[0];
dest[2] = p[3] * q[2] + p[0] * q[1] - p[1] * q[0] + p[2] * q[3];
dest[3] = p[3] * q[3] - p[0] * q[0] - p[1] * q[1] - p[2] * q[2];
#endif
}
/*!
* @brief convert quaternion to mat4
*
* @param[in] q quaternion
* @param[out] dest result matrix
*/
CGLM_INLINE CGLM_INLINE
void void
glm_quat_mat4(versor q, mat4 dest) { glm_quat_mat4(versor q, mat4 dest) {
float w, x, y, z; float w, x, y, z,
float xx, yy, zz; xx, yy, zz,
float xy, yz, xz; xy, yz, xz,
float wx, wy, wz; wx, wy, wz, norm, s;
w = q[0]; norm = glm_quat_norm(q);
x = q[1]; s = norm > 0.0f ? 2.0f / norm : 0.0f;
y = q[2];
z = q[3];
xx = 2.0f * x * x; xy = 2.0f * x * y; wx = 2.0f * w * x; x = q[0];
yy = 2.0f * y * y; yz = 2.0f * y * z; wy = 2.0f * w * y; y = q[1];
zz = 2.0f * z * z; xz = 2.0f * x * z; wz = 2.0f * w * z; z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz; dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz; dest[1][1] = 1.0f - xx - zz;
@@ -144,8 +442,8 @@ glm_quat_mat4(versor q, mat4 dest) {
dest[2][1] = yz - wx; dest[2][1] = yz - wx;
dest[0][2] = xz - wy; dest[0][2] = xz - wy;
dest[1][3] = 0.0f;
dest[0][3] = 0.0f; dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f; dest[2][3] = 0.0f;
dest[3][0] = 0.0f; dest[3][0] = 0.0f;
dest[3][1] = 0.0f; dest[3][1] = 0.0f;
@@ -153,60 +451,346 @@ glm_quat_mat4(versor q, mat4 dest) {
dest[3][3] = 1.0f; dest[3][3] = 1.0f;
} }
/*!
* @brief convert quaternion to mat4 (transposed)
*
* @param[in] q quaternion
* @param[out] dest result matrix as transposed
*/
CGLM_INLINE CGLM_INLINE
void void
glm_quat_slerp(versor q, glm_quat_mat4t(versor q, mat4 dest) {
versor r, float w, x, y, z,
float t, xx, yy, zz,
versor dest) { xy, yz, xz,
/* https://en.wikipedia.org/wiki/Slerp */ wx, wy, wz, norm, s;
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_quat_slerp_sse2(q, r, t, dest);
#else
float cosTheta, sinTheta, angle, a, b, c;
cosTheta = glm_quat_dot(q, r); norm = glm_quat_norm(q);
if (cosTheta < 0.0f) { s = norm > 0.0f ? 2.0f / norm : 0.0f;
q[0] *= -1.0f;
q[1] *= -1.0f;
q[2] *= -1.0f;
q[3] *= -1.0f;
cosTheta = -cosTheta; x = q[0];
} y = q[1];
z = q[2];
w = q[3];
if (fabs(cosTheta) >= 1.0f) { xx = s * x * x; xy = s * x * y; wx = s * w * x;
dest[0] = q[0]; yy = s * y * y; yz = s * y * z; wy = s * w * y;
dest[1] = q[1]; zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[2] = q[2];
dest[3] = q[3]; dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[1][0] = xy + wz;
dest[2][1] = yz + wx;
dest[0][2] = xz + wy;
dest[0][1] = xy - wz;
dest[1][2] = yz - wx;
dest[2][0] = xz - wy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief convert quaternion to mat3
*
* @param[in] q quaternion
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_quat_mat3(versor q, mat3 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[0][1] = xy + wz;
dest[1][2] = yz + wx;
dest[2][0] = xz + wy;
dest[1][0] = xy - wz;
dest[2][1] = yz - wx;
dest[0][2] = xz - wy;
}
/*!
* @brief convert quaternion to mat3 (transposed)
*
* @param[in] q quaternion
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_quat_mat3t(versor q, mat3 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[1][0] = xy + wz;
dest[2][1] = yz + wx;
dest[0][2] = xz + wy;
dest[0][1] = xy - wz;
dest[1][2] = yz - wx;
dest[2][0] = xz - wy;
}
/*!
* @brief interpolates between two quaternions
* using linear interpolation (LERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_lerp(versor from, versor to, float t, versor dest) {
glm_vec4_lerp(from, to, t, dest);
}
/*!
* @brief interpolates between two quaternions
* using spherical linear interpolation (SLERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t amout
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_slerp(versor from, versor to, float t, versor dest) {
CGLM_ALIGN(16) vec4 q1, q2;
float cosTheta, sinTheta, angle;
cosTheta = glm_quat_dot(from, to);
glm_quat_copy(from, q1);
if (fabsf(cosTheta) >= 1.0f) {
glm_quat_copy(q1, dest);
return; return;
} }
sinTheta = sqrt(1.0f - cosTheta * cosTheta); if (cosTheta < 0.0f) {
glm_vec4_flipsign(q1);
cosTheta = -cosTheta;
}
c = 1.0f - t; sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
/* LERP */ /* LERP to avoid zero division */
/* TODO: FLT_EPSILON vs 0.001? */ if (fabsf(sinTheta) < 0.001f) {
if (sinTheta < 0.001f) { glm_quat_lerp(from, to, t, dest);
dest[0] = c * q[0] + t * r[0];
dest[1] = c * q[1] + t * r[1];
dest[2] = c * q[2] + t * r[2];
dest[3] = c * q[3] + t * r[3];
return; return;
} }
/* SLERP */ /* SLERP */
angle = acosf(cosTheta); angle = acosf(cosTheta);
a = sinf(c * angle); glm_vec4_scale(q1, sinf((1.0f - t) * angle), q1);
b = sinf(t * angle); glm_vec4_scale(to, sinf(t * angle), q2);
dest[0] = (q[0] * a + r[0] * b) / sinTheta; glm_vec4_add(q1, q2, q1);
dest[1] = (q[1] * a + r[1] * b) / sinTheta; glm_vec4_scale(q1, 1.0f / sinTheta, dest);
dest[2] = (q[2] * a + r[2] * b) / sinTheta; }
dest[3] = (q[3] * a + r[3] * b) / sinTheta;
#endif /*!
* @brief creates view matrix using quaternion as camera orientation
*
* @param[in] eye eye
* @param[in] ori orientation in world space as quaternion
* @param[out] dest view matrix
*/
CGLM_INLINE
void
glm_quat_look(vec3 eye, versor ori, mat4 dest) {
CGLM_ALIGN(16) vec4 t;
/* orientation */
glm_quat_mat4t(ori, dest);
/* translate */
glm_vec4(eye, 1.0f, t);
glm_mat4_mulv(dest, t, t);
glm_vec_flipsign_to(t, dest[3]);
}
/*!
* @brief creates look rotation quaternion
*
* @param[in] dir direction to look
* @param[in] fwd forward vector
* @param[in] up up vector
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest) {
CGLM_ALIGN(8) vec3 axis;
float dot, angle;
dot = glm_vec_dot(dir, fwd);
if (fabsf(dot + 1.0f) < 0.000001f) {
glm_quat_init(dest, up[0], up[1], up[2], CGLM_PI);
return;
}
if (fabsf(dot - 1.0f) < 0.000001f) {
glm_quat_identity(dest);
return;
}
angle = acosf(dot);
glm_cross(fwd, dir, axis);
glm_normalize(axis);
glm_quatv(dest, angle, axis);
}
/*!
* @brief creates look rotation quaternion using source and
* destination positions p suffix stands for position
*
* @param[in] from source point
* @param[in] to destination point
* @param[in] fwd forward vector
* @param[in] up up vector
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest) {
CGLM_ALIGN(8) vec3 dir;
glm_vec_sub(to, from, dir);
glm_quat_for(dir, fwd, up, dest);
}
/*!
* @brief rotate vector using using quaternion
*
* @param[in] q quaternion
* @param[in] v vector to rotate
* @param[out] dest rotated vector
*/
CGLM_INLINE
void
glm_quat_rotatev(versor q, vec3 v, vec3 dest) {
CGLM_ALIGN(16) versor p;
CGLM_ALIGN(8) vec3 u, v1, v2;
float s;
glm_quat_normalize_to(q, p);
glm_quat_imag(p, u);
s = glm_quat_real(p);
glm_vec_scale(u, 2.0f * glm_vec_dot(u, v), v1);
glm_vec_scale(v, s * s - glm_vec_dot(u, u), v2);
glm_vec_add(v1, v2, v1);
glm_vec_cross(u, v, v2);
glm_vec_scale(v2, 2.0f * s, v2);
glm_vec_add(v1, v2, dest);
}
/*!
* @brief rotate existing transform matrix using quaternion
*
* @param[in] m existing transform matrix
* @param[in] q quaternion
* @param[out] dest rotated matrix/transform
*/
CGLM_INLINE
void
glm_quat_rotate(mat4 m, versor q, mat4 dest) {
CGLM_ALIGN(16) mat4 rot;
glm_quat_mat4(q, rot);
glm_mul_rot(m, rot, dest);
}
/*!
* @brief rotate existing transform matrix using quaternion at pivot point
*
* @param[in, out] m existing transform matrix
* @param[in] q quaternion
* @param[out] pivot pivot
*/
CGLM_INLINE
void
glm_quat_rotate_at(mat4 m, versor q, vec3 pivot) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec_inv_to(pivot, pivotInv);
glm_translate(m, pivot);
glm_quat_rotate(m, q, m);
glm_translate(m, pivotInv);
}
/*!
* @brief rotate NEW transform matrix using quaternion at pivot point
*
* this creates rotation matrix, it assumes you don't have a matrix
*
* this should work faster than glm_quat_rotate_at because it reduces
* one glm_translate.
*
* @param[out] m existing transform matrix
* @param[in] q quaternion
* @param[in] pivot pivot
*/
CGLM_INLINE
void
glm_quat_rotate_atm(mat4 m, versor q, vec3 pivot) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec_inv_to(pivot, pivotInv);
glm_translate_make(m, pivot);
glm_quat_rotate(m, q, m);
glm_translate(m, pivotInv);
} }
#endif /* cglm_quat_h */ #endif /* cglm_quat_h */

View File

@@ -21,11 +21,11 @@ glm_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9; __m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
y0 = _mm256_load_ps(m2[0]); /* h g f e d c b a */ y0 = glmm_load256(m2[0]); /* h g f e d c b a */
y1 = _mm256_load_ps(m2[2]); /* p o n m l k j i */ y1 = glmm_load256(m2[2]); /* p o n m l k j i */
y2 = _mm256_load_ps(m1[0]); /* h g f e d c b a */ y2 = glmm_load256(m1[0]); /* h g f e d c b a */
y3 = _mm256_load_ps(m1[2]); /* p o n m l k j i */ y3 = glmm_load256(m1[2]); /* p o n m l k j i */
y4 = _mm256_permute2f128_ps(y2, y2, 0b00000011); /* d c b a h g f e */ y4 = _mm256_permute2f128_ps(y2, y2, 0b00000011); /* d c b a h g f e */
y5 = _mm256_permute2f128_ps(y3, y3, 0b00000000); /* l k j i l k j i */ y5 = _mm256_permute2f128_ps(y3, y3, 0b00000000); /* l k j i l k j i */
@@ -37,10 +37,10 @@ glm_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
y6 = _mm256_permutevar_ps(y0, _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0)); y6 = _mm256_permutevar_ps(y0, _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0));
y8 = _mm256_permutevar_ps(y0, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1)); y8 = _mm256_permutevar_ps(y0, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
_mm256_store_ps(dest[0], glmm_store256(dest[0],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6), _mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y4, y8)), _mm256_mul_ps(y4, y8)),
_mm256_mul_ps(y5, y7))); _mm256_mul_ps(y5, y7)));
/* n n n n i i i i */ /* n n n n i i i i */
@@ -52,11 +52,11 @@ glm_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
y8 = _mm256_permutevar_ps(y1, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1)); y8 = _mm256_permutevar_ps(y1, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
y9 = _mm256_permutevar_ps(y1, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3)); y9 = _mm256_permutevar_ps(y1, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
_mm256_store_ps(dest[2], glmm_store256(dest[2],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6), _mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)), _mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8), _mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9)))); _mm256_mul_ps(y5, y9))));
} }
#endif #endif

View File

@@ -21,11 +21,11 @@ glm_mat4_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9; __m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
y0 = _mm256_load_ps(m2[0]); /* h g f e d c b a */ y0 = glmm_load256(m2[0]); /* h g f e d c b a */
y1 = _mm256_load_ps(m2[2]); /* p o n m l k j i */ y1 = glmm_load256(m2[2]); /* p o n m l k j i */
y2 = _mm256_load_ps(m1[0]); /* h g f e d c b a */ y2 = glmm_load256(m1[0]); /* h g f e d c b a */
y3 = _mm256_load_ps(m1[2]); /* p o n m l k j i */ y3 = glmm_load256(m1[2]); /* p o n m l k j i */
y4 = _mm256_permute2f128_ps(y2, y2, 0b00000011); /* d c b a h g f e */ y4 = _mm256_permute2f128_ps(y2, y2, 0b00000011); /* d c b a h g f e */
y5 = _mm256_permute2f128_ps(y3, y3, 0b00000011); /* l k j i p o n m */ y5 = _mm256_permute2f128_ps(y3, y3, 0b00000011); /* l k j i p o n m */
@@ -39,11 +39,11 @@ glm_mat4_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
y8 = _mm256_permutevar_ps(y0, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1)); y8 = _mm256_permutevar_ps(y0, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
y9 = _mm256_permutevar_ps(y0, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3)); y9 = _mm256_permutevar_ps(y0, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
_mm256_store_ps(dest[0], glmm_store256(dest[0],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6), _mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)), _mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8), _mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9)))); _mm256_mul_ps(y5, y9))));
/* n n n n i i i i */ /* n n n n i i i i */
/* p p p p k k k k */ /* p p p p k k k k */
@@ -54,11 +54,11 @@ glm_mat4_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
y8 = _mm256_permutevar_ps(y1, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1)); y8 = _mm256_permutevar_ps(y1, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
y9 = _mm256_permutevar_ps(y1, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3)); y9 = _mm256_permutevar_ps(y1, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
_mm256_store_ps(dest[2], glmm_store256(dest[2],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6), _mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)), _mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8), _mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9)))); _mm256_mul_ps(y5, y9))));
} }
#endif #endif

View File

@@ -8,11 +8,19 @@
#ifndef cglm_intrin_h #ifndef cglm_intrin_h
#define cglm_intrin_h #define cglm_intrin_h
#if defined( _WIN32 ) #if defined( _MSC_VER )
# if (defined(_M_AMD64) || defined(_M_X64)) || _M_IX86_FP == 2 # if (defined(_M_AMD64) || defined(_M_X64)) || _M_IX86_FP == 2
# define __SSE2__ # ifndef __SSE2__
# define __SSE2__
# endif
# elif _M_IX86_FP == 1 # elif _M_IX86_FP == 1
# define __SSE__ # ifndef __SSE__
# define __SSE__
# endif
# endif
/* do not use alignment for older visual studio versions */
# if _MSC_VER < 1913 /* Visual Studio 2017 version 15.6 */
# define CGLM_ALL_UNALIGNED
# endif # endif
#endif #endif
@@ -20,16 +28,63 @@
# include <xmmintrin.h> # include <xmmintrin.h>
# include <emmintrin.h> # include <emmintrin.h>
/* float */ /* OPTIONAL: You may save some instructions but latency (not sure) */
# define _mm_shuffle1_ps(a, z, y, x, w) \ #ifdef CGLM_USE_INT_DOMAIN
_mm_shuffle_ps(a, a, _MM_SHUFFLE(z, y, x, w)) # define glmm_shuff1(xmm, z, y, x, w) \
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(xmm), \
_MM_SHUFFLE(z, y, x, w)))
#else
# define glmm_shuff1(xmm, z, y, x, w) \
_mm_shuffle_ps(xmm, xmm, _MM_SHUFFLE(z, y, x, w))
#endif
# define _mm_shuffle1_ps1(a, x) \ #define glmm_shuff1x(xmm, x) glmm_shuff1(xmm, x, x, x, x)
_mm_shuffle_ps(a, a, _MM_SHUFFLE(x, x, x, x)) #define glmm_shuff2(a, b, z0, y0, x0, w0, z1, y1, x1, w1) \
glmm_shuff1(_mm_shuffle_ps(a, b, _MM_SHUFFLE(z0, y0, x0, w0)), \
z1, y1, x1, w1)
static inline
__m128
glmm_dot(__m128 a, __m128 b) {
__m128 x0;
x0 = _mm_mul_ps(a, b);
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 3, 2));
return _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 0, 1));
}
static inline
__m128
glmm_norm(__m128 a) {
return _mm_sqrt_ps(glmm_dot(a, a));
}
static inline
__m128
glmm_load3(float v[3]) {
__m128i xy;
__m128 z;
xy = _mm_loadl_epi64((const __m128i *)v);
z = _mm_load_ss(&v[2]);
return _mm_movelh_ps(_mm_castsi128_ps(xy), z);
}
static inline
void
glmm_store3(__m128 vx, float v[3]) {
_mm_storel_pi((__m64 *)&v[0], vx);
_mm_store_ss(&v[2], glmm_shuff1(vx, 2, 2, 2, 2));
}
#ifdef CGLM_ALL_UNALIGNED
# define glmm_load(p) _mm_loadu_ps(p)
# define glmm_store(p, a) _mm_storeu_ps(p, a)
#else
# define glmm_load(p) _mm_load_ps(p)
# define glmm_store(p, a) _mm_store_ps(p, a)
#endif
# define _mm_shuffle2_ps(a, b, z0, y0, x0, w0, z1, y1, x1, w1) \
_mm_shuffle1_ps(_mm_shuffle_ps(a, b, _MM_SHUFFLE(z0, y0, x0, w0)), \
z1, y1, x1, w1)
#endif #endif
/* x86, x64 */ /* x86, x64 */
@@ -39,6 +94,15 @@
#ifdef __AVX__ #ifdef __AVX__
# define CGLM_AVX_FP 1 # define CGLM_AVX_FP 1
#ifdef CGLM_ALL_UNALIGNED
# define glmm_load256(p) _mm256_loadu_ps(p)
# define glmm_store256(p, a) _mm256_storeu_ps(p, a)
#else
# define glmm_load256(p) _mm256_load_ps(p)
# define glmm_store256(p, a) _mm256_store_ps(p, a)
#endif
#endif #endif
/* ARM Neon */ /* ARM Neon */

View File

@@ -18,35 +18,67 @@ glm_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */ /* D = R * L (Column-Major) */
__m128 l0, l1, l2, l3, r; __m128 l0, l1, l2, l3, r;
l0 = _mm_load_ps(m1[0]); l0 = glmm_load(m1[0]);
l1 = _mm_load_ps(m1[1]); l1 = glmm_load(m1[1]);
l2 = _mm_load_ps(m1[2]); l2 = glmm_load(m1[2]);
l3 = _mm_load_ps(m1[3]); l3 = glmm_load(m1[3]);
r = _mm_load_ps(m2[0]); r = glmm_load(m2[0]);
_mm_store_ps(dest[0], glmm_store(dest[0],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0), _mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)), _mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2))); _mm_mul_ps(glmm_shuff1x(r, 2), l2)));
r = _mm_load_ps(m2[1]); r = glmm_load(m2[1]);
_mm_store_ps(dest[1], glmm_store(dest[1],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0), _mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)), _mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2))); _mm_mul_ps(glmm_shuff1x(r, 2), l2)));
r = _mm_load_ps(m2[2]); r = glmm_load(m2[2]);
_mm_store_ps(dest[2], glmm_store(dest[2],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0), _mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)), _mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2))); _mm_mul_ps(glmm_shuff1x(r, 2), l2)));
r = _mm_load_ps(m2[3]); r = glmm_load(m2[3]);
_mm_store_ps(dest[3], glmm_store(dest[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0), _mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)), _mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2), _mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3)))); _mm_mul_ps(glmm_shuff1x(r, 3), l3))));
}
CGLM_INLINE
void
glm_mul_rot_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
__m128 l0, l1, l2, l3, r;
l0 = glmm_load(m1[0]);
l1 = glmm_load(m1[1]);
l2 = glmm_load(m1[2]);
l3 = glmm_load(m1[3]);
r = glmm_load(m2[0]);
glmm_store(dest[0],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
r = glmm_load(m2[1]);
glmm_store(dest[1],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
r = glmm_load(m2[2]);
glmm_store(dest[2],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
glmm_store(dest[3], l3);
} }
CGLM_INLINE CGLM_INLINE
@@ -54,25 +86,25 @@ void
glm_inv_tr_sse2(mat4 mat) { glm_inv_tr_sse2(mat4 mat) {
__m128 r0, r1, r2, r3, x0, x1; __m128 r0, r1, r2, r3, x0, x1;
r0 = _mm_load_ps(mat[0]); r0 = glmm_load(mat[0]);
r1 = _mm_load_ps(mat[1]); r1 = glmm_load(mat[1]);
r2 = _mm_load_ps(mat[2]); r2 = glmm_load(mat[2]);
r3 = _mm_load_ps(mat[3]); r3 = glmm_load(mat[3]);
x1 = _mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f); x1 = _mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f);
_MM_TRANSPOSE4_PS(r0, r1, r2, x1); _MM_TRANSPOSE4_PS(r0, r1, r2, x1);
x0 = _mm_add_ps(_mm_mul_ps(r0, _mm_shuffle1_ps(r3, 0, 0, 0, 0)), x0 = _mm_add_ps(_mm_mul_ps(r0, glmm_shuff1(r3, 0, 0, 0, 0)),
_mm_mul_ps(r1, _mm_shuffle1_ps(r3, 1, 1, 1, 1))); _mm_mul_ps(r1, glmm_shuff1(r3, 1, 1, 1, 1)));
x0 = _mm_add_ps(x0, _mm_mul_ps(r2, _mm_shuffle1_ps(r3, 2, 2, 2, 2))); x0 = _mm_add_ps(x0, _mm_mul_ps(r2, glmm_shuff1(r3, 2, 2, 2, 2)));
x0 = _mm_xor_ps(x0, _mm_set1_ps(-0.f)); x0 = _mm_xor_ps(x0, _mm_set1_ps(-0.f));
x0 = _mm_add_ps(x0, x1); x0 = _mm_add_ps(x0, x1);
_mm_store_ps(mat[0], r0); glmm_store(mat[0], r0);
_mm_store_ps(mat[1], r1); glmm_store(mat[1], r1);
_mm_store_ps(mat[2], r2); glmm_store(mat[2], r2);
_mm_store_ps(mat[3], x0); glmm_store(mat[3], x0);
} }
#endif #endif

View File

@@ -27,27 +27,25 @@ glm_mat3_mul_sse2(mat3 m1, mat3 m2, mat3 dest) {
r1 = _mm_loadu_ps(&m2[1][1]); r1 = _mm_loadu_ps(&m2[1][1]);
r2 = _mm_set1_ps(m2[2][2]); r2 = _mm_set1_ps(m2[2][2]);
x1 = _mm_shuffle2_ps(l0, l1, 1, 0, 3, 3, 0, 3, 2, 0); x1 = glmm_shuff2(l0, l1, 1, 0, 3, 3, 0, 3, 2, 0);
x2 = _mm_shuffle2_ps(l1, l2, 0, 0, 3, 2, 0, 2, 1, 0); x2 = glmm_shuff2(l1, l2, 0, 0, 3, 2, 0, 2, 1, 0);
x0 = _mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps(l0, 0, 2, 1, 0), x0 = _mm_add_ps(_mm_mul_ps(glmm_shuff1(l0, 0, 2, 1, 0),
_mm_shuffle1_ps(r0, 3, 0, 0, 0)), glmm_shuff1(r0, 3, 0, 0, 0)),
_mm_mul_ps(x1, _mm_mul_ps(x1, glmm_shuff2(r0, r1, 0, 0, 1, 1, 2, 0, 0, 0)));
_mm_shuffle2_ps(r0, r1, 0, 0, 1, 1, 2, 0, 0, 0)));
x0 = _mm_add_ps(x0, x0 = _mm_add_ps(x0,
_mm_mul_ps(x2, _mm_mul_ps(x2, glmm_shuff2(r0, r1, 1, 1, 2, 2, 2, 0, 0, 0)));
_mm_shuffle2_ps(r0, r1, 1, 1, 2, 2, 2, 0, 0, 0)));
_mm_storeu_ps(dest[0], x0); _mm_storeu_ps(dest[0], x0);
x0 = _mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps(l0, 1, 0, 2, 1), x0 = _mm_add_ps(_mm_mul_ps(glmm_shuff1(l0, 1, 0, 2, 1),
_mm_shuffle_ps(r0, r1, _MM_SHUFFLE(2, 2, 3, 3))), _mm_shuffle_ps(r0, r1, _MM_SHUFFLE(2, 2, 3, 3))),
_mm_mul_ps(_mm_shuffle1_ps(x1, 1, 0, 2, 1), _mm_mul_ps(glmm_shuff1(x1, 1, 0, 2, 1),
_mm_shuffle1_ps(r1, 3, 3, 0, 0))); glmm_shuff1(r1, 3, 3, 0, 0)));
x0 = _mm_add_ps(x0, x0 = _mm_add_ps(x0,
_mm_mul_ps(_mm_shuffle1_ps(x2, 1, 0, 2, 1), _mm_mul_ps(glmm_shuff1(x2, 1, 0, 2, 1),
_mm_shuffle_ps(r1, r2, _MM_SHUFFLE(0, 0, 1, 1)))); _mm_shuffle_ps(r1, r2, _MM_SHUFFLE(0, 0, 1, 1))));
_mm_storeu_ps(&dest[1][1], x0); _mm_storeu_ps(&dest[1][1], x0);

View File

@@ -20,10 +20,10 @@ glm_mat4_scale_sse2(mat4 m, float s){
__m128 x0; __m128 x0;
x0 = _mm_set1_ps(s); x0 = _mm_set1_ps(s);
_mm_store_ps(m[0], _mm_mul_ps(_mm_load_ps(m[0]), x0)); glmm_store(m[0], _mm_mul_ps(glmm_load(m[0]), x0));
_mm_store_ps(m[1], _mm_mul_ps(_mm_load_ps(m[1]), x0)); glmm_store(m[1], _mm_mul_ps(glmm_load(m[1]), x0));
_mm_store_ps(m[2], _mm_mul_ps(_mm_load_ps(m[2]), x0)); glmm_store(m[2], _mm_mul_ps(glmm_load(m[2]), x0));
_mm_store_ps(m[3], _mm_mul_ps(_mm_load_ps(m[3]), x0)); glmm_store(m[3], _mm_mul_ps(glmm_load(m[3]), x0));
} }
CGLM_INLINE CGLM_INLINE
@@ -31,17 +31,17 @@ void
glm_mat4_transp_sse2(mat4 m, mat4 dest){ glm_mat4_transp_sse2(mat4 m, mat4 dest){
__m128 r0, r1, r2, r3; __m128 r0, r1, r2, r3;
r0 = _mm_load_ps(m[0]); r0 = glmm_load(m[0]);
r1 = _mm_load_ps(m[1]); r1 = glmm_load(m[1]);
r2 = _mm_load_ps(m[2]); r2 = glmm_load(m[2]);
r3 = _mm_load_ps(m[3]); r3 = glmm_load(m[3]);
_MM_TRANSPOSE4_PS(r0, r1, r2, r3); _MM_TRANSPOSE4_PS(r0, r1, r2, r3);
_mm_store_ps(dest[0], r0); glmm_store(dest[0], r0);
_mm_store_ps(dest[1], r1); glmm_store(dest[1], r1);
_mm_store_ps(dest[2], r2); glmm_store(dest[2], r2);
_mm_store_ps(dest[3], r3); glmm_store(dest[3], r3);
} }
CGLM_INLINE CGLM_INLINE
@@ -51,36 +51,36 @@ glm_mat4_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
__m128 l0, l1, l2, l3, r; __m128 l0, l1, l2, l3, r;
l0 = _mm_load_ps(m1[0]); l0 = glmm_load(m1[0]);
l1 = _mm_load_ps(m1[1]); l1 = glmm_load(m1[1]);
l2 = _mm_load_ps(m1[2]); l2 = glmm_load(m1[2]);
l3 = _mm_load_ps(m1[3]); l3 = glmm_load(m1[3]);
r = _mm_load_ps(m2[0]); r = glmm_load(m2[0]);
_mm_store_ps(dest[0], glmm_store(dest[0],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0), _mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)), _mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2), _mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3)))); _mm_mul_ps(glmm_shuff1x(r, 3), l3))));
r = _mm_load_ps(m2[1]); r = glmm_load(m2[1]);
_mm_store_ps(dest[1], glmm_store(dest[1],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0), _mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)), _mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2), _mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3)))); _mm_mul_ps(glmm_shuff1x(r, 3), l3))));
r = _mm_load_ps(m2[2]); r = glmm_load(m2[2]);
_mm_store_ps(dest[2], glmm_store(dest[2],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0), _mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)), _mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2), _mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3)))); _mm_mul_ps(glmm_shuff1x(r, 3), l3))));
r = _mm_load_ps(m2[3]); r = glmm_load(m2[3]);
_mm_store_ps(dest[3], glmm_store(dest[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0), _mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)), _mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2), _mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3)))); _mm_mul_ps(glmm_shuff1x(r, 3), l3))));
} }
CGLM_INLINE CGLM_INLINE
@@ -88,18 +88,14 @@ void
glm_mat4_mulv_sse2(mat4 m, vec4 v, vec4 dest) { glm_mat4_mulv_sse2(mat4 m, vec4 v, vec4 dest) {
__m128 x0, x1, x2; __m128 x0, x1, x2;
x0 = _mm_load_ps(v); x0 = glmm_load(v);
x1 = _mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]), x1 = _mm_add_ps(_mm_mul_ps(glmm_load(m[0]), glmm_shuff1x(x0, 0)),
_mm_shuffle1_ps1(x0, 0)), _mm_mul_ps(glmm_load(m[1]), glmm_shuff1x(x0, 1)));
_mm_mul_ps(_mm_load_ps(m[1]),
_mm_shuffle1_ps1(x0, 1)));
x2 = _mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]), x2 = _mm_add_ps(_mm_mul_ps(glmm_load(m[2]), glmm_shuff1x(x0, 2)),
_mm_shuffle1_ps1(x0, 2)), _mm_mul_ps(glmm_load(m[3]), glmm_shuff1x(x0, 3)));
_mm_mul_ps(_mm_load_ps(m[3]),
_mm_shuffle1_ps1(x0, 3)));
_mm_store_ps(dest, _mm_add_ps(x1, x2)); glmm_store(dest, _mm_add_ps(x1, x2));
} }
CGLM_INLINE CGLM_INLINE
@@ -108,10 +104,10 @@ glm_mat4_det_sse2(mat4 mat) {
__m128 r0, r1, r2, r3, x0, x1, x2; __m128 r0, r1, r2, r3, x0, x1, x2;
/* 127 <- 0, [square] det(A) = det(At) */ /* 127 <- 0, [square] det(A) = det(At) */
r0 = _mm_load_ps(mat[0]); /* d c b a */ r0 = glmm_load(mat[0]); /* d c b a */
r1 = _mm_load_ps(mat[1]); /* h g f e */ r1 = glmm_load(mat[1]); /* h g f e */
r2 = _mm_load_ps(mat[2]); /* l k j i */ r2 = glmm_load(mat[2]); /* l k j i */
r3 = _mm_load_ps(mat[3]); /* p o n m */ r3 = glmm_load(mat[3]); /* p o n m */
/* /*
t[1] = j * p - n * l; t[1] = j * p - n * l;
@@ -119,20 +115,20 @@ glm_mat4_det_sse2(mat4 mat) {
t[3] = i * p - m * l; t[3] = i * p - m * l;
t[4] = i * o - m * k; t[4] = i * o - m * k;
*/ */
x0 = _mm_sub_ps(_mm_mul_ps(_mm_shuffle1_ps(r2, 0, 0, 1, 1), x0 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r2, 0, 0, 1, 1),
_mm_shuffle1_ps(r3, 2, 3, 2, 3)), glmm_shuff1(r3, 2, 3, 2, 3)),
_mm_mul_ps(_mm_shuffle1_ps(r3, 0, 0, 1, 1), _mm_mul_ps(glmm_shuff1(r3, 0, 0, 1, 1),
_mm_shuffle1_ps(r2, 2, 3, 2, 3))); glmm_shuff1(r2, 2, 3, 2, 3)));
/* /*
t[0] = k * p - o * l; t[0] = k * p - o * l;
t[0] = k * p - o * l; t[0] = k * p - o * l;
t[5] = i * n - m * j; t[5] = i * n - m * j;
t[5] = i * n - m * j; t[5] = i * n - m * j;
*/ */
x1 = _mm_sub_ps(_mm_mul_ps(_mm_shuffle1_ps(r2, 0, 0, 2, 2), x1 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r2, 0, 0, 2, 2),
_mm_shuffle1_ps(r3, 1, 1, 3, 3)), glmm_shuff1(r3, 1, 1, 3, 3)),
_mm_mul_ps(_mm_shuffle1_ps(r3, 0, 0, 2, 2), _mm_mul_ps(glmm_shuff1(r3, 0, 0, 2, 2),
_mm_shuffle1_ps(r2, 1, 1, 3, 3))); glmm_shuff1(r2, 1, 1, 3, 3)));
/* /*
a * (f * t[0] - g * t[1] + h * t[2]) a * (f * t[0] - g * t[1] + h * t[2])
@@ -140,19 +136,19 @@ glm_mat4_det_sse2(mat4 mat) {
+ c * (e * t[1] - f * t[3] + h * t[5]) + c * (e * t[1] - f * t[3] + h * t[5])
- d * (e * t[2] - f * t[4] + g * t[5]) - d * (e * t[2] - f * t[4] + g * t[5])
*/ */
x2 = _mm_sub_ps(_mm_mul_ps(_mm_shuffle1_ps(r1, 0, 0, 0, 1), x2 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r1, 0, 0, 0, 1),
_mm_shuffle_ps(x1, x0, _MM_SHUFFLE(1, 0, 0, 0))), _mm_shuffle_ps(x1, x0, _MM_SHUFFLE(1, 0, 0, 0))),
_mm_mul_ps(_mm_shuffle1_ps(r1, 1, 1, 2, 2), _mm_mul_ps(glmm_shuff1(r1, 1, 1, 2, 2),
_mm_shuffle1_ps(x0, 3, 2, 2, 0))); glmm_shuff1(x0, 3, 2, 2, 0)));
x2 = _mm_add_ps(x2, x2 = _mm_add_ps(x2,
_mm_mul_ps(_mm_shuffle1_ps(r1, 2, 3, 3, 3), _mm_mul_ps(glmm_shuff1(r1, 2, 3, 3, 3),
_mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 2, 3, 1)))); _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 2, 3, 1))));
x2 = _mm_xor_ps(x2, _mm_set_ps(-0.f, 0.f, -0.f, 0.f)); x2 = _mm_xor_ps(x2, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
x0 = _mm_mul_ps(r0, x2); x0 = _mm_mul_ps(r0, x2);
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3)); x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 3, 3, 1)); x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 3, 3, 1));
return _mm_cvtss_f32(x0); return _mm_cvtss_f32(x0);
} }
@@ -166,14 +162,14 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
x0, x1, x2, x3, x4, x5, x6, x7; x0, x1, x2, x3, x4, x5, x6, x7;
/* 127 <- 0 */ /* 127 <- 0 */
r0 = _mm_load_ps(mat[0]); /* d c b a */ r0 = glmm_load(mat[0]); /* d c b a */
r1 = _mm_load_ps(mat[1]); /* h g f e */ r1 = glmm_load(mat[1]); /* h g f e */
r2 = _mm_load_ps(mat[2]); /* l k j i */ r2 = glmm_load(mat[2]); /* l k j i */
r3 = _mm_load_ps(mat[3]); /* p o n m */ r3 = glmm_load(mat[3]); /* p o n m */
x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */ x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */
x1 = _mm_shuffle1_ps(x0, 1, 3, 3, 3); /* l p p p */ x1 = glmm_shuff1(x0, 1, 3, 3, 3); /* l p p p */
x2 = _mm_shuffle1_ps(x0, 0, 2, 2, 2); /* k o o o */ x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */ x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */ x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
@@ -184,7 +180,7 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0)); t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0));
x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */ x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */
x4 = _mm_shuffle1_ps(x4, 0, 2, 2, 2); /* j n n n */ x4 = glmm_shuff1(x4, 0, 2, 2, 2); /* j n n n */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */ x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
/* t1[1] = j * p - n * l; /* t1[1] = j * p - n * l;
@@ -200,7 +196,7 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3)); t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3));
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */ x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x7 = _mm_shuffle2_ps(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */ x7 = glmm_shuff2(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
/* t1[3] = i * p - m * l; /* t1[3] = i * p - m * l;
t1[3] = i * p - m * l; t1[3] = i * p - m * l;
@@ -220,10 +216,10 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
t3[5] = e * j - i * f; */ t3[5] = e * j - i * f; */
t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5)); t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5));
x0 = _mm_shuffle2_ps(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */ x0 = glmm_shuff2(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
x1 = _mm_shuffle2_ps(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */ x1 = glmm_shuff2(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
x2 = _mm_shuffle2_ps(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */ x2 = glmm_shuff2(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
x3 = _mm_shuffle2_ps(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */ x3 = glmm_shuff2(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
/* /*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2]; dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
@@ -271,14 +267,14 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0)); x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
x0 = _mm_mul_ps(x0, r0); x0 = _mm_mul_ps(x0, r0);
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3)); x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 0, 0, 1)); x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
x0 = _mm_rcp_ps(x0); x0 = _mm_rcp_ps(x0);
_mm_store_ps(dest[0], _mm_mul_ps(v0, x0)); glmm_store(dest[0], _mm_mul_ps(v0, x0));
_mm_store_ps(dest[1], _mm_mul_ps(v1, x0)); glmm_store(dest[1], _mm_mul_ps(v1, x0));
_mm_store_ps(dest[2], _mm_mul_ps(v2, x0)); glmm_store(dest[2], _mm_mul_ps(v2, x0));
_mm_store_ps(dest[3], _mm_mul_ps(v3, x0)); glmm_store(dest[3], _mm_mul_ps(v3, x0));
} }
CGLM_INLINE CGLM_INLINE
@@ -290,14 +286,14 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
x0, x1, x2, x3, x4, x5, x6, x7; x0, x1, x2, x3, x4, x5, x6, x7;
/* 127 <- 0 */ /* 127 <- 0 */
r0 = _mm_load_ps(mat[0]); /* d c b a */ r0 = glmm_load(mat[0]); /* d c b a */
r1 = _mm_load_ps(mat[1]); /* h g f e */ r1 = glmm_load(mat[1]); /* h g f e */
r2 = _mm_load_ps(mat[2]); /* l k j i */ r2 = glmm_load(mat[2]); /* l k j i */
r3 = _mm_load_ps(mat[3]); /* p o n m */ r3 = glmm_load(mat[3]); /* p o n m */
x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */ x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */
x1 = _mm_shuffle1_ps(x0, 1, 3, 3, 3); /* l p p p */ x1 = glmm_shuff1(x0, 1, 3, 3, 3); /* l p p p */
x2 = _mm_shuffle1_ps(x0, 0, 2, 2, 2); /* k o o o */ x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */ x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */ x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
@@ -308,7 +304,7 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0)); t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0));
x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */ x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */
x4 = _mm_shuffle1_ps(x4, 0, 2, 2, 2); /* j n n n */ x4 = glmm_shuff1(x4, 0, 2, 2, 2); /* j n n n */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */ x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
/* t1[1] = j * p - n * l; /* t1[1] = j * p - n * l;
@@ -324,7 +320,7 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3)); t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3));
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */ x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x7 = _mm_shuffle2_ps(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */ x7 = glmm_shuff2(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
/* t1[3] = i * p - m * l; /* t1[3] = i * p - m * l;
t1[3] = i * p - m * l; t1[3] = i * p - m * l;
@@ -344,10 +340,10 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
t3[5] = e * j - i * f; */ t3[5] = e * j - i * f; */
t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5)); t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5));
x0 = _mm_shuffle2_ps(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */ x0 = glmm_shuff2(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
x1 = _mm_shuffle2_ps(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */ x1 = glmm_shuff2(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
x2 = _mm_shuffle2_ps(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */ x2 = glmm_shuff2(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
x3 = _mm_shuffle2_ps(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */ x3 = glmm_shuff2(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
/* /*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2]; dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
@@ -395,14 +391,14 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0)); x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
x0 = _mm_mul_ps(x0, r0); x0 = _mm_mul_ps(x0, r0);
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3)); x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 0, 0, 1)); x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
x0 = _mm_div_ps(_mm_set1_ps(1.0f), x0); x0 = _mm_div_ps(_mm_set1_ps(1.0f), x0);
_mm_store_ps(dest[0], _mm_mul_ps(v0, x0)); glmm_store(dest[0], _mm_mul_ps(v0, x0));
_mm_store_ps(dest[1], _mm_mul_ps(v1, x0)); glmm_store(dest[1], _mm_mul_ps(v1, x0));
_mm_store_ps(dest[2], _mm_mul_ps(v2, x0)); glmm_store(dest[2], _mm_mul_ps(v2, x0));
_mm_store_ps(dest[3], _mm_mul_ps(v3, x0)); glmm_store(dest[3], _mm_mul_ps(v3, x0));
} }
#endif #endif

View File

@@ -14,56 +14,33 @@
CGLM_INLINE CGLM_INLINE
void void
glm_quat_slerp_sse2(versor q, glm_quat_mul_sse2(versor p, versor q, versor dest) {
versor r, /*
float t, + (a1 b2 + b1 a2 + c1 d2 d1 c2)i
versor dest) { + (a1 c2 b1 d2 + c1 a2 + d1 b2)j
/* https://en.wikipedia.org/wiki/Slerp */ + (a1 d2 + b1 c2 c1 b2 + d1 a2)k
float cosTheta, sinTheta, angle, a, b, c; a1 a2 b1 b2 c1 c2 d1 d2
*/
__m128 xmm_q; __m128 xp, xq, x0, r;
xmm_q = _mm_load_ps(q); xp = glmm_load(p); /* 3 2 1 0 */
xq = glmm_load(q);
cosTheta = glm_vec4_dot(q, r); r = _mm_mul_ps(glmm_shuff1x(xp, 3), xq);
if (cosTheta < 0.0f) {
_mm_store_ps(q,
_mm_xor_ps(xmm_q,
_mm_set1_ps(-0.f))) ;
cosTheta = -cosTheta; x0 = _mm_xor_ps(glmm_shuff1x(xp, 0), _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
} r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 0, 1, 2, 3)));
if (cosTheta >= 1.0f) { x0 = _mm_xor_ps(glmm_shuff1x(xp, 1), _mm_set_ps(-0.f, -0.f, 0.f, 0.f));
_mm_store_ps(dest, xmm_q); r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 1, 0, 3, 2)));
return;
}
sinTheta = sqrtf(1.0f - cosTheta * cosTheta); x0 = _mm_xor_ps(glmm_shuff1x(xp, 2), _mm_set_ps(-0.f, 0.f, 0.f, -0.f));
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 2, 3, 0, 1)));
c = 1.0f - t; glmm_store(dest, r);
/* LERP */
if (sinTheta < 0.001f) {
_mm_store_ps(dest, _mm_add_ps(_mm_mul_ps(_mm_set1_ps(c),
xmm_q),
_mm_mul_ps(_mm_set1_ps(t),
_mm_load_ps(r))));
return;
}
/* SLERP */
angle = acosf(cosTheta);
a = sinf(c * angle);
b = sinf(t * angle);
_mm_store_ps(dest,
_mm_div_ps(_mm_add_ps(_mm_mul_ps(_mm_set1_ps(a),
xmm_q),
_mm_mul_ps(_mm_set1_ps(b),
_mm_load_ps(r))),
_mm_set1_ps(sinTheta)));
} }
#endif #endif
#endif /* cglm_quat_simd_h */ #endif /* cglm_quat_simd_h */

View File

@@ -9,22 +9,35 @@
#define cglm_types_h #define cglm_types_h
#if defined(_MSC_VER) #if defined(_MSC_VER)
# define CGLM_ALIGN(X) /* __declspec(align(X)) */ /* do not use alignment for older visual studio versions */
#if _MSC_VER < 1913 /* Visual Studio 2017 version 15.6 */
# define CGLM_ALL_UNALIGNED
# define CGLM_ALIGN(X) /* no alignment */
#else
# define CGLM_ALIGN(X) __declspec(align(X))
#endif
#else #else
# define CGLM_ALIGN(X) __attribute((aligned(X))) # define CGLM_ALIGN(X) __attribute((aligned(X)))
#endif #endif
typedef float vec3[3]; #ifndef CGLM_ALL_UNALIGNED
typedef int ivec3[3]; # define CGLM_ALIGN_IF(X) CGLM_ALIGN(X)
typedef CGLM_ALIGN(16) float vec4[4]; #else
# define CGLM_ALIGN_IF(X) /* no alignment */
#endif
typedef vec3 mat3[3]; typedef float vec2[2];
typedef vec4 mat4[4]; typedef CGLM_ALIGN_IF(8) float vec3[3];
typedef int ivec3[3];
typedef CGLM_ALIGN_IF(16) float vec4[4];
typedef vec4 versor; typedef vec3 mat3[3];
typedef CGLM_ALIGN_IF(16) vec4 mat4[4];
#define CGLM_PI (float)M_PI typedef vec4 versor;
#define CGLM_PI_2 (float)M_PI_2
#define CGLM_PI_4 (float)M_PI_4 #define CGLM_PI ((float)M_PI)
#define CGLM_PI_2 ((float)M_PI_2)
#define CGLM_PI_4 ((float)M_PI_4)
#endif /* cglm_types_h */ #endif /* cglm_types_h */

View File

@@ -21,7 +21,9 @@
#include "common.h" #include "common.h"
/*! /*!
* @brief get sign of 32 bit integer as +1 or -1 * @brief get sign of 32 bit integer as +1, -1, 0
*
* Important: It returns 0 for zero input
* *
* @param val integer value * @param val integer value
*/ */
@@ -31,34 +33,129 @@ glm_sign(int val) {
return ((val >> 31) - (-val >> 31)); return ((val >> 31) - (-val >> 31));
} }
/*!
* @brief get sign of 32 bit float as +1, -1, 0
*
* Important: It returns 0 for zero/NaN input
*
* @param val float value
*/
CGLM_INLINE
float
glm_signf(float val) {
return (float)((val > 0.0f) - (val < 0.0f));
}
/*!
* @brief convert degree to radians
*
* @param[in] deg angle in degrees
*/
CGLM_INLINE CGLM_INLINE
float float
glm_rad(float deg) { glm_rad(float deg) {
return deg * CGLM_PI / 180.0f; return deg * CGLM_PI / 180.0f;
} }
/*!
* @brief convert radians to degree
*
* @param[in] rad angle in radians
*/
CGLM_INLINE CGLM_INLINE
float float
glm_deg(float rad) { glm_deg(float rad) {
return rad * 180.0f / CGLM_PI; return rad * 180.0f / CGLM_PI;
} }
/*!
* @brief convert exsisting degree to radians. this will override degrees value
*
* @param[in, out] deg pointer to angle in degrees
*/
CGLM_INLINE CGLM_INLINE
void void
glm_make_rad(float *deg) { glm_make_rad(float *deg) {
*deg = *deg * CGLM_PI / 180.0f; *deg = *deg * CGLM_PI / 180.0f;
} }
/*!
* @brief convert exsisting radians to degree. this will override radians value
*
* @param[in, out] rad pointer to angle in radians
*/
CGLM_INLINE CGLM_INLINE
void void
glm_make_deg(float *rad) { glm_make_deg(float *rad) {
*rad = *rad * 180.0f / CGLM_PI; *rad = *rad * 180.0f / CGLM_PI;
} }
/*!
* @brief multiplies given parameter with itself = x * x or powf(x, 2)
*
* @param[in] x x
*/
CGLM_INLINE CGLM_INLINE
float float
glm_pow2(float x) { glm_pow2(float x) {
return x * x; return x * x;
} }
/*!
* @brief find minimum of given two values
*
* @param[in] a number 1
* @param[in] b number 2
*/
CGLM_INLINE
float
glm_min(float a, float b) {
if (a < b)
return a;
return b;
}
/*!
* @brief find maximum of given two values
*
* @param[in] a number 1
* @param[in] b number 2
*/
CGLM_INLINE
float
glm_max(float a, float b) {
if (a > b)
return a;
return b;
}
/*!
* @brief clamp a number between min and max
*
* @param[in] val value to clamp
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
CGLM_INLINE
float
glm_clamp(float val, float minVal, float maxVal) {
return glm_min(glm_max(val, minVal), maxVal);
}
/*!
* @brief linear interpolation between two number
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
*/
CGLM_INLINE
float
glm_lerp(float from, float to, float t) {
return from + glm_clamp(t, 0.0f, 1.0f) * (to - from);
}
#endif /* cglm_util_h */ #endif /* cglm_util_h */

View File

@@ -14,7 +14,7 @@
CGLM_INLINE void glm_vec_mulv(vec3 a, vec3 b, vec3 d); CGLM_INLINE void glm_vec_mulv(vec3 a, vec3 b, vec3 d);
CGLM_INLINE void glm_vec_broadcast(float val, vec3 d); CGLM_INLINE void glm_vec_broadcast(float val, vec3 d);
CGLM_INLINE bool glm_vec_eq(vec3 v, float val); CGLM_INLINE bool glm_vec_eq(vec3 v, float val);
CGLM_INLINE bool glm_vec_eq_eps(vec4 v, float val); CGLM_INLINE bool glm_vec_eq_eps(vec3 v, float val);
CGLM_INLINE bool glm_vec_eq_all(vec3 v); CGLM_INLINE bool glm_vec_eq_all(vec3 v);
CGLM_INLINE bool glm_vec_eqv(vec3 v1, vec3 v2); CGLM_INLINE bool glm_vec_eqv(vec3 v1, vec3 v2);
CGLM_INLINE bool glm_vec_eqv_eps(vec3 v1, vec3 v2); CGLM_INLINE bool glm_vec_eqv_eps(vec3 v1, vec3 v2);
@@ -26,16 +26,17 @@
#define cglm_vec3_ext_h #define cglm_vec3_ext_h
#include "common.h" #include "common.h"
#include "util.h"
#include <stdbool.h> #include <stdbool.h>
#include <math.h> #include <math.h>
#include <float.h> #include <float.h>
/*! /*!
* @brief multiplies individual items, just for convenient like SIMD * @brief DEPRECATED! use glm_vec_mul
* *
* @param a vec1 * @param[in] a vec1
* @param b vec2 * @param[in] b vec2
* @param d vec3 = (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2]) * @param[out] d vec3 = (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2])
*/ */
CGLM_INLINE CGLM_INLINE
void void
@@ -48,8 +49,8 @@ glm_vec_mulv(vec3 a, vec3 b, vec3 d) {
/*! /*!
* @brief fill a vector with specified value * @brief fill a vector with specified value
* *
* @param val value * @param[in] val value
* @param d dest * @param[out] d dest
*/ */
CGLM_INLINE CGLM_INLINE
void void
@@ -60,8 +61,8 @@ glm_vec_broadcast(float val, vec3 d) {
/*! /*!
* @brief check if vector is equal to value (without epsilon) * @brief check if vector is equal to value (without epsilon)
* *
* @param v vector * @param[in] v vector
* @param val value * @param[in] val value
*/ */
CGLM_INLINE CGLM_INLINE
bool bool
@@ -72,12 +73,12 @@ glm_vec_eq(vec3 v, float val) {
/*! /*!
* @brief check if vector is equal to value (with epsilon) * @brief check if vector is equal to value (with epsilon)
* *
* @param v vector * @param[in] v vector
* @param val value * @param[in] val value
*/ */
CGLM_INLINE CGLM_INLINE
bool bool
glm_vec_eq_eps(vec4 v, float val) { glm_vec_eq_eps(vec3 v, float val) {
return fabsf(v[0] - val) <= FLT_EPSILON return fabsf(v[0] - val) <= FLT_EPSILON
&& fabsf(v[1] - val) <= FLT_EPSILON && fabsf(v[1] - val) <= FLT_EPSILON
&& fabsf(v[2] - val) <= FLT_EPSILON; && fabsf(v[2] - val) <= FLT_EPSILON;
@@ -86,7 +87,7 @@ glm_vec_eq_eps(vec4 v, float val) {
/*! /*!
* @brief check if vectors members are equal (without epsilon) * @brief check if vectors members are equal (without epsilon)
* *
* @param v vector * @param[in] v vector
*/ */
CGLM_INLINE CGLM_INLINE
bool bool
@@ -97,8 +98,8 @@ glm_vec_eq_all(vec3 v) {
/*! /*!
* @brief check if vector is equal to another (without epsilon) * @brief check if vector is equal to another (without epsilon)
* *
* @param v1 vector * @param[in] v1 vector
* @param v2 vector * @param[in] v2 vector
*/ */
CGLM_INLINE CGLM_INLINE
bool bool
@@ -111,8 +112,8 @@ glm_vec_eqv(vec3 v1, vec3 v2) {
/*! /*!
* @brief check if vector is equal to another (with epsilon) * @brief check if vector is equal to another (with epsilon)
* *
* @param v1 vector * @param[in] v1 vector
* @param v2 vector * @param[in] v2 vector
*/ */
CGLM_INLINE CGLM_INLINE
bool bool
@@ -125,7 +126,7 @@ glm_vec_eqv_eps(vec3 v1, vec3 v2) {
/*! /*!
* @brief max value of vector * @brief max value of vector
* *
* @param v vector * @param[in] v vector
*/ */
CGLM_INLINE CGLM_INLINE
float float
@@ -144,7 +145,7 @@ glm_vec_max(vec3 v) {
/*! /*!
* @brief min value of vector * @brief min value of vector
* *
* @param v vector * @param[in] v vector
*/ */
CGLM_INLINE CGLM_INLINE
float float
@@ -160,4 +161,69 @@ glm_vec_min(vec3 v) {
return min; return min;
} }
/*!
* @brief check if all items are NaN (not a number)
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec_isnan(vec3 v) {
return isnan(v[0]) || isnan(v[1]) || isnan(v[2]);
}
/*!
* @brief check if all items are INFINITY
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec_isinf(vec3 v) {
return isinf(v[0]) || isinf(v[1]) || isinf(v[2]);
}
/*!
* @brief check if all items are valid number
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec_isvalid(vec3 v) {
return !glm_vec_isnan(v) && !glm_vec_isinf(v);
}
/*!
* @brief get sign of 32 bit float as +1, -1, 0
*
* Important: It returns 0 for zero/NaN input
*
* @param v vector
*/
CGLM_INLINE
void
glm_vec_sign(vec3 v, vec3 dest) {
dest[0] = glm_signf(v[0]);
dest[1] = glm_signf(v[1]);
dest[2] = glm_signf(v[2]);
}
/*!
* @brief square root of each vector item
*
* @param[in] v vector
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_sqrt(vec3 v, vec3 dest) {
dest[0] = sqrtf(v[0]);
dest[1] = sqrtf(v[1]);
dest[2] = sqrtf(v[2]);
}
#endif /* cglm_vec3_ext_h */ #endif /* cglm_vec3_ext_h */

View File

@@ -14,21 +14,32 @@
Macros: Macros:
glm_vec_dup(v, dest) glm_vec_dup(v, dest)
GLM_VEC3_ONE_INIT GLM_VEC3_ONE_INIT
GLM_VEC3_ZERO_INIT
GLM_VEC3_ONE GLM_VEC3_ONE
GLM_VEC3_ZERO
GLM_YUP GLM_YUP
GLM_ZUP GLM_ZUP
GLM_XUP GLM_XUP
Functions: Functions:
CGLM_INLINE void glm_vec3(vec4 v4, vec3 dest);
CGLM_INLINE void glm_vec_copy(vec3 a, vec3 dest); CGLM_INLINE void glm_vec_copy(vec3 a, vec3 dest);
CGLM_INLINE float glm_vec_dot(vec3 a, vec3 b); CGLM_INLINE float glm_vec_dot(vec3 a, vec3 b);
CGLM_INLINE void glm_vec_cross(vec3 a, vec3 b, vec3 d); CGLM_INLINE void glm_vec_cross(vec3 a, vec3 b, vec3 d);
CGLM_INLINE float glm_vec_norm2(vec3 v); CGLM_INLINE float glm_vec_norm2(vec3 v);
CGLM_INLINE float glm_vec_norm(vec3 vec); CGLM_INLINE float glm_vec_norm(vec3 vec);
CGLM_INLINE void glm_vec_add(vec3 v1, vec3 v2, vec3 dest); CGLM_INLINE void glm_vec_add(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_sub(vec3 v1, vec3 v2, vec3 dest); CGLM_INLINE void glm_vec_adds(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec_sub(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_subs(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec_mul(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_scale(vec3 v, float s, vec3 dest); CGLM_INLINE void glm_vec_scale(vec3 v, float s, vec3 dest);
CGLM_INLINE void glm_vec_scale_as(vec3 v, float s, vec3 dest); CGLM_INLINE void glm_vec_scale_as(vec3 v, float s, vec3 dest);
CGLM_INLINE void glm_vec_div(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_divs(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec_addadd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_subadd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_muladd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_flipsign(vec3 v); CGLM_INLINE void glm_vec_flipsign(vec3 v);
CGLM_INLINE void glm_vec_inv(vec3 v); CGLM_INLINE void glm_vec_inv(vec3 v);
CGLM_INLINE void glm_vec_inv_to(vec3 v, vec3 dest); CGLM_INLINE void glm_vec_inv_to(vec3 v, vec3 dest);
@@ -42,24 +53,50 @@
CGLM_INLINE void glm_vec_center(vec3 v1, vec3 v2, vec3 dest); CGLM_INLINE void glm_vec_center(vec3 v1, vec3 v2, vec3 dest);
CGLM_INLINE void glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest); CGLM_INLINE void glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest);
CGLM_INLINE void glm_vec_minv(vec3 v1, vec3 v2, vec3 dest); CGLM_INLINE void glm_vec_minv(vec3 v1, vec3 v2, vec3 dest);
CGLM_INLINE void glm_vec_ortho(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec_clamp(vec3 v, float minVal, float maxVal);
Convenient:
CGLM_INLINE void glm_cross(vec3 a, vec3 b, vec3 d);
CGLM_INLINE float glm_dot(vec3 a, vec3 b);
CGLM_INLINE void glm_normalize(vec3 v);
CGLM_INLINE void glm_normalize_to(vec3 v, vec3 dest);
*/ */
#ifndef cglm_vec3_h #ifndef cglm_vec3_h
#define cglm_vec3_h #define cglm_vec3_h
#include "common.h" #include "common.h"
#include "vec4.h"
#include "vec3-ext.h" #include "vec3-ext.h"
#include "util.h" #include "util.h"
/* DEPRECATED! use _copy, _ucopy versions */ /* DEPRECATED! use _copy, _ucopy versions */
#define glm_vec_dup(v, dest) glm_vec_copy(v, dest) #define glm_vec_dup(v, dest) glm_vec_copy(v, dest)
#define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f} #define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
#define GLM_VEC3_ONE (vec3)GLM_VEC3_ONE_INIT #define GLM_VEC3_ZERO_INIT {0.0f, 0.0f, 0.0f}
#define GLM_YUP (vec3){0.0f, 1.0f, 0.0f} #define GLM_VEC3_ONE ((vec3)GLM_VEC3_ONE_INIT)
#define GLM_ZUP (vec3){0.0f, 0.0f, 1.0f} #define GLM_VEC3_ZERO ((vec3)GLM_VEC3_ZERO_INIT)
#define GLM_XUP (vec3){1.0f, 0.0f, 0.0f}
#define GLM_YUP ((vec3){0.0f, 1.0f, 0.0f})
#define GLM_ZUP ((vec3){0.0f, 0.0f, 1.0f})
#define GLM_XUP ((vec3){1.0f, 0.0f, 0.0f})
/*!
* @brief init vec3 using vec4
*
* @param[in] v4 vector4
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3(vec4 v4, vec3 dest) {
dest[0] = v4[0];
dest[1] = v4[1];
dest[2] = v4[2];
}
/*! /*!
* @brief copy all members of [a] to [dest] * @brief copy all members of [a] to [dest]
@@ -75,6 +112,32 @@ glm_vec_copy(vec3 a, vec3 dest) {
dest[2] = a[2]; dest[2] = a[2];
} }
/*!
* @brief make vector zero
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec_zero(vec3 v) {
v[0] = 0.0f;
v[1] = 0.0f;
v[2] = 0.0f;
}
/*!
* @brief make vector one
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec_one(vec3 v) {
v[0] = 1.0f;
v[1] = 1.0f;
v[2] = 1.0f;
}
/*! /*!
* @brief vec3 dot product * @brief vec3 dot product
* *
@@ -108,8 +171,8 @@ glm_vec_cross(vec3 a, vec3 b, vec3 d) {
/*! /*!
* @brief norm * norm (magnitude) of vec * @brief norm * norm (magnitude) of vec
* *
* we can use this func instead of calling norm * norm, because it would call * we can use this func instead of calling norm * norm, because it would call
* sqrtf fuction twice but with this func we can avoid func call, maybe this is * sqrtf fuction twice but with this func we can avoid func call, maybe this is
* not good name for this func * not good name for this func
* *
* @param[in] v vector * @param[in] v vector
@@ -119,7 +182,7 @@ glm_vec_cross(vec3 a, vec3 b, vec3 d) {
CGLM_INLINE CGLM_INLINE
float float
glm_vec_norm2(vec3 v) { glm_vec_norm2(vec3 v) {
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2]; return glm_vec_dot(v, v);
} }
/*! /*!
@@ -136,33 +199,78 @@ glm_vec_norm(vec3 vec) {
} }
/*! /*!
* @brief add v2 vector to v1 vector store result in dest * @brief add a vector to b vector store result in dest
* *
* @param[in] v1 vector1 * @param[in] a vector1
* @param[in] v2 vector2 * @param[in] b vector2
* @param[out] dest destination vector * @param[out] dest destination vector
*/ */
CGLM_INLINE CGLM_INLINE
void void
glm_vec_add(vec3 v1, vec3 v2, vec3 dest) { glm_vec_add(vec3 a, vec3 b, vec3 dest) {
dest[0] = v1[0] + v2[0]; dest[0] = a[0] + b[0];
dest[1] = v1[1] + v2[1]; dest[1] = a[1] + b[1];
dest[2] = v1[2] + v2[2]; dest[2] = a[2] + b[2];
}
/*!
* @brief add scalar to v vector store result in dest (d = v + s)
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_adds(vec3 v, float s, vec3 dest) {
dest[0] = v[0] + s;
dest[1] = v[1] + s;
dest[2] = v[2] + s;
} }
/*! /*!
* @brief subtract v2 vector from v1 vector store result in dest * @brief subtract v2 vector from v1 vector store result in dest
* *
* @param[in] v1 vector1 * @param[in] a vector1
* @param[in] v2 vector2 * @param[in] b vector2
* @param[out] dest destination vector * @param[out] dest destination vector
*/ */
CGLM_INLINE CGLM_INLINE
void void
glm_vec_sub(vec3 v1, vec3 v2, vec3 dest) { glm_vec_sub(vec3 a, vec3 b, vec3 dest) {
dest[0] = v1[0] - v2[0]; dest[0] = a[0] - b[0];
dest[1] = v1[1] - v2[1]; dest[1] = a[1] - b[1];
dest[2] = v1[2] - v2[2]; dest[2] = a[2] - b[2];
}
/*!
* @brief subtract scalar from v vector store result in dest (d = v - s)
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_subs(vec3 v, float s, vec3 dest) {
dest[0] = v[0] - s;
dest[1] = v[1] - s;
dest[2] = v[2] - s;
}
/*!
* @brief multiply two vector (component-wise multiplication)
*
* @param a v1
* @param b v2
* @param d v3 = (a[0] * b[0], a[1] * b[1], a[2] * b[2])
*/
CGLM_INLINE
void
glm_vec_mul(vec3 a, vec3 b, vec3 d) {
d[0] = a[0] * b[0];
d[1] = a[1] * b[1];
d[2] = a[2] * b[2];
} }
/*! /*!
@@ -193,14 +301,112 @@ glm_vec_scale_as(vec3 v, float s, vec3 dest) {
float norm; float norm;
norm = glm_vec_norm(v); norm = glm_vec_norm(v);
if (norm == 0) { if (norm == 0.0f) {
glm_vec_copy(v, dest); glm_vec_zero(dest);
return; return;
} }
glm_vec_scale(v, s / norm, dest); glm_vec_scale(v, s / norm, dest);
} }
/*!
* @brief div vector with another component-wise division: d = a / b
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2])
*/
CGLM_INLINE
void
glm_vec_div(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] / b[0];
dest[1] = a[1] / b[1];
dest[2] = a[2] / b[2];
}
/*!
* @brief div vector with scalar: d = v / s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest result = (a[0]/s, a[1]/s, a[2]/s)
*/
CGLM_INLINE
void
glm_vec_divs(vec3 v, float s, vec3 dest) {
dest[0] = v[0] / s;
dest[1] = v[1] / s;
dest[2] = v[2] / s;
}
/*!
* @brief add two vectors and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
CGLM_INLINE
void
glm_vec_addadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] + b[0];
dest[1] += a[1] + b[1];
dest[2] += a[2] + b[2];
}
/*!
* @brief sub two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
CGLM_INLINE
void
glm_vec_subadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] - b[0];
dest[1] += a[1] - b[1];
dest[2] += a[2] - b[2];
}
/*!
* @brief mul two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a * b)
*/
CGLM_INLINE
void
glm_vec_muladd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] * b[0];
dest[1] += a[1] * b[1];
dest[2] += a[2] * b[2];
}
/*!
* @brief mul vector with scalar and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector
* @param[in] s scalar
* @param[out] dest dest += (a * b)
*/
CGLM_INLINE
void
glm_vec_muladds(vec3 a, float s, vec3 dest) {
dest[0] += a[0] * s;
dest[1] += a[1] * s;
dest[2] += a[2] * s;
}
/*! /*!
* @brief flip sign of all vec3 members * @brief flip sign of all vec3 members
* *
@@ -214,6 +420,20 @@ glm_vec_flipsign(vec3 v) {
v[2] = -v[2]; v[2] = -v[2];
} }
/*!
* @brief flip sign of all vec3 members and store result in dest
*
* @param[in] v vector
* @param[out] dest result vector
*/
CGLM_INLINE
void
glm_vec_flipsign_to(vec3 v, vec3 dest) {
dest[0] = -v[0];
dest[1] = -v[1];
dest[2] = -v[2];
}
/*! /*!
* @brief make vector as inverse/opposite of itself * @brief make vector as inverse/opposite of itself
* *
@@ -234,8 +454,7 @@ glm_vec_inv(vec3 v) {
CGLM_INLINE CGLM_INLINE
void void
glm_vec_inv_to(vec3 v, vec3 dest) { glm_vec_inv_to(vec3 v, vec3 dest) {
glm_vec_copy(v, dest); glm_vec_flipsign_to(v, dest);
glm_vec_flipsign(dest);
} }
/*! /*!
@@ -272,7 +491,7 @@ glm_vec_normalize_to(vec3 vec, vec3 dest) {
norm = glm_vec_norm(vec); norm = glm_vec_norm(vec);
if (norm == 0.0f) { if (norm == 0.0f) {
dest[0] = dest[1] = dest[2] = 0.0f; glm_vec_zero(dest);
return; return;
} }
@@ -282,24 +501,21 @@ glm_vec_normalize_to(vec3 vec, vec3 dest) {
/*! /*!
* @brief angle betwen two vector * @brief angle betwen two vector
* *
* @param[in] v1 vector1
* @param[in] v2 vector2
*
* @return angle as radians * @return angle as radians
*/ */
CGLM_INLINE CGLM_INLINE
float float
glm_vec_angle(vec3 v1, vec3 v2) { glm_vec_angle(vec3 v1, vec3 v2) {
float norm; float norm;
/* maybe compiler generate approximation instruction (rcp) */ /* maybe compiler generate approximation instruction (rcp) */
norm = 1.0f / (glm_vec_norm(v1) * glm_vec_norm(v2)); norm = 1.0f / (glm_vec_norm(v1) * glm_vec_norm(v2));
return acosf(glm_vec_dot(v1, v2) * norm); return acosf(glm_vec_dot(v1, v2) * norm);
} }
CGLM_INLINE
void
glm_quatv(versor q,
float angle,
vec3 v);
/*! /*!
* @brief rotate vec3 around axis by angle using Rodrigues' rotation formula * @brief rotate vec3 around axis by angle using Rodrigues' rotation formula
* *
@@ -310,31 +526,55 @@ glm_quatv(versor q,
CGLM_INLINE CGLM_INLINE
void void
glm_vec_rotate(vec3 v, float angle, vec3 axis) { glm_vec_rotate(vec3 v, float angle, vec3 axis) {
versor q; vec3 v1, v2, k;
vec3 v1, v2, v3;
float c, s; float c, s;
c = cosf(angle); c = cosf(angle);
s = sinf(angle); s = sinf(angle);
glm_vec_normalize_to(axis, k);
/* Right Hand, Rodrigues' rotation formula: /* Right Hand, Rodrigues' rotation formula:
v = v*cos(t) + (kxv)sin(t) + k*(k.v)(1 - cos(t)) v = v*cos(t) + (kxv)sin(t) + k*(k.v)(1 - cos(t))
*/ */
/* quaternion */
glm_quatv(q, angle, v);
glm_vec_scale(v, c, v1); glm_vec_scale(v, c, v1);
glm_vec_cross(axis, v, v2); glm_vec_cross(k, v, v2);
glm_vec_scale(v2, s, v2); glm_vec_scale(v2, s, v2);
glm_vec_scale(axis,
glm_vec_dot(axis, v) * (1.0f - c),
v3);
glm_vec_add(v1, v2, v1); glm_vec_add(v1, v2, v1);
glm_vec_add(v1, v3, v);
glm_vec_scale(k, glm_vec_dot(k, v) * (1.0f - c), v2);
glm_vec_add(v1, v2, v);
}
/*!
* @brief apply rotation matrix to vector
*
* matrix format should be (no perspective):
* a b c x
* e f g y
* i j k z
* 0 0 0 w
*
* @param[in] m affine matrix or rot matrix
* @param[in] v vector
* @param[out] dest rotated vector
*/
CGLM_INLINE
void
glm_vec_rotate_m4(mat4 m, vec3 v, vec3 dest) {
vec4 x, y, z, res;
glm_vec4_normalize_to(m[0], x);
glm_vec4_normalize_to(m[1], y);
glm_vec4_normalize_to(m[2], z);
glm_vec4_scale(x, v[0], res);
glm_vec4_muladds(y, v[1], res);
glm_vec4_muladds(z, v[2], res);
glm_vec3(res, dest);
} }
/*! /*!
@@ -346,18 +586,22 @@ glm_vec_rotate(vec3 v, float angle, vec3 axis) {
*/ */
CGLM_INLINE CGLM_INLINE
void void
glm_vec_rotate_m4(mat4 m, vec3 v, vec3 dest) { glm_vec_rotate_m3(mat3 m, vec3 v, vec3 dest) {
vec3 res, x, y, z; vec4 res, x, y, z;
glm_vec_normalize_to(m[0], x); glm_vec4(m[0], 0.0f, x);
glm_vec_normalize_to(m[1], y); glm_vec4(m[1], 0.0f, y);
glm_vec_normalize_to(m[2], z); glm_vec4(m[2], 0.0f, z);
res[0] = x[0] * v[0] + y[0] * v[1] + z[0] * v[2]; glm_vec4_normalize(x);
res[1] = x[1] * v[0] + y[1] * v[1] + z[1] * v[2]; glm_vec4_normalize(y);
res[2] = x[2] * v[0] + y[2] * v[1] + z[2] * v[2]; glm_vec4_normalize(z);
glm_vec_copy(res, dest); glm_vec4_scale(x, v[0], res);
glm_vec4_muladds(y, v[1], res);
glm_vec4_muladds(z, v[2], res);
glm_vec3(res, dest);
} }
/*! /*!
@@ -400,8 +644,8 @@ CGLM_INLINE
float float
glm_vec_distance(vec3 v1, vec3 v2) { glm_vec_distance(vec3 v1, vec3 v2) {
return sqrtf(glm_pow2(v2[0] - v1[0]) return sqrtf(glm_pow2(v2[0] - v1[0])
+ glm_pow2(v2[1] - v1[1]) + glm_pow2(v2[1] - v1[1])
+ glm_pow2(v2[2] - v1[2])); + glm_pow2(v2[2] - v1[2]));
} }
/*! /*!
@@ -414,20 +658,9 @@ glm_vec_distance(vec3 v1, vec3 v2) {
CGLM_INLINE CGLM_INLINE
void void
glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest) { glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest) {
if (v1[0] > v2[0]) dest[0] = glm_max(v1[0], v2[0]);
dest[0] = v1[0]; dest[1] = glm_max(v1[1], v2[1]);
else dest[2] = glm_max(v1[2], v2[2]);
dest[0] = v2[0];
if (v1[1] > v2[1])
dest[1] = v1[1];
else
dest[1] = v2[1];
if (v1[2] > v2[2])
dest[2] = v1[2];
else
dest[2] = v2[2];
} }
/*! /*!
@@ -440,20 +673,118 @@ glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest) {
CGLM_INLINE CGLM_INLINE
void void
glm_vec_minv(vec3 v1, vec3 v2, vec3 dest) { glm_vec_minv(vec3 v1, vec3 v2, vec3 dest) {
if (v1[0] < v2[0]) dest[0] = glm_min(v1[0], v2[0]);
dest[0] = v1[0]; dest[1] = glm_min(v1[1], v2[1]);
else dest[2] = glm_min(v1[2], v2[2]);
dest[0] = v2[0]; }
if (v1[1] < v2[1]) /*!
dest[1] = v1[1]; * @brief possible orthogonal/perpendicular vector
else *
dest[1] = v2[1]; * @param[in] v vector
* @param[out] dest orthogonal/perpendicular vector
*/
CGLM_INLINE
void
glm_vec_ortho(vec3 v, vec3 dest) {
dest[0] = v[1] - v[2];
dest[1] = v[2] - v[0];
dest[2] = v[0] - v[1];
}
if (v1[2] < v2[2]) /*!
dest[2] = v1[2]; * @brief clamp vector's individual members between min and max values
else *
dest[2] = v2[2]; * @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
CGLM_INLINE
void
glm_vec_clamp(vec3 v, float minVal, float maxVal) {
v[0] = glm_clamp(v[0], minVal, maxVal);
v[1] = glm_clamp(v[1], minVal, maxVal);
v[2] = glm_clamp(v[2], minVal, maxVal);
}
/*!
* @brief linear interpolation between two vector
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_lerp(vec3 from, vec3 to, float t, vec3 dest) {
vec3 s, v;
/* from + s * (to - from) */
glm_vec_broadcast(glm_clamp(t, 0.0f, 1.0f), s);
glm_vec_sub(to, from, v);
glm_vec_mulv(s, v, v);
glm_vec_add(from, v, dest);
}
/*!
* @brief vec3 cross product
*
* this is just convenient wrapper
*
* @param[in] a source 1
* @param[in] b source 2
* @param[out] d destination
*/
CGLM_INLINE
void
glm_cross(vec3 a, vec3 b, vec3 d) {
glm_vec_cross(a, b, d);
}
/*!
* @brief vec3 dot product
*
* this is just convenient wrapper
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return dot product
*/
CGLM_INLINE
float
glm_dot(vec3 a, vec3 b) {
return glm_vec_dot(a, b);
}
/*!
* @brief normalize vec3 and store result in same vec
*
* this is just convenient wrapper
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_normalize(vec3 v) {
glm_vec_normalize(v);
}
/*!
* @brief normalize vec3 to dest
*
* this is just convenient wrapper
*
* @param[in] v source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_normalize_to(vec3 v, vec3 dest) {
glm_vec_normalize_to(v, dest);
} }
#endif /* cglm_vec3_h */ #endif /* cglm_vec3_h */

View File

@@ -17,7 +17,7 @@
CGLM_INLINE bool glm_vec4_eq_eps(vec4 v, float val); CGLM_INLINE bool glm_vec4_eq_eps(vec4 v, float val);
CGLM_INLINE bool glm_vec4_eq_all(vec4 v); CGLM_INLINE bool glm_vec4_eq_all(vec4 v);
CGLM_INLINE bool glm_vec4_eqv(vec4 v1, vec4 v2); CGLM_INLINE bool glm_vec4_eqv(vec4 v1, vec4 v2);
CGLM_INLINE bool glm_vec4_eqv_eps(vec3 v1, vec3 v2); CGLM_INLINE bool glm_vec4_eqv_eps(vec4 v1, vec4 v2);
CGLM_INLINE float glm_vec4_max(vec4 v); CGLM_INLINE float glm_vec4_max(vec4 v);
CGLM_INLINE float glm_vec4_min(vec4 v); CGLM_INLINE float glm_vec4_min(vec4 v);
*/ */
@@ -32,7 +32,7 @@
#include <float.h> #include <float.h>
/*! /*!
* @brief multiplies individual items, just for convenient like SIMD * @brief DEPRECATED! use glm_vec4_mul
* *
* @param a v1 * @param a v1
* @param b v2 * @param b v2
@@ -42,7 +42,7 @@ CGLM_INLINE
void void
glm_vec4_mulv(vec4 a, vec4 b, vec4 d) { glm_vec4_mulv(vec4 a, vec4 b, vec4 d) {
#if defined( __SSE__ ) || defined( __SSE2__ ) #if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(d, _mm_mul_ps(_mm_load_ps(a), _mm_load_ps(b))); glmm_store(d, _mm_mul_ps(glmm_load(a), glmm_load(b)));
#else #else
d[0] = a[0] * b[0]; d[0] = a[0] * b[0];
d[1] = a[1] * b[1]; d[1] = a[1] * b[1];
@@ -61,7 +61,7 @@ CGLM_INLINE
void void
glm_vec4_broadcast(float val, vec4 d) { glm_vec4_broadcast(float val, vec4 d) {
#if defined( __SSE__ ) || defined( __SSE2__ ) #if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(d, _mm_set1_ps(val)); glmm_store(d, _mm_set1_ps(val));
#else #else
d[0] = d[1] = d[2] = d[3] = val; d[0] = d[1] = d[2] = d[3] = val;
#endif #endif
@@ -133,7 +133,7 @@ glm_vec4_eqv(vec4 v1, vec4 v2) {
*/ */
CGLM_INLINE CGLM_INLINE
bool bool
glm_vec4_eqv_eps(vec3 v1, vec3 v2) { glm_vec4_eqv_eps(vec4 v1, vec4 v2) {
return fabsf(v1[0] - v2[0]) <= FLT_EPSILON return fabsf(v1[0] - v2[0]) <= FLT_EPSILON
&& fabsf(v1[1] - v2[1]) <= FLT_EPSILON && fabsf(v1[1] - v2[1]) <= FLT_EPSILON
&& fabsf(v1[2] - v2[2]) <= FLT_EPSILON && fabsf(v1[2] - v2[2]) <= FLT_EPSILON
@@ -174,5 +174,88 @@ glm_vec4_min(vec4 v) {
return min; return min;
} }
#endif /* cglm_vec4_ext_h */ /*!
* @brief check if one of items is NaN (not a number)
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec4_isnan(vec4 v) {
return isnan(v[0]) || isnan(v[1]) || isnan(v[2]) || isnan(v[3]);
}
/*!
* @brief check if one of items is INFINITY
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec4_isinf(vec4 v) {
return isinf(v[0]) || isinf(v[1]) || isinf(v[2]) || isinf(v[3]);
}
/*!
* @brief check if all items are valid number
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec4_isvalid(vec4 v) {
return !glm_vec4_isnan(v) && !glm_vec4_isinf(v);
}
/*!
* @brief get sign of 32 bit float as +1, -1, 0
*
* Important: It returns 0 for zero/NaN input
*
* @param v vector
*/
CGLM_INLINE
void
glm_vec4_sign(vec4 v, vec4 dest) {
#if defined( __SSE2__ ) || defined( __SSE2__ )
__m128 x0, x1, x2, x3, x4;
x0 = glmm_load(v);
x1 = _mm_set_ps(0.0f, 0.0f, 1.0f, -1.0f);
x2 = glmm_shuff1x(x1, 2);
x3 = _mm_and_ps(_mm_cmpgt_ps(x0, x2), glmm_shuff1x(x1, 1));
x4 = _mm_and_ps(_mm_cmplt_ps(x0, x2), glmm_shuff1x(x1, 0));
glmm_store(dest, _mm_or_ps(x3, x4));
#else
dest[0] = glm_signf(v[0]);
dest[1] = glm_signf(v[1]);
dest[2] = glm_signf(v[2]);
dest[3] = glm_signf(v[3]);
#endif
}
/*!
* @brief square root of each vector item
*
* @param[in] v vector
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_sqrt(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_sqrt_ps(glmm_load(v)));
#else
dest[0] = sqrtf(v[0]);
dest[1] = sqrtf(v[1]);
dest[2] = sqrtf(v[2]);
dest[3] = sqrtf(v[3]);
#endif
}
#endif /* cglm_vec4_ext_h */

View File

@@ -16,19 +16,30 @@
glm_vec4_dup(v, dest) glm_vec4_dup(v, dest)
GLM_VEC4_ONE_INIT GLM_VEC4_ONE_INIT
GLM_VEC4_BLACK_INIT GLM_VEC4_BLACK_INIT
GLM_VEC4_ZERO_INIT
GLM_VEC4_ONE GLM_VEC4_ONE
GLM_VEC4_BLACK GLM_VEC4_BLACK
GLM_VEC4_ZERO
Functions: Functions:
CGLM_INLINE void glm_vec4(vec3 v3, float last, vec4 dest);
CGLM_INLINE void glm_vec4_copy3(vec4 a, vec3 dest); CGLM_INLINE void glm_vec4_copy3(vec4 a, vec3 dest);
CGLM_INLINE void glm_vec4_copy(vec4 v, vec4 dest); CGLM_INLINE void glm_vec4_copy(vec4 v, vec4 dest);
CGLM_INLINE float glm_vec4_dot(vec4 a, vec4 b); CGLM_INLINE float glm_vec4_dot(vec4 a, vec4 b);
CGLM_INLINE float glm_vec4_norm2(vec4 v); CGLM_INLINE float glm_vec4_norm2(vec4 v);
CGLM_INLINE float glm_vec4_norm(vec4 vec); CGLM_INLINE float glm_vec4_norm(vec4 vec);
CGLM_INLINE void glm_vec4_add(vec4 v1, vec4 v2, vec4 dest); CGLM_INLINE void glm_vec4_add(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_sub(vec4 v1, vec4 v2, vec4 dest); CGLM_INLINE void glm_vec4_adds(vec4 v, float s, vec4 dest);
CGLM_INLINE void glm_vec4_sub(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_subs(vec4 v, float s, vec4 dest);
CGLM_INLINE void glm_vec4_mul(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_scale(vec4 v, float s, vec4 dest); CGLM_INLINE void glm_vec4_scale(vec4 v, float s, vec4 dest);
CGLM_INLINE void glm_vec4_scale_as(vec4 v, float s, vec4 dest); CGLM_INLINE void glm_vec4_scale_as(vec4 v, float s, vec4 dest);
CGLM_INLINE void glm_vec4_div(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_divs(vec4 v, float s, vec4 dest);
CGLM_INLINE void glm_vec4_addadd(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_subadd(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_muladd(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_flipsign(vec4 v); CGLM_INLINE void glm_vec4_flipsign(vec4 v);
CGLM_INLINE void glm_vec4_inv(vec4 v); CGLM_INLINE void glm_vec4_inv(vec4 v);
CGLM_INLINE void glm_vec4_inv_to(vec4 v, vec4 dest); CGLM_INLINE void glm_vec4_inv_to(vec4 v, vec4 dest);
@@ -37,6 +48,8 @@
CGLM_INLINE float glm_vec4_distance(vec4 v1, vec4 v2); CGLM_INLINE float glm_vec4_distance(vec4 v1, vec4 v2);
CGLM_INLINE void glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest); CGLM_INLINE void glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest);
CGLM_INLINE void glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest); CGLM_INLINE void glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest);
CGLM_INLINE void glm_vec4_clamp(vec4 v, float minVal, float maxVal);
CGLM_INLINE void glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest)
*/ */
#ifndef cglm_vec4_h #ifndef cglm_vec4_h
@@ -52,9 +65,27 @@
#define GLM_VEC4_ONE_INIT {1.0f, 1.0f, 1.0f, 1.0f} #define GLM_VEC4_ONE_INIT {1.0f, 1.0f, 1.0f, 1.0f}
#define GLM_VEC4_BLACK_INIT {0.0f, 0.0f, 0.0f, 1.0f} #define GLM_VEC4_BLACK_INIT {0.0f, 0.0f, 0.0f, 1.0f}
#define GLM_VEC4_ZERO_INIT {0.0f, 0.0f, 0.0f, 0.0f}
#define GLM_VEC4_ONE (vec4)GLM_VEC4_ONE_INIT #define GLM_VEC4_ONE ((vec4)GLM_VEC4_ONE_INIT)
#define GLM_VEC4_BLACK (vec4)GLM_VEC4_BLACK_INIT #define GLM_VEC4_BLACK ((vec4)GLM_VEC4_BLACK_INIT)
#define GLM_VEC4_ZERO ((vec4)GLM_VEC4_ZERO_INIT)
/*!
* @brief init vec4 using vec3
*
* @param[in] v3 vector3
* @param[in] last last item
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec4(vec3 v3, float last, vec4 dest) {
dest[0] = v3[0];
dest[1] = v3[1];
dest[2] = v3[2];
dest[3] = last;
}
/*! /*!
* @brief copy first 3 members of [a] to [dest] * @brief copy first 3 members of [a] to [dest]
@@ -80,7 +111,7 @@ CGLM_INLINE
void void
glm_vec4_copy(vec4 v, vec4 dest) { glm_vec4_copy(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ ) #if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest, _mm_load_ps(v)); glmm_store(dest, glmm_load(v));
#else #else
dest[0] = v[0]; dest[0] = v[0];
dest[1] = v[1]; dest[1] = v[1];
@@ -89,6 +120,42 @@ glm_vec4_copy(vec4 v, vec4 dest) {
#endif #endif
} }
/*!
* @brief make vector zero
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec4_zero(vec4 v) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(v, _mm_setzero_ps());
#else
v[0] = 0.0f;
v[1] = 0.0f;
v[2] = 0.0f;
v[3] = 0.0f;
#endif
}
/*!
* @brief make vector one
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec4_one(vec4 v) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(v, _mm_set1_ps(1.0f));
#else
v[0] = 1.0f;
v[1] = 1.0f;
v[2] = 1.0f;
v[3] = 1.0f;
#endif
}
/*! /*!
* @brief vec4 dot product * @brief vec4 dot product
* *
@@ -100,7 +167,14 @@ glm_vec4_copy(vec4 v, vec4 dest) {
CGLM_INLINE CGLM_INLINE
float float
glm_vec4_dot(vec4 a, vec4 b) { glm_vec4_dot(vec4 a, vec4 b) {
#if defined( __SSE__ ) || defined( __SSE2__ )
__m128 x0;
x0 = _mm_mul_ps(glmm_load(a), glmm_load(b));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 3, 2));
return _mm_cvtss_f32(_mm_add_ss(x0, glmm_shuff1(x0, 0, 1, 0, 1)));
#else
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3]; return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
#endif
} }
/*! /*!
@@ -117,7 +191,15 @@ glm_vec4_dot(vec4 a, vec4 b) {
CGLM_INLINE CGLM_INLINE
float float
glm_vec4_norm2(vec4 v) { glm_vec4_norm2(vec4 v) {
#if defined( __SSE__ ) || defined( __SSE2__ )
__m128 x0;
x0 = glmm_load(v);
x0 = _mm_mul_ps(x0, x0);
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 3, 2));
return _mm_cvtss_f32(_mm_add_ss(x0, glmm_shuff1(x0, 0, 1, 0, 1)));
#else
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + v[3] * v[3]; return v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + v[3] * v[3];
#endif
} }
/*! /*!
@@ -130,50 +212,112 @@ glm_vec4_norm2(vec4 v) {
CGLM_INLINE CGLM_INLINE
float float
glm_vec4_norm(vec4 vec) { glm_vec4_norm(vec4 vec) {
#if defined( __SSE__ ) || defined( __SSE2__ )
__m128 x0;
x0 = glmm_load(vec);
return _mm_cvtss_f32(_mm_sqrt_ss(glmm_dot(x0, x0)));
#else
return sqrtf(glm_vec4_norm2(vec)); return sqrtf(glm_vec4_norm2(vec));
#endif
} }
/*! /*!
* @brief add v2 vector to v1 vector store result in dest * @brief add v2 vector to v1 vector store result in dest
* *
* @param[in] v1 vector1 * @param[in] a vector1
* @param[in] v2 vector2 * @param[in] b vector2
* @param[out] dest destination vector * @param[out] dest destination vector
*/ */
CGLM_INLINE CGLM_INLINE
void void
glm_vec4_add(vec4 v1, vec4 v2, vec4 dest) { glm_vec4_add(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ ) #if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest, glmm_store(dest, _mm_add_ps(glmm_load(a), glmm_load(b)));
_mm_add_ps(_mm_load_ps(v1),
_mm_load_ps(v2)));
#else #else
dest[0] = v1[0] + v2[0]; dest[0] = a[0] + b[0];
dest[1] = v1[1] + v2[1]; dest[1] = a[1] + b[1];
dest[2] = v1[2] + v2[2]; dest[2] = a[2] + b[2];
dest[3] = v1[3] + v2[3]; dest[3] = a[3] + b[3];
#endif #endif
} }
/*! /*!
* @brief subtract v2 vector from v1 vector store result in dest * @brief add scalar to v vector store result in dest (d = v + vec(s))
* *
* @param[in] v1 vector1 * @param[in] v vector
* @param[in] v2 vector2 * @param[in] s scalar
* @param[out] dest destination vector * @param[out] dest destination vector
*/ */
CGLM_INLINE CGLM_INLINE
void void
glm_vec4_sub(vec4 v1, vec4 v2, vec4 dest) { glm_vec4_adds(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ ) #if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest, glmm_store(dest, _mm_add_ps(glmm_load(v), _mm_set1_ps(s)));
_mm_sub_ps(_mm_load_ps(v1),
_mm_load_ps(v2)));
#else #else
dest[0] = v1[0] - v2[0]; dest[0] = v[0] + s;
dest[1] = v1[1] - v2[1]; dest[1] = v[1] + s;
dest[2] = v1[2] - v2[2]; dest[2] = v[2] + s;
dest[3] = v1[3] - v2[3]; dest[3] = v[3] + s;
#endif
}
/*!
* @brief subtract b vector from a vector store result in dest (d = v1 - v2)
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_sub(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_sub_ps(glmm_load(a), glmm_load(b)));
#else
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
dest[2] = a[2] - b[2];
dest[3] = a[3] - b[3];
#endif
}
/*!
* @brief subtract scalar from v vector store result in dest (d = v - vec(s))
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_subs(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_sub_ps(glmm_load(v), _mm_set1_ps(s)));
#else
dest[0] = v[0] - s;
dest[1] = v[1] - s;
dest[2] = v[2] - s;
dest[3] = v[3] - s;
#endif
}
/*!
* @brief multiply two vector (component-wise multiplication)
*
* @param a v1
* @param b v2
* @param d v3 = (a[0] * b[0], a[1] * b[1], a[2] * b[2], a[3] * b[3])
*/
CGLM_INLINE
void
glm_vec4_mul(vec4 a, vec4 b, vec4 d) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(d, _mm_mul_ps(glmm_load(a), glmm_load(b)));
#else
d[0] = a[0] * b[0];
d[1] = a[1] * b[1];
d[2] = a[2] * b[2];
d[3] = a[3] * b[3];
#endif #endif
} }
@@ -188,9 +332,7 @@ CGLM_INLINE
void void
glm_vec4_scale(vec4 v, float s, vec4 dest) { glm_vec4_scale(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ ) #if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest, glmm_store(dest, _mm_mul_ps(glmm_load(v), _mm_set1_ps(s)));
_mm_mul_ps(_mm_load_ps(v),
_mm_set1_ps(s)));
#else #else
dest[0] = v[0] * s; dest[0] = v[0] * s;
dest[1] = v[1] * s; dest[1] = v[1] * s;
@@ -212,14 +354,148 @@ glm_vec4_scale_as(vec4 v, float s, vec4 dest) {
float norm; float norm;
norm = glm_vec4_norm(v); norm = glm_vec4_norm(v);
if (norm == 0) { if (norm == 0.0f) {
glm_vec4_copy(v, dest); glm_vec4_zero(dest);
return; return;
} }
glm_vec4_scale(v, s / norm, dest); glm_vec4_scale(v, s / norm, dest);
} }
/*!
* @brief div vector with another component-wise division: d = v1 / v2
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2], a[3]/b[3])
*/
CGLM_INLINE
void
glm_vec4_div(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_div_ps(glmm_load(a), glmm_load(b)));
#else
dest[0] = a[0] / b[0];
dest[1] = a[1] / b[1];
dest[2] = a[2] / b[2];
dest[3] = a[3] / b[3];
#endif
}
/*!
* @brief div vec4 vector with scalar: d = v / s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_divs(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_div_ps(glmm_load(v), _mm_set1_ps(s)));
#else
glm_vec4_scale(v, 1.0f / s, dest);
#endif
}
/*!
* @brief add two vectors and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
CGLM_INLINE
void
glm_vec4_addadd(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_add_ps(glmm_load(a),
glmm_load(b))));
#else
dest[0] += a[0] + b[0];
dest[1] += a[1] + b[1];
dest[2] += a[2] + b[2];
dest[3] += a[3] + b[3];
#endif
}
/*!
* @brief sub two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a - b)
*/
CGLM_INLINE
void
glm_vec4_subadd(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_sub_ps(glmm_load(a),
glmm_load(b))));
#else
dest[0] += a[0] - b[0];
dest[1] += a[1] - b[1];
dest[2] += a[2] - b[2];
dest[3] += a[3] - b[3];
#endif
}
/*!
* @brief mul two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a * b)
*/
CGLM_INLINE
void
glm_vec4_muladd(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_mul_ps(glmm_load(a),
glmm_load(b))));
#else
dest[0] += a[0] * b[0];
dest[1] += a[1] * b[1];
dest[2] += a[2] * b[2];
dest[3] += a[3] * b[3];
#endif
}
/*!
* @brief mul vector with scalar and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector
* @param[in] s scalar
* @param[out] dest dest += (a * b)
*/
CGLM_INLINE
void
glm_vec4_muladds(vec4 a, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_mul_ps(glmm_load(a),
_mm_set1_ps(s))));
#else
dest[0] += a[0] * s;
dest[1] += a[1] * s;
dest[2] += a[2] * s;
dest[3] += a[3] * s;
#endif
}
/*! /*!
* @brief flip sign of all vec4 members * @brief flip sign of all vec4 members
* *
@@ -229,8 +505,7 @@ CGLM_INLINE
void void
glm_vec4_flipsign(vec4 v) { glm_vec4_flipsign(vec4 v) {
#if defined( __SSE__ ) || defined( __SSE2__ ) #if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(v, _mm_xor_ps(_mm_load_ps(v), glmm_store(v, _mm_xor_ps(glmm_load(v), _mm_set1_ps(-0.0f)));
_mm_set1_ps(-0.0f)));
#else #else
v[0] = -v[0]; v[0] = -v[0];
v[1] = -v[1]; v[1] = -v[1];
@@ -239,6 +514,25 @@ glm_vec4_flipsign(vec4 v) {
#endif #endif
} }
/*!
* @brief flip sign of all vec4 members and store result in dest
*
* @param[in] v vector
* @param[out] dest vector
*/
CGLM_INLINE
void
glm_vec4_flipsign_to(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_xor_ps(glmm_load(v), _mm_set1_ps(-0.0f)));
#else
dest[0] = -v[0];
dest[1] = -v[1];
dest[2] = -v[2];
dest[3] = -v[3];
#endif
}
/*! /*!
* @brief make vector as inverse/opposite of itself * @brief make vector as inverse/opposite of itself
* *
@@ -263,26 +557,6 @@ glm_vec4_inv_to(vec4 v, vec4 dest) {
glm_vec4_flipsign(dest); glm_vec4_flipsign(dest);
} }
/*!
* @brief normalize vec4 and store result in same vec
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec4_normalize(vec4 v) {
float norm;
norm = glm_vec4_norm(v);
if (norm == 0.0f) {
v[0] = v[1] = v[2] = v[3] = 0.0f;
return;
}
glm_vec4_scale(v, 1.0f / norm, v);
}
/*! /*!
* @brief normalize vec4 to dest * @brief normalize vec4 to dest
* *
@@ -292,16 +566,43 @@ glm_vec4_normalize(vec4 v) {
CGLM_INLINE CGLM_INLINE
void void
glm_vec4_normalize_to(vec4 vec, vec4 dest) { glm_vec4_normalize_to(vec4 vec, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
__m128 xdot, x0;
float dot;
x0 = glmm_load(vec);
xdot = glmm_dot(x0, x0);
dot = _mm_cvtss_f32(xdot);
if (dot == 0.0f) {
glmm_store(dest, _mm_setzero_ps());
return;
}
glmm_store(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
#else
float norm; float norm;
norm = glm_vec4_norm(vec); norm = glm_vec4_norm(vec);
if (norm == 0.0f) { if (norm == 0.0f) {
dest[0] = dest[1] = dest[2] = dest[3] = 0.0f; glm_vec4_zero(dest);
return; return;
} }
glm_vec4_scale(vec, 1.0f / norm, dest); glm_vec4_scale(vec, 1.0f / norm, dest);
#endif
}
/*!
* @brief normalize vec4 and store result in same vec
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec4_normalize(vec4 v) {
glm_vec4_normalize_to(v, v);
} }
/** /**
@@ -315,9 +616,9 @@ CGLM_INLINE
float float
glm_vec4_distance(vec4 v1, vec4 v2) { glm_vec4_distance(vec4 v1, vec4 v2) {
return sqrtf(glm_pow2(v2[0] - v1[0]) return sqrtf(glm_pow2(v2[0] - v1[0])
+ glm_pow2(v2[1] - v1[1]) + glm_pow2(v2[1] - v1[1])
+ glm_pow2(v2[2] - v1[2]) + glm_pow2(v2[2] - v1[2])
+ glm_pow2(v2[3] - v1[3])); + glm_pow2(v2[3] - v1[3]));
} }
/*! /*!
@@ -330,25 +631,14 @@ glm_vec4_distance(vec4 v1, vec4 v2) {
CGLM_INLINE CGLM_INLINE
void void
glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest) { glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest) {
if (v1[0] > v2[0]) #if defined( __SSE__ ) || defined( __SSE2__ )
dest[0] = v1[0]; glmm_store(dest, _mm_max_ps(glmm_load(v1), glmm_load(v2)));
else #else
dest[0] = v2[0]; dest[0] = glm_max(v1[0], v2[0]);
dest[1] = glm_max(v1[1], v2[1]);
if (v1[1] > v2[1]) dest[2] = glm_max(v1[2], v2[2]);
dest[1] = v1[1]; dest[3] = glm_max(v1[3], v2[3]);
else #endif
dest[1] = v2[1];
if (v1[2] > v2[2])
dest[2] = v1[2];
else
dest[2] = v2[2];
if (v1[3] > v2[3])
dest[3] = v1[3];
else
dest[3] = v2[3];
} }
/*! /*!
@@ -361,25 +651,57 @@ glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest) {
CGLM_INLINE CGLM_INLINE
void void
glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest) { glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest) {
if (v1[0] < v2[0]) #if defined( __SSE__ ) || defined( __SSE2__ )
dest[0] = v1[0]; glmm_store(dest, _mm_min_ps(glmm_load(v1), glmm_load(v2)));
else #else
dest[0] = v2[0]; dest[0] = glm_min(v1[0], v2[0]);
dest[1] = glm_min(v1[1], v2[1]);
dest[2] = glm_min(v1[2], v2[2]);
dest[3] = glm_min(v1[3], v2[3]);
#endif
}
if (v1[1] < v2[1]) /*!
dest[1] = v1[1]; * @brief clamp vector's individual members between min and max values
else *
dest[1] = v2[1]; * @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
CGLM_INLINE
void
glm_vec4_clamp(vec4 v, float minVal, float maxVal) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(v, _mm_min_ps(_mm_max_ps(glmm_load(v), _mm_set1_ps(minVal)),
_mm_set1_ps(maxVal)));
#else
v[0] = glm_clamp(v[0], minVal, maxVal);
v[1] = glm_clamp(v[1], minVal, maxVal);
v[2] = glm_clamp(v[2], minVal, maxVal);
v[3] = glm_clamp(v[3], minVal, maxVal);
#endif
}
if (v1[2] < v2[2]) /*!
dest[2] = v1[2]; * @brief linear interpolation between two vector
else *
dest[2] = v2[2]; * formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest) {
vec4 s, v;
if (v1[3] < v2[3]) /* from + s * (to - from) */
dest[3] = v1[3]; glm_vec4_broadcast(glm_clamp(t, 0.0f, 1.0f), s);
else glm_vec4_sub(to, from, v);
dest[3] = v2[3]; glm_vec4_mulv(s, v, v);
glm_vec4_add(from, v, dest);
} }
#endif /* cglm_vec4_h */ #endif /* cglm_vec4_h */

View File

@@ -9,7 +9,7 @@
#define cglm_version_h #define cglm_version_h
#define CGLM_VERSION_MAJOR 0 #define CGLM_VERSION_MAJOR 0
#define CGLM_VERSION_MINOR 3 #define CGLM_VERSION_MINOR 4
#define CGLM_VERSION_PATCH 3 #define CGLM_VERSION_PATCH 6
#endif /* cglm_version_h */ #endif /* cglm_version_h */

View File

@@ -13,7 +13,7 @@ AM_CFLAGS = -Wall \
-O3 \ -O3 \
-Wstrict-aliasing=2 \ -Wstrict-aliasing=2 \
-fstrict-aliasing \ -fstrict-aliasing \
-Wpedantic -pedantic
lib_LTLIBRARIES = libcglm.la lib_LTLIBRARIES = libcglm.la
libcglm_la_LDFLAGS = -no-undefined -version-info 0:1:0 libcglm_la_LDFLAGS = -no-undefined -version-info 0:1:0
@@ -50,7 +50,12 @@ cglm_HEADERS = include/cglm/version.h \
include/cglm/euler.h \ include/cglm/euler.h \
include/cglm/util.h \ include/cglm/util.h \
include/cglm/quat.h \ include/cglm/quat.h \
include/cglm/affine-mat.h include/cglm/affine-mat.h \
include/cglm/plane.h \
include/cglm/frustum.h \
include/cglm/box.h \
include/cglm/color.h \
include/cglm/project.h
cglm_calldir=$(includedir)/cglm/call cglm_calldir=$(includedir)/cglm/call
cglm_call_HEADERS = include/cglm/call/mat4.h \ cglm_call_HEADERS = include/cglm/call/mat4.h \
@@ -61,7 +66,11 @@ cglm_call_HEADERS = include/cglm/call/mat4.h \
include/cglm/call/io.h \ include/cglm/call/io.h \
include/cglm/call/cam.h \ include/cglm/call/cam.h \
include/cglm/call/quat.h \ include/cglm/call/quat.h \
include/cglm/call/euler.h include/cglm/call/euler.h \
include/cglm/call/plane.h \
include/cglm/call/frustum.h \
include/cglm/call/box.h \
include/cglm/call/project.h
cglm_simddir=$(includedir)/cglm/simd cglm_simddir=$(includedir)/cglm/simd
cglm_simd_HEADERS = include/cglm/simd/intrin.h cglm_simd_HEADERS = include/cglm/simd/intrin.h
@@ -88,12 +97,25 @@ libcglm_la_SOURCES=\
src/vec3.c \ src/vec3.c \
src/vec4.c \ src/vec4.c \
src/mat3.c \ src/mat3.c \
src/mat4.c src/mat4.c \
src/plane.c \
src/frustum.c \
src/box.c \
src/project.c
test_tests_SOURCES=\ test_tests_SOURCES=\
test/src/test_common.c \ test/src/test_common.c \
test/src/test_main.c \ test/src/test_main.c \
test/src/test_mat4.c test/src/test_mat4.c \
test/src/test_cam.c \
test/src/test_project.c \
test/src/test_clamp.c \
test/src/test_euler.c \
test/src/test_quat.c \
test/src/test_vec4.c \
test/src/test_vec3.c \
test/src/test_mat3.c \
test/src/test_affine.c
all-local: all-local:
sh ./post-build.sh sh ./post-build.sh

View File

@@ -8,6 +8,12 @@
#include "../include/cglm/cglm.h" #include "../include/cglm/cglm.h"
#include "../include/cglm/call.h" #include "../include/cglm/call.h"
CGLM_EXPORT
void
glmc_translate_make(mat4 m, vec3 v) {
glm_translate_make(m, v);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_translate_to(mat4 m, vec3 v, mat4 dest) { glmc_translate_to(mat4 m, vec3 v, mat4 dest) {
@@ -38,6 +44,12 @@ glmc_translate_z(mat4 m, float to) {
glm_translate_z(m, to); glm_translate_z(m, to);
} }
CGLM_EXPORT
void
glmc_scale_make(mat4 m, vec3 v) {
glm_scale_make(m, v);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_scale_to(mat4 m, vec3 v, mat4 dest) { glmc_scale_to(mat4 m, vec3 v, mat4 dest) {
@@ -52,8 +64,8 @@ glmc_scale(mat4 m, vec3 v) {
CGLM_EXPORT CGLM_EXPORT
void void
glmc_scale1(mat4 m, float s) { glmc_scale_uni(mat4 m, float s) {
glm_scale1(m, s); glm_scale_uni(m, s);
} }
CGLM_EXPORT CGLM_EXPORT
@@ -74,36 +86,42 @@ glmc_rotate_z(mat4 m, float rad, mat4 dest) {
glm_rotate_z(m, rad, dest); glm_rotate_z(m, rad, dest);
} }
CGLM_EXPORT
void
glmc_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc) {
glm_rotate_ndc_make(m, angle, axis_ndc);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_rotate_make(mat4 m, float angle, vec3 axis) { glmc_rotate_make(mat4 m, float angle, vec3 axis) {
glm_rotate_make(m, angle, axis); glm_rotate_make(m, angle, axis);
} }
CGLM_EXPORT
void
glmc_rotate_ndc(mat4 m, float angle, vec3 axis_ndc) {
glm_rotate_ndc(m, angle, axis_ndc);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_rotate(mat4 m, float angle, vec3 axis) { glmc_rotate(mat4 m, float angle, vec3 axis) {
glm_rotate(m, angle, axis); glm_rotate(m, angle, axis);
} }
CGLM_EXPORT
void
glmc_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis) {
glm_rotate_at(m, pivot, angle, axis);
}
CGLM_EXPORT
void
glmc_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis) {
glm_rotate_atm(m, pivot, angle, axis);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_decompose_scalev(mat4 m, vec3 s) { glmc_decompose_scalev(mat4 m, vec3 s) {
glm_decompose_scalev(m, s); glm_decompose_scalev(m, s);
} }
CGLM_EXPORT
bool
glmc_uniscaled(mat4 m) {
return glm_uniscaled(m);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_decompose_rs(mat4 m, mat4 r, vec3 s) { glmc_decompose_rs(mat4 m, mat4 r, vec3 s) {
@@ -115,3 +133,21 @@ void
glmc_decompose(mat4 m, vec4 t, mat4 r, vec3 s) { glmc_decompose(mat4 m, vec4 t, mat4 r, vec3 s) {
glm_decompose(m, t, r, s); glm_decompose(m, t, r, s);
} }
CGLM_EXPORT
void
glmc_mul(mat4 m1, mat4 m2, mat4 dest) {
glm_mul(m1, m2, dest);
}
CGLM_EXPORT
void
glmc_mul_rot(mat4 m1, mat4 m2, mat4 dest) {
glm_mul_rot(m1, m2, dest);
}
CGLM_EXPORT
void
glmc_inv_tr(mat4 mat) {
glm_inv_tr(mat);
}

72
src/box.c Normal file
View File

@@ -0,0 +1,72 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "../include/cglm/cglm.h"
#include "../include/cglm/call.h"
CGLM_EXPORT
void
glmc_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]) {
glm_aabb_transform(box, m, dest);
}
CGLM_EXPORT
void
glmc_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2]) {
glm_aabb_merge(box1, box2, dest);
}
CGLM_EXPORT
void
glmc_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2]) {
glm_aabb_crop(box, cropBox, dest);
}
CGLM_EXPORT
void
glmc_aabb_crop_until(vec3 box[2],
vec3 cropBox[2],
vec3 clampBox[2],
vec3 dest[2]) {
glm_aabb_crop_until(box, cropBox, clampBox, dest);
}
CGLM_EXPORT
bool
glmc_aabb_frustum(vec3 box[2], vec4 planes[6]) {
return glm_aabb_frustum(box, planes);
}
CGLM_EXPORT
void
glmc_aabb_invalidate(vec3 box[2]) {
glm_aabb_invalidate(box);
}
CGLM_EXPORT
bool
glmc_aabb_isvalid(vec3 box[2]) {
return glm_aabb_isvalid(box);
}
CGLM_EXPORT
float
glmc_aabb_size(vec3 box[2]) {
return glm_aabb_size(box);
}
CGLM_EXPORT
float
glmc_aabb_radius(vec3 box[2]) {
return glm_aabb_radius(box);
}
CGLM_EXPORT
void
glmc_aabb_center(vec3 box[2], vec3 dest) {
glm_aabb_center(box, dest);
}

126
src/cam.c
View File

@@ -44,6 +44,36 @@ glmc_ortho(float left,
dest); dest);
} }
CGLM_EXPORT
void
glmc_ortho_aabb(vec3 box[2], mat4 dest) {
glm_ortho_aabb(box, dest);
}
CGLM_EXPORT
void
glmc_ortho_aabb_p(vec3 box[2], float padding, mat4 dest) {
glm_ortho_aabb_p(box, padding, dest);
}
CGLM_EXPORT
void
glmc_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest) {
glm_ortho_aabb_pz(box, padding, dest);
}
CGLM_EXPORT
void
glmc_ortho_default(float aspect, mat4 dest) {
glm_ortho_default(aspect, dest);
}
CGLM_EXPORT
void
glmc_ortho_default_s(float aspect, float size, mat4 dest) {
glm_ortho_default_s(aspect, size, dest);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_perspective(float fovy, glmc_perspective(float fovy,
@@ -58,6 +88,18 @@ glmc_perspective(float fovy,
dest); dest);
} }
CGLM_EXPORT
void
glmc_perspective_default(float aspect, mat4 dest) {
glm_perspective_default(aspect, dest);
}
CGLM_EXPORT
void
glmc_perspective_resize(float aspect, mat4 proj) {
glm_perspective_resize(aspect, proj);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_lookat(vec3 eye, glmc_lookat(vec3 eye,
@@ -66,3 +108,87 @@ glmc_lookat(vec3 eye,
mat4 dest) { mat4 dest) {
glm_lookat(eye, center, up, dest); glm_lookat(eye, center, up, dest);
} }
CGLM_EXPORT
void
glmc_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
glm_look(eye, dir, up, dest);
}
CGLM_EXPORT
void
glmc_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
glm_look_anyup(eye, dir, dest);
}
CGLM_EXPORT
void
glmc_persp_decomp(mat4 proj,
float * __restrict nearVal,
float * __restrict farVal,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right) {
glm_persp_decomp(proj, nearVal, farVal, top, bottom, left, right);
}
CGLM_EXPORT
void
glmc_persp_decompv(mat4 proj, float dest[6]) {
glm_persp_decompv(proj, dest);
}
CGLM_EXPORT
void
glmc_persp_decomp_x(mat4 proj,
float * __restrict left,
float * __restrict right) {
glm_persp_decomp_x(proj, left, right);
}
CGLM_EXPORT
void
glmc_persp_decomp_y(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
glm_persp_decomp_y(proj, top, bottom);
}
CGLM_EXPORT
void
glmc_persp_decomp_z(mat4 proj,
float * __restrict nearVal,
float * __restrict farVal) {
glm_persp_decomp_z(proj, nearVal, farVal);
}
CGLM_EXPORT
void
glmc_persp_decomp_far(mat4 proj, float * __restrict farVal) {
glm_persp_decomp_far(proj, farVal);
}
CGLM_EXPORT
void
glmc_persp_decomp_near(mat4 proj, float * __restrict nearVal) {
glm_persp_decomp_near(proj, nearVal);
}
CGLM_EXPORT
float
glmc_persp_fovy(mat4 proj) {
return glm_persp_fovy(proj);
}
CGLM_EXPORT
float
glmc_persp_aspect(mat4 proj) {
return glm_persp_aspect(proj);
}
CGLM_EXPORT
void
glmc_persp_sizes(mat4 proj, float fovy, vec4 dest) {
glm_persp_sizes(proj, fovy, dest);
}

View File

@@ -20,6 +20,12 @@ glmc_euler(vec3 angles, mat4 dest) {
glm_euler(angles, dest); glm_euler(angles, dest);
} }
CGLM_EXPORT
void
glmc_euler_xyz(vec3 angles, mat4 dest) {
glm_euler_xyz(angles, dest);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_euler_zyx(vec3 angles, mat4 dest) { glmc_euler_zyx(vec3 angles, mat4 dest) {

42
src/frustum.c Normal file
View File

@@ -0,0 +1,42 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "../include/cglm/cglm.h"
#include "../include/cglm/call.h"
CGLM_EXPORT
void
glmc_frustum_planes(mat4 m, vec4 dest[6]) {
glm_frustum_planes(m, dest);
}
CGLM_EXPORT
void
glmc_frustum_corners(mat4 invMat, vec4 dest[8]) {
glm_frustum_corners(invMat, dest);
}
CGLM_EXPORT
void
glmc_frustum_center(vec4 corners[8], vec4 dest) {
glm_frustum_center(corners, dest);
}
CGLM_EXPORT
void
glmc_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]) {
glm_frustum_box(corners, m, box);
}
CGLM_EXPORT
void
glmc_frustum_corners_at(vec4 corners[8],
float splitDist,
float farDist,
vec4 planeCorners[4]) {
glm_frustum_corners_at(corners, splitDist, farDist, planeCorners);
}

View File

@@ -44,6 +44,12 @@ glmc_mat3_mulv(mat3 m, vec3 v, vec3 dest) {
glm_mat3_mulv(m, v, dest); glm_mat3_mulv(m, v, dest);
} }
CGLM_EXPORT
void
glmc_mat3_quat(mat3 m, versor dest) {
glm_mat3_quat(m, dest);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_mat3_scale(mat3 m, float s) { glmc_mat3_scale(mat3 m, float s) {

View File

@@ -52,7 +52,7 @@ glmc_mat4_mul(mat4 m1, mat4 m2, mat4 dest) {
CGLM_EXPORT CGLM_EXPORT
void void
glmc_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest) { glmc_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest) {
glm_mat4_mulN(matrices, len, dest); glm_mat4_mulN(matrices, len, dest);
} }
@@ -62,6 +62,18 @@ glmc_mat4_mulv(mat4 m, vec4 v, vec4 dest) {
glm_mat4_mulv(m, v, dest); glm_mat4_mulv(m, v, dest);
} }
CGLM_EXPORT
void
glmc_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest) {
glm_mat4_mulv3(m, v, last, dest);
}
CGLM_EXPORT
void
glmc_mat4_quat(mat4 m, versor dest) {
glm_mat4_quat(m, dest);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_mat4_transpose_to(mat4 m, mat4 dest) { glmc_mat4_transpose_to(mat4 m, mat4 dest) {
@@ -104,6 +116,12 @@ glmc_mat4_inv_precise(mat4 mat, mat4 dest) {
glm_mat4_inv_precise(mat, dest); glm_mat4_inv_precise(mat, dest);
} }
CGLM_EXPORT
void
glmc_mat4_inv_fast(mat4 mat, mat4 dest) {
glm_mat4_inv_fast(mat, dest);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_mat4_swap_col(mat4 mat, int col1, int col2) { glmc_mat4_swap_col(mat4 mat, int col1, int col2) {

15
src/plane.c Normal file
View File

@@ -0,0 +1,15 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "../include/cglm/cglm.h"
#include "../include/cglm/call.h"
CGLM_EXPORT
void
glmc_plane_normalize(vec4 plane) {
glm_plane_normalize(plane);
}

27
src/project.c Normal file
View File

@@ -0,0 +1,27 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "../include/cglm/cglm.h"
#include "../include/cglm/call.h"
CGLM_EXPORT
void
glmc_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
glm_unprojecti(pos, invMat, vp, dest);
}
CGLM_EXPORT
void
glmc_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
glm_unproject(pos, m, vp, dest);
}
CGLM_EXPORT
void
glmc_project(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
glm_project(pos, m, vp, dest);
}

View File

@@ -8,6 +8,7 @@
#include "../include/cglm/cglm.h" #include "../include/cglm/cglm.h"
#include "../include/cglm/call.h" #include "../include/cglm/call.h"
CGLM_EXPORT CGLM_EXPORT
void void
glmc_quat_identity(versor q) { glmc_quat_identity(versor q) {
@@ -16,20 +17,26 @@ glmc_quat_identity(versor q) {
CGLM_EXPORT CGLM_EXPORT
void void
glmc_quat(versor q, glmc_quat_init(versor q, float x, float y, float z, float w) {
float angle, glm_quat_init(q, x, y, z, w);
float x, }
float y,
float z) { CGLM_EXPORT
void
glmc_quat(versor q, float angle, float x, float y, float z) {
glm_quat(q, angle, x, y, z); glm_quat(q, angle, x, y, z);
} }
CGLM_EXPORT CGLM_EXPORT
void void
glmc_quatv(versor q, glmc_quatv(versor q, float angle, vec3 axis) {
float angle, glm_quatv(q, angle, axis);
vec3 v) { }
glm_quatv(q, angle, v);
CGLM_EXPORT
void
glmc_quat_copy(versor q, versor dest) {
glm_quat_copy(q, dest);
} }
CGLM_EXPORT CGLM_EXPORT
@@ -40,20 +47,86 @@ glmc_quat_norm(versor q) {
CGLM_EXPORT CGLM_EXPORT
void void
glmc_quat_normalize(versor q) { glmc_quat_normalize_to(versor q, versor dest) {
glm_quat_normalize(q); glm_quat_normalize_to(q, dest);
}
CGLM_EXPORT
float
glmc_quat_dot(versor q, versor r) {
return glm_quat_dot(q, r);
} }
CGLM_EXPORT CGLM_EXPORT
void void
glmc_quat_mulv(versor q1, versor q2, versor dest) { glmc_quat_normalize(versor q) {
glm_quat_mulv(q1, q2, dest); glm_quat_norm(q);
}
CGLM_EXPORT
float
glmc_quat_dot(versor p, versor q) {
return glm_quat_dot(p, q);
}
CGLM_EXPORT
void
glmc_quat_conjugate(versor q, versor dest) {
glm_quat_conjugate(q, dest);
}
CGLM_EXPORT
void
glmc_quat_inv(versor q, versor dest) {
glm_quat_inv(q, dest);
}
CGLM_EXPORT
void
glmc_quat_add(versor p, versor q, versor dest) {
glm_quat_add(p, q, dest);
}
CGLM_EXPORT
void
glmc_quat_sub(versor p, versor q, versor dest) {
glm_quat_sub(p, q, dest);
}
CGLM_EXPORT
float
glmc_quat_real(versor q) {
return glm_quat_real(q);
}
CGLM_EXPORT
void
glmc_quat_imag(versor q, vec3 dest) {
glm_quat_imag(q, dest);
}
CGLM_EXPORT
void
glmc_quat_imagn(versor q, vec3 dest) {
glm_quat_imagn(q, dest);
}
CGLM_EXPORT
float
glmc_quat_imaglen(versor q) {
return glm_quat_imaglen(q);
}
CGLM_EXPORT
float
glmc_quat_angle(versor q) {
return glm_quat_angle(q);
}
CGLM_EXPORT
void
glmc_quat_axis(versor q, versor dest) {
glm_quat_axis(q, dest);
}
CGLM_EXPORT
void
glmc_quat_mul(versor p, versor q, versor dest) {
glm_quat_mul(p, q, dest);
} }
CGLM_EXPORT CGLM_EXPORT
@@ -64,9 +137,72 @@ glmc_quat_mat4(versor q, mat4 dest) {
CGLM_EXPORT CGLM_EXPORT
void void
glmc_quat_slerp(versor q, glmc_quat_mat4t(versor q, mat4 dest) {
versor r, glm_quat_mat4t(q, dest);
float t, }
versor dest) {
glm_quat_slerp(q, r, t, dest); CGLM_EXPORT
void
glmc_quat_mat3(versor q, mat3 dest) {
glm_quat_mat3(q, dest);
}
CGLM_EXPORT
void
glmc_quat_mat3t(versor q, mat3 dest) {
glm_quat_mat3t(q, dest);
}
CGLM_EXPORT
void
glmc_quat_lerp(versor from, versor to, float t, versor dest) {
glm_quat_lerp(from, to, t, dest);
}
CGLM_EXPORT
void
glmc_quat_slerp(versor from, versor to, float t, versor dest) {
glm_quat_slerp(from, to, t, dest);
}
CGLM_EXPORT
void
glmc_quat_look(vec3 eye, versor ori, mat4 dest) {
glm_quat_look(eye, ori, dest);
}
CGLM_EXPORT
void
glmc_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest) {
glm_quat_for(dir, fwd, up, dest);
}
CGLM_EXPORT
void
glmc_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest) {
glm_quat_forp(from, to, fwd, up, dest);
}
CGLM_EXPORT
void
glmc_quat_rotatev(versor q, vec3 v, vec3 dest) {
glm_quat_rotatev(q, v, dest);
}
CGLM_EXPORT
void
glmc_quat_rotate(mat4 m, versor q, mat4 dest) {
glm_quat_rotate(m, q, dest);
}
CGLM_EXPORT
void
glmc_quat_rotate_at(mat4 model, versor q, vec3 pivot) {
glm_quat_rotate_at(model, q, pivot);
}
CGLM_EXPORT
void
glmc_quat_rotate_atm(mat4 m, versor q, vec3 pivot) {
glm_quat_rotate_atm(m, q, pivot);
} }

View File

@@ -8,12 +8,30 @@
#include "../include/cglm/cglm.h" #include "../include/cglm/cglm.h"
#include "../include/cglm/call.h" #include "../include/cglm/call.h"
CGLM_EXPORT
void
glmc_vec3(vec4 v4, vec3 dest) {
glm_vec3(v4, dest);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec_copy(vec3 a, vec3 dest) { glmc_vec_copy(vec3 a, vec3 dest) {
glm_vec_copy(a, dest); glm_vec_copy(a, dest);
} }
CGLM_EXPORT
void
glmc_vec_zero(vec3 v) {
glm_vec_zero(v);
}
CGLM_EXPORT
void
glmc_vec_one(vec3 v) {
glm_vec_one(v);
}
CGLM_EXPORT CGLM_EXPORT
float float
glmc_vec_dot(vec3 a, vec3 b) { glmc_vec_dot(vec3 a, vec3 b) {
@@ -58,8 +76,26 @@ glmc_vec_add(vec3 v1, vec3 v2, vec3 dest) {
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec_sub(vec3 v1, vec3 v2, vec3 dest) { glmc_vec_adds(vec3 v, float s, vec3 dest) {
glm_vec_sub(v1, v2, dest); glm_vec_adds(v, s, dest);
}
CGLM_EXPORT
void
glmc_vec_sub(vec3 a, vec3 b, vec3 dest) {
glm_vec_sub(a, b, dest);
}
CGLM_EXPORT
void
glmc_vec_subs(vec3 v, float s, vec3 dest) {
glm_vec_subs(v, s, dest);
}
CGLM_EXPORT
void
glmc_vec_mul(vec3 a, vec3 b, vec3 d) {
glm_vec_mul(a, b, d);
} }
CGLM_EXPORT CGLM_EXPORT
@@ -74,12 +110,54 @@ glmc_vec_scale_as(vec3 v, float s, vec3 dest) {
glm_vec_scale_as(v, s, dest); glm_vec_scale_as(v, s, dest);
} }
CGLM_EXPORT
void
glmc_vec_div(vec3 a, vec3 b, vec3 dest) {
glm_vec_div(a, b, dest);
}
CGLM_EXPORT
void
glmc_vec_divs(vec3 a, float s, vec3 dest) {
glm_vec_divs(a, s, dest);
}
CGLM_EXPORT
void
glmc_vec_addadd(vec3 a, vec3 b, vec3 dest) {
glm_vec_addadd(a, b, dest);
}
CGLM_EXPORT
void
glmc_vec_subadd(vec3 a, vec3 b, vec3 dest) {
glm_vec_subadd(a, b, dest);
}
CGLM_EXPORT
void
glmc_vec_muladd(vec3 a, vec3 b, vec3 dest) {
glm_vec_muladd(a, b, dest);
}
CGLM_EXPORT
void
glmc_vec_muladds(vec3 a, float s, vec3 dest) {
glm_vec_muladds(a, s, dest);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec_flipsign(vec3 v) { glmc_vec_flipsign(vec3 v) {
glm_vec_flipsign(v); glm_vec_flipsign(v);
} }
CGLM_EXPORT
void
glmc_vec_flipsign_to(vec3 v, vec3 dest) {
glm_vec_flipsign_to(v, dest);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec_inv(vec3 v) { glmc_vec_inv(vec3 v) {
@@ -110,6 +188,12 @@ glmc_vec_rotate_m4(mat4 m, vec3 v, vec3 dest) {
glm_vec_rotate_m4(m, v, dest); glm_vec_rotate_m4(m, v, dest);
} }
CGLM_EXPORT
void
glmc_vec_rotate_m3(mat3 m, vec3 v, vec3 dest) {
glm_vec_rotate_m3(m, v, dest);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec_proj(vec3 a, vec3 b, vec3 dest) { glmc_vec_proj(vec3 a, vec3 b, vec3 dest) {
@@ -139,3 +223,107 @@ void
glmc_vec_minv(vec3 v1, vec3 v2, vec3 dest) { glmc_vec_minv(vec3 v1, vec3 v2, vec3 dest) {
glm_vec_maxv(v1, v2, dest); glm_vec_maxv(v1, v2, dest);
} }
CGLM_EXPORT
void
glmc_vec_clamp(vec3 v, float minVal, float maxVal) {
glm_vec_clamp(v, minVal, maxVal);
}
CGLM_EXPORT
void
glmc_vec_ortho(vec3 v, vec3 dest) {
glm_vec_ortho(v, dest);
}
CGLM_EXPORT
void
glmc_vec_lerp(vec3 from, vec3 to, float t, vec3 dest) {
glm_vec_lerp(from, to, t, dest);
}
/* ext */
CGLM_EXPORT
void
glmc_vec_mulv(vec3 a, vec3 b, vec3 d) {
glm_vec_mulv(a, b, d);
}
CGLM_EXPORT
void
glmc_vec_broadcast(float val, vec3 d) {
glm_vec_broadcast(val, d);
}
CGLM_EXPORT
bool
glmc_vec_eq(vec3 v, float val) {
return glm_vec_eq(v, val);
}
CGLM_EXPORT
bool
glmc_vec_eq_eps(vec3 v, float val) {
return glm_vec_eq_eps(v, val);
}
CGLM_EXPORT
bool
glmc_vec_eq_all(vec3 v) {
return glm_vec_eq_all(v);
}
CGLM_EXPORT
bool
glmc_vec_eqv(vec3 v1, vec3 v2) {
return glm_vec_eqv(v1, v2);
}
CGLM_EXPORT
bool
glmc_vec_eqv_eps(vec3 v1, vec3 v2) {
return glm_vec_eqv_eps(v1, v2);
}
CGLM_EXPORT
float
glmc_vec_max(vec3 v) {
return glm_vec_max(v);
}
CGLM_EXPORT
float
glmc_vec_min(vec3 v) {
return glm_vec_min(v);
}
CGLM_EXPORT
bool
glmc_vec_isnan(vec3 v) {
return glm_vec_isnan(v);
}
CGLM_EXPORT
bool
glmc_vec_isinf(vec3 v) {
return glm_vec_isinf(v);
}
CGLM_EXPORT
bool
glmc_vec_isvalid(vec3 v) {
return glm_vec_isvalid(v);
}
CGLM_EXPORT
void
glmc_vec_sign(vec3 v, vec3 dest) {
glm_vec_sign(v, dest);
}
CGLM_EXPORT
void
glmc_vec_sqrt(vec3 v, vec3 dest) {
glm_vec_sqrt(v, dest);
}

View File

@@ -8,6 +8,24 @@
#include "../include/cglm/cglm.h" #include "../include/cglm/cglm.h"
#include "../include/cglm/call.h" #include "../include/cglm/call.h"
CGLM_EXPORT
void
glmc_vec4(vec3 v3, float last, vec4 dest) {
glm_vec4(v3, last, dest);
}
CGLM_EXPORT
void
glmc_vec4_zero(vec4 v) {
glm_vec4_zero(v);
}
CGLM_EXPORT
void
glmc_vec4_one(vec4 v) {
glm_vec4_one(v);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec4_copy3(vec4 a, vec3 dest) { glmc_vec4_copy3(vec4 a, vec3 dest) {
@@ -52,14 +70,32 @@ glmc_vec4_norm2(vec4 vec) {
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec4_add(vec4 v1, vec4 v2, vec4 dest) { glmc_vec4_add(vec4 a, vec4 b, vec4 dest) {
glm_vec4_add(v1, v2, dest); glm_vec4_add(a, b, dest);
} }
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec4_sub(vec4 v1, vec4 v2, vec4 dest) { glmc_vec4_adds(vec4 v, float s, vec4 dest) {
glm_vec4_sub(v1, v2, dest); glm_vec4_adds(v, s, dest);
}
CGLM_EXPORT
void
glmc_vec4_sub(vec4 a, vec4 b, vec4 dest) {
glm_vec4_sub(a, b, dest);
}
CGLM_EXPORT
void
glmc_vec4_subs(vec4 v, float s, vec4 dest) {
glm_vec4_subs(v, s, dest);
}
CGLM_EXPORT
void
glmc_vec4_mul(vec4 a, vec4 b, vec4 d) {
glm_vec4_mul(a, b, d);
} }
CGLM_EXPORT CGLM_EXPORT
@@ -70,16 +106,58 @@ glmc_vec4_scale(vec4 v, float s, vec4 dest) {
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec4_scale_as(vec3 v, float s, vec3 dest) { glmc_vec4_scale_as(vec4 v, float s, vec4 dest) {
glm_vec4_scale_as(v, s, dest); glm_vec4_scale_as(v, s, dest);
} }
CGLM_EXPORT
void
glmc_vec4_div(vec4 a, vec4 b, vec4 dest) {
glm_vec4_div(a, b, dest);
}
CGLM_EXPORT
void
glmc_vec4_divs(vec4 v, float s, vec4 dest) {
glm_vec4_divs(v, s, dest);
}
CGLM_EXPORT
void
glmc_vec4_addadd(vec4 a, vec4 b, vec4 dest) {
glm_vec4_addadd(a, b, dest);
}
CGLM_EXPORT
void
glmc_vec4_subadd(vec4 a, vec4 b, vec4 dest) {
glm_vec4_subadd(a, b, dest);
}
CGLM_EXPORT
void
glmc_vec4_muladd(vec4 a, vec4 b, vec4 dest) {
glm_vec4_muladd(a, b, dest);
}
CGLM_EXPORT
void
glmc_vec4_muladds(vec4 a, float s, vec4 dest) {
glm_vec4_muladds(a, s, dest);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec4_flipsign(vec4 v) { glmc_vec4_flipsign(vec4 v) {
glm_vec4_flipsign(v); glm_vec4_flipsign(v);
} }
CGLM_EXPORT
void
glmc_vec4_flipsign_to(vec4 v, vec4 dest) {
glm_vec4_flipsign_to(v, dest);
}
CGLM_EXPORT CGLM_EXPORT
void void
glmc_vec4_inv(vec4 v) { glmc_vec4_inv(vec4 v) {
@@ -109,3 +187,101 @@ void
glmc_vec4_minv(vec4 v1, vec4 v2, vec4 dest) { glmc_vec4_minv(vec4 v1, vec4 v2, vec4 dest) {
glm_vec4_maxv(v1, v2, dest); glm_vec4_maxv(v1, v2, dest);
} }
CGLM_EXPORT
void
glmc_vec4_clamp(vec4 v, float minVal, float maxVal) {
glm_vec4_clamp(v, minVal, maxVal);
}
CGLM_EXPORT
void
glmc_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest) {
glm_vec4_lerp(from, to, t, dest);
}
/* ext */
CGLM_EXPORT
void
glmc_vec4_mulv(vec4 a, vec4 b, vec4 d) {
glm_vec4_mulv(a, b, d);
}
CGLM_EXPORT
void
glmc_vec4_broadcast(float val, vec4 d) {
glm_vec4_broadcast(val, d);
}
CGLM_EXPORT
bool
glmc_vec4_eq(vec4 v, float val) {
return glm_vec4_eq(v, val);
}
CGLM_EXPORT
bool
glmc_vec4_eq_eps(vec4 v, float val) {
return glm_vec4_eq_eps(v, val);
}
CGLM_EXPORT
bool
glmc_vec4_eq_all(vec4 v) {
return glm_vec4_eq_all(v);
}
CGLM_EXPORT
bool
glmc_vec4_eqv(vec4 v1, vec4 v2) {
return glm_vec4_eqv(v1, v2);
}
CGLM_EXPORT
bool
glmc_vec4_eqv_eps(vec4 v1, vec4 v2) {
return glm_vec4_eqv_eps(v1, v2);
}
CGLM_EXPORT
float
glmc_vec4_max(vec4 v) {
return glm_vec4_max(v);
}
CGLM_EXPORT
float
glmc_vec4_min(vec4 v) {
return glm_vec4_min(v);
}
CGLM_EXPORT
bool
glmc_vec4_isnan(vec4 v) {
return glm_vec4_isnan(v);
}
CGLM_EXPORT
bool
glmc_vec4_isinf(vec4 v) {
return glm_vec4_isinf(v);
}
CGLM_EXPORT
bool
glmc_vec4_isvalid(vec4 v) {
return glm_vec4_isvalid(v);
}
CGLM_EXPORT
void
glmc_vec4_sign(vec4 v, vec4 dest) {
glm_vec4_sign(v, dest);
}
CGLM_EXPORT
void
glmc_vec4_sqrt(vec4 v, vec4 dest) {
glm_vec4_sqrt(v, dest);
}

113
test/src/test_affine.c Normal file
View File

@@ -0,0 +1,113 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "test_common.h"
void
test_affine(void **state) {
mat4 t1, t2, t3, t4, t5;
/* test translate is postmultiplied */
glmc_rotate_make(t1, M_PI_4, GLM_YUP);
glm_translate_make(t2, (vec3){34, 57, 36});
glmc_mat4_mul(t1, t2, t3); /* R * T */
glm_translate(t1, (vec3){34, 57, 36});
test_assert_mat4_eq(t1, t3);
/* test rotate is postmultiplied */
glmc_rotate_make(t1, M_PI_4, GLM_YUP);
glm_translate_make(t2, (vec3){34, 57, 36});
glmc_mat4_mul(t2, t1, t3); /* T * R */
glm_rotate(t2, M_PI_4, GLM_YUP);
test_assert_mat4_eq(t2, t3);
/* test scale is postmultiplied */
glmc_rotate_make(t1, M_PI_4, GLM_YUP);
glm_translate_make(t2, (vec3){34, 57, 36});
glm_scale_make(t4, (vec3){3, 5, 6});
glmc_mat4_mul(t2, t1, t3); /* T * R */
glmc_mat4_mul(t3, t4, t5); /* T * R * S */
glm_scale(t3, (vec3){3, 5, 6});
test_assert_mat4_eq(t3, t5);
/* test translate_x */
glmc_rotate_make(t1, M_PI_4, GLM_YUP);
glm_translate_make(t2, (vec3){34, 0, 0});
glmc_mat4_mul(t1, t2, t3); /* R * T */
glm_translate_x(t1, 34);
test_assert_mat4_eq(t1, t3);
/* test translate_y */
glmc_rotate_make(t1, M_PI_4, GLM_YUP);
glm_translate_make(t2, (vec3){0, 57, 0});
glmc_mat4_mul(t1, t2, t3); /* R * T */
glm_translate_y(t1, 57);
test_assert_mat4_eq(t1, t3);
/* test translate_z */
glmc_rotate_make(t1, M_PI_4, GLM_YUP);
glm_translate_make(t2, (vec3){0, 0, 36});
glmc_mat4_mul(t1, t2, t3); /* R * T */
glm_translate_z(t1, 36);
test_assert_mat4_eq(t1, t3);
/* test rotate_x */
glmc_rotate_make(t1, M_PI_4, (vec3){1, 0, 0});
glm_translate_make(t2, (vec3){34, 57, 36});
glmc_mat4_mul(t2, t1, t3); /* T * R */
glm_rotate_x(t2, M_PI_4, t2);
test_assert_mat4_eq(t2, t3);
/* test rotate_y */
glmc_rotate_make(t1, M_PI_4, (vec3){0, 1, 0});
glm_translate_make(t2, (vec3){34, 57, 36});
glmc_mat4_mul(t2, t1, t3); /* T * R */
glm_rotate_y(t2, M_PI_4, t2);
test_assert_mat4_eq(t2, t3);
/* test rotate_z */
glmc_rotate_make(t1, M_PI_4, (vec3){0, 0, 1});
glm_translate_make(t2, (vec3){34, 57, 36});
glmc_mat4_mul(t2, t1, t3); /* T * R */
glm_rotate_z(t2, M_PI_4, t2);
test_assert_mat4_eq(t2, t3);
/* test rotate */
glmc_rotate_make(t1, M_PI_4, (vec3){0, 0, 1});
glm_translate_make(t2, (vec3){34, 57, 36});
glmc_mat4_mul(t2, t1, t3); /* T * R */
glmc_rotate(t2, M_PI_4, (vec3){0, 0, 1});
test_assert_mat4_eq(t3, t2);
/* test scale_uni */
glmc_rotate_make(t1, M_PI_4, GLM_YUP);
glm_translate_make(t2, (vec3){34, 57, 36});
glm_scale_make(t4, (vec3){3, 3, 3});
glmc_mat4_mul(t2, t1, t3); /* T * R */
glmc_mat4_mul(t3, t4, t5); /* T * R * S */
glm_scale_uni(t3, 3);
test_assert_mat4_eq(t3, t5);
}

54
test/src/test_cam.c Normal file
View File

@@ -0,0 +1,54 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "test_common.h"
void
test_camera_lookat(void **state) {
mat4 view1, view2;
vec3 center,
eye = {0.024f, 14.6f, 67.04f},
dir = {0.0f, 0.0f, -1.0f},
up = {0.0f, 1.0f, 0.0f}
;
glm_vec_add(eye, dir, center);
glm_lookat(eye, center, up, view1);
glm_look(eye, dir, up, view2);
test_assert_mat4_eq(view1, view2);
}
void
test_camera_decomp(void **state) {
mat4 proj, proj2;
vec4 sizes;
float aspect, fovy, nearVal, farVal;
aspect = 0.782f;
fovy = glm_rad(49.984f);
nearVal = 0.1f;
farVal = 100.0f;
glm_perspective(fovy, aspect, nearVal, farVal, proj);
assert_true(fabsf(aspect - glm_persp_aspect(proj)) < FLT_EPSILON);
assert_true(fabsf(fovy - glm_persp_fovy(proj)) < FLT_EPSILON);
assert_true(fabsf(49.984f - glm_deg(glm_persp_fovy(proj))) < FLT_EPSILON);
glm_persp_sizes(proj, fovy, sizes);
glm_frustum(-sizes[0] * 0.5,
sizes[0] * 0.5,
-sizes[1] * 0.5,
sizes[1] * 0.5,
nearVal,
farVal,
proj2);
test_assert_mat4_eq(proj, proj2);
}

30
test/src/test_clamp.c Normal file
View File

@@ -0,0 +1,30 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "test_common.h"
void
test_clamp(void **state) {
vec3 v3 = {15.07, 0.4, 17.3};
vec4 v4 = {5.07, 2.3, 1.3, 1.4};
assert_true(glm_clamp(1.6f, 0.0f, 1.0f) == 1.0f);
assert_true(glm_clamp(-1.6f, 0.0f, 1.0f) == 0.0f);
assert_true(glm_clamp(0.6f, 0.0f, 1.0f) == 0.6f);
glm_vec_clamp(v3, 0.0, 1.0);
glm_vec4_clamp(v4, 1.5, 3.0);
assert_true(v3[0] == 1.0f);
assert_true(v3[1] == 0.4f);
assert_true(v3[2] == 1.0f);
assert_true(v4[0] == 3.0f);
assert_true(v4[1] == 2.3f);
assert_true(v4[2] == 1.5f);
assert_true(v4[3] == 1.5f);
}

View File

@@ -27,6 +27,50 @@ test_rand_mat4(mat4 dest) {
/* glm_scale(dest, (vec3){drand48(), drand48(), drand48()}); */ /* glm_scale(dest, (vec3){drand48(), drand48(), drand48()}); */
} }
void
test_rand_mat3(mat3 dest) {
mat4 m4;
srand((unsigned int)time(NULL));
/* random rotatation around random axis with random angle */
glm_rotate_make(m4, drand48(), (vec3){drand48(), drand48(), drand48()});
glm_mat4_pick3(m4, dest);
}
void
test_rand_vec3(vec3 dest) {
srand((unsigned int)time(NULL));
dest[0] = drand48();
dest[1] = drand48();
dest[2] = drand48();
}
void
test_rand_vec4(vec4 dest) {
srand((unsigned int)time(NULL));
dest[0] = drand48();
dest[1] = drand48();
dest[2] = drand48();
dest[3] = drand48();
}
float
test_rand_angle(void) {
srand((unsigned int)time(NULL));
return drand48();
}
void
test_rand_quat(versor q) {
srand((unsigned int)time(NULL));
glm_quat(q, drand48(), drand48(), drand48(), drand48());
glm_quat_normalize(q);
}
void void
test_assert_mat4_eq(mat4 m1, mat4 m2) { test_assert_mat4_eq(mat4 m1, mat4 m2) {
int i, j, k; int i, j, k;
@@ -50,3 +94,52 @@ test_assert_mat4_eq2(mat4 m1, mat4 m2, float eps) {
} }
} }
} }
void
test_assert_mat3_eq(mat3 m1, mat3 m2) {
int i, j, k;
for (i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
for (k = 0; k < 3; k++)
assert_true(fabsf(m1[i][j] - m2[i][j]) <= 0.0000009);
}
}
}
void
test_assert_eqf(float a, float b) {
assert_true(fabsf(a - b) <= 0.000009); /* rounding errors */
}
void
test_assert_vec3_eq(vec3 v1, vec3 v2) {
assert_true(fabsf(v1[0] - v2[0]) <= 0.000009); /* rounding errors */
assert_true(fabsf(v1[1] - v2[1]) <= 0.000009);
assert_true(fabsf(v1[2] - v2[2]) <= 0.000009);
}
void
test_assert_vec4_eq(vec4 v1, vec4 v2) {
assert_true(fabsf(v1[0] - v2[0]) <= 0.000009); /* rounding errors */
assert_true(fabsf(v1[1] - v2[1]) <= 0.000009);
assert_true(fabsf(v1[2] - v2[2]) <= 0.000009);
assert_true(fabsf(v1[3] - v2[3]) <= 0.000009);
}
void
test_assert_quat_eq_abs(versor v1, versor v2) {
assert_true(fabsf(fabsf(v1[0]) - fabsf(v2[0])) <= 0.0009); /* rounding errors */
assert_true(fabsf(fabsf(v1[1]) - fabsf(v2[1])) <= 0.0009);
assert_true(fabsf(fabsf(v1[2]) - fabsf(v2[2])) <= 0.0009);
assert_true(fabsf(fabsf(v1[3]) - fabsf(v2[3])) <= 0.0009);
}
void
test_assert_quat_eq(versor v1, versor v2) {
assert_true(fabsf(v1[0] - v2[0]) <= 0.000009); /* rounding errors */
assert_true(fabsf(v1[1] - v2[1]) <= 0.000009);
assert_true(fabsf(v1[2] - v2[2]) <= 0.000009);
assert_true(fabsf(v1[3] - v2[3]) <= 0.000009);
}

View File

@@ -25,10 +25,43 @@
void void
test_rand_mat4(mat4 dest); test_rand_mat4(mat4 dest);
void
test_rand_mat3(mat3 dest);
void
test_assert_eqf(float a, float b);
void void
test_assert_mat4_eq(mat4 m1, mat4 m2); test_assert_mat4_eq(mat4 m1, mat4 m2);
void void
test_assert_mat4_eq2(mat4 m1, mat4 m2, float eps); test_assert_mat4_eq2(mat4 m1, mat4 m2, float eps);
void
test_assert_mat3_eq(mat3 m1, mat3 m2);
void
test_assert_vec3_eq(vec3 v1, vec3 v2);
void
test_assert_vec4_eq(vec4 v1, vec4 v2);
void
test_assert_quat_eq(versor v1, versor v2);
void
test_assert_quat_eq_abs(versor v1, versor v2);
void
test_rand_vec3(vec3 dest);
void
test_rand_vec4(vec4 dest) ;
float
test_rand_angle(void);
void
test_rand_quat(versor q);
#endif /* test_common_h */ #endif /* test_common_h */

44
test/src/test_euler.c Normal file
View File

@@ -0,0 +1,44 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "test_common.h"
void
test_euler(void **state) {
mat4 rot1, rot2;
vec3 inAngles, outAngles;
inAngles[0] = glm_rad(-45.0f); /* X angle */
inAngles[1] = glm_rad(88.0f); /* Y angle */
inAngles[2] = glm_rad(18.0f); /* Z angle */
glm_euler_xyz(inAngles, rot1);
/* extract angles */
glmc_euler_angles(rot1, outAngles);
/* angles must be equal in that range */
test_assert_vec3_eq(inAngles, outAngles);
/* matrices must be equal */
glmc_euler_xyz(outAngles, rot2);
test_assert_mat4_eq(rot1, rot2);
/* change range */
inAngles[0] = glm_rad(-145.0f); /* X angle */
inAngles[1] = glm_rad(818.0f); /* Y angle */
inAngles[2] = glm_rad(181.0f); /* Z angle */
glm_euler_xyz(inAngles, rot1);
glmc_euler_angles(rot1, outAngles);
/* angles may not be equal but matrices MUST! */
/* matrices must be equal */
glmc_euler_xyz(outAngles, rot2);
test_assert_mat4_eq(rot1, rot2);
}

View File

@@ -11,9 +11,35 @@ main(int argc, const char * argv[]) {
const struct CMUnitTest tests[] = { const struct CMUnitTest tests[] = {
/* mat4 */ /* mat4 */
cmocka_unit_test(test_mat4), cmocka_unit_test(test_mat4),
/* mat3 */
cmocka_unit_test(test_mat3),
/* camera */
cmocka_unit_test(test_camera_lookat),
cmocka_unit_test(test_camera_decomp),
/* project */
cmocka_unit_test(test_project),
/* vector */
cmocka_unit_test(test_clamp),
/* euler */
cmocka_unit_test(test_euler),
/* quaternion */
cmocka_unit_test(test_quat),
/* vec4 */
cmocka_unit_test(test_vec4),
/* vec3 */
cmocka_unit_test(test_vec3),
/* affine */
cmocka_unit_test(test_affine)
}; };
return cmocka_run_group_tests(tests, return cmocka_run_group_tests(tests, NULL, NULL);
NULL,
NULL);
} }

58
test/src/test_mat3.c Normal file
View File

@@ -0,0 +1,58 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "test_common.h"
#define m 3
#define n 3
void
test_mat3(void **state) {
mat3 m1 = GLM_MAT3_IDENTITY_INIT;
mat3 m2 = GLM_MAT3_IDENTITY_INIT;
mat3 m3;
mat3 m4 = GLM_MAT3_ZERO_INIT;
mat3 m5;
int i, j, k;
/* test identity matrix multiplication */
glmc_mat3_mul(m1, m2, m3);
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
if (i == j)
assert_true(m3[i][j] == 1.0f);
else
assert_true(m3[i][j] == 0.0f);
}
}
/* test random matrices */
/* random matrices */
test_rand_mat3(m1);
test_rand_mat3(m2);
glmc_mat3_mul(m1, m2, m3);
for (i = 0; i < m; i++) {
for (j = 0; j < n; j++) {
for (k = 0; k < m; k++)
/* column-major */
m4[i][j] += m1[k][j] * m2[i][k];
}
}
test_assert_mat3_eq(m3, m4);
for (i = 0; i < 100000; i++) {
test_rand_mat3(m3);
test_rand_mat3(m4);
/* test inverse precise */
glmc_mat3_inv(m3, m4);
glmc_mat3_inv(m4, m5);
test_assert_mat3_eq(m3, m5);
}
}

31
test/src/test_project.c Normal file
View File

@@ -0,0 +1,31 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#include "test_common.h"
void
test_project(void **state) {
mat4 model, view, proj, mvp;
vec4 viewport = {0.0f, 0.0f, 800.0f, 600.0f};
vec3 pos = {13.0f, 45.0f, 0.74f};
vec3 projected, unprojected;
glm_translate_make(model, (vec3){0.0f, 0.0f, -10.0f});
glm_lookat((vec3){0.0f, 0.0f, 0.0f}, pos, GLM_YUP, view);
glm_perspective_default(0.5f, proj);
glm_mat4_mulN((mat4 *[]){&proj, &view, &model}, 3, mvp);
glmc_project(pos, mvp, viewport, projected);
glmc_unproject(projected, mvp, viewport, unprojected);
/* unprojected of projected vector must be same as original one */
/* we used 0.01 because of projection floating point errors */
assert_true(fabsf(pos[0] - unprojected[0]) < 0.01);
assert_true(fabsf(pos[1] - unprojected[1]) < 0.01);
assert_true(fabsf(pos[2] - unprojected[2]) < 0.01);
}

Some files were not shown because too many files have changed in this diff Show More