mirror of
https://github.com/recp/cglm.git
synced 2026-02-17 03:39:05 +00:00
Compare commits
153 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
2d77123999 | ||
|
|
462067cfdc | ||
|
|
9ae8da3e0a | ||
|
|
0e63c245d4 | ||
|
|
de55850136 | ||
|
|
51278b26b4 | ||
|
|
fdea13507b | ||
|
|
80d255e6d9 | ||
|
|
d447876c70 | ||
|
|
b1fa7ff597 | ||
|
|
010dcc9837 | ||
|
|
5dec68823c | ||
|
|
4c79fee5d3 | ||
|
|
18ef0d7af1 | ||
|
|
9466182c10 | ||
|
|
f0a51b35ad | ||
|
|
290bcf134c | ||
|
|
416e2f4452 | ||
|
|
1fb82a1922 | ||
|
|
591c881376 | ||
|
|
6f69da361b | ||
|
|
93a08fce17 | ||
|
|
cc1d3b53ea | ||
|
|
b21df8fc37 | ||
|
|
76e9f74020 | ||
|
|
d79e58486d | ||
|
|
3dc93c56e8 | ||
|
|
7615f785ac | ||
|
|
f0daaca58b | ||
|
|
381b2fdcc0 | ||
|
|
e4e0fa623c | ||
|
|
932f638d5a | ||
|
|
81bda7439d | ||
|
|
b27603c268 | ||
|
|
12c5307447 | ||
|
|
257c57d41f | ||
|
|
f5140ea005 | ||
|
|
619ecdc5a4 | ||
|
|
9b8748acc4 | ||
|
|
ae06c51746 | ||
|
|
11430559b4 | ||
|
|
58f0043417 | ||
|
|
967fb1afad | ||
|
|
7411ac36c1 | ||
|
|
238609f2c0 | ||
|
|
ea0a10ade9 | ||
|
|
429fdfd5c5 | ||
|
|
024412f00e | ||
|
|
e8615ea14c | ||
|
|
be81d73895 | ||
|
|
b16f0ded85 | ||
|
|
63acfd681e | ||
|
|
eb527e39b4 | ||
|
|
9f389ab8ec | ||
|
|
3399595dc2 | ||
|
|
2513d46102 | ||
|
|
c298f4a4d7 | ||
|
|
84cdbd5072 | ||
|
|
74f9865884 | ||
|
|
dbd1e334ea | ||
|
|
acda316c12 | ||
|
|
86efe64b8e | ||
|
|
b0991342a6 | ||
|
|
984916d520 | ||
|
|
54c44ff224 | ||
|
|
db4761b437 | ||
|
|
ca504f7058 | ||
|
|
5a7b9caf16 | ||
|
|
43b3df992d | ||
|
|
26110f83d1 | ||
|
|
d1f3feeb6e | ||
|
|
4298211795 | ||
|
|
c244b68e73 | ||
|
|
205d13aa93 | ||
|
|
45f13217c3 | ||
|
|
21ec45b2af | ||
|
|
71b48b530e | ||
|
|
48b7b30e42 | ||
|
|
86055097e1 | ||
|
|
08be94a89b | ||
|
|
91b2a989e2 | ||
|
|
780179ff0d | ||
|
|
c148eacdc2 | ||
|
|
fadde1e26a | ||
|
|
29996d0bdd | ||
|
|
cfab79e546 | ||
|
|
da2f3aaafd | ||
|
|
0e964a1a62 | ||
|
|
1fd0a74478 | ||
|
|
b3a39aa13c | ||
|
|
b737bb2dde | ||
|
|
a610626693 | ||
|
|
425bf87c1f | ||
|
|
23698b7e48 | ||
|
|
be3f117374 | ||
|
|
77e62163ea | ||
|
|
96f773417a | ||
|
|
02ab66a8b3 | ||
|
|
fc424631a4 | ||
|
|
6d5734fe7e | ||
|
|
d95bf60b02 | ||
|
|
891148cbe3 | ||
|
|
4ce2e86d9f | ||
|
|
8a16f358a3 | ||
|
|
43d0837303 | ||
|
|
c1c659489a | ||
|
|
681a74b39c | ||
|
|
5ccf80cd0e | ||
|
|
3882b72f7f | ||
|
|
55d1e240a2 | ||
|
|
e4727e6c88 | ||
|
|
9649a0285f | ||
|
|
0f9f4748d7 | ||
|
|
a832d58d9f | ||
|
|
8b2c74b0cc | ||
|
|
da8bbc6536 | ||
|
|
4a7cd2eb26 | ||
|
|
565ee2d6eb | ||
|
|
c58db651a6 | ||
|
|
ee78459340 | ||
|
|
37f6bb8725 | ||
|
|
703c74b6ca | ||
|
|
42d8f58960 | ||
|
|
74201aaef9 | ||
|
|
c6b0d96e71 | ||
|
|
8bcd6bd077 | ||
|
|
6dcd919130 | ||
|
|
944d285e14 | ||
|
|
a56da8cc4a | ||
|
|
40458be41b | ||
|
|
b6dc5029dd | ||
|
|
2349bbff31 | ||
|
|
b76f78948b | ||
|
|
2b7994778d | ||
|
|
4e6ab470c2 | ||
|
|
50c23ce1c0 | ||
|
|
61ac032751 | ||
|
|
9ee79a8b13 | ||
|
|
efe6729891 | ||
|
|
42743e3b82 | ||
|
|
b3c3e3a034 | ||
|
|
642cc8d603 | ||
|
|
d53f95314d | ||
|
|
797c4581ee | ||
|
|
6534f4a6c7 | ||
|
|
3e4f52b3af | ||
|
|
eaf45e489d | ||
|
|
2d0a3ad828 | ||
|
|
400fc6cbee | ||
|
|
634e1170a3 | ||
|
|
99669a21a4 | ||
|
|
d14627ac52 | ||
|
|
c98340d9d2 |
3
.gitignore
vendored
3
.gitignore
vendored
@@ -59,4 +59,5 @@ cglm_test_ios/*
|
||||
cglm_test_iosTests/*
|
||||
docs/build/*
|
||||
win/cglm_test_*
|
||||
* copy.*
|
||||
* copy.*
|
||||
*.o
|
||||
|
||||
52
CREDITS
Normal file
52
CREDITS
Normal file
@@ -0,0 +1,52 @@
|
||||
This library [initially] used some [piece of] implementations
|
||||
(may include codes) from these open source projects/resources:
|
||||
|
||||
1. Affine Transforms
|
||||
The original glm repo (g-truc), url: https://github.com/g-truc/glm
|
||||
|
||||
LICENSE[S]:
|
||||
The Happy Bunny License (Modified MIT License)
|
||||
The MIT License
|
||||
Copyright (c) 2005 - 2016 G-Truc Creation
|
||||
|
||||
FULL LICENSE: https://github.com/g-truc/glm/blob/master/copying.txt
|
||||
|
||||
2. Quaternions
|
||||
Anton's OpenGL 4 Tutorials book source code:
|
||||
|
||||
LICENSE:
|
||||
OpenGL 4 Example Code.
|
||||
Accompanies written series "Anton's OpenGL 4 Tutorials"
|
||||
Email: anton at antongerdelan dot net
|
||||
First version 27 Jan 2014
|
||||
Copyright Dr Anton Gerdelan, Trinity College Dublin, Ireland.
|
||||
|
||||
3. Euler Angles
|
||||
David Eberly
|
||||
Geometric Tools, LLC http://www.geometrictools.com/
|
||||
Copyright (c) 1998-2016. All Rights Reserved.
|
||||
|
||||
Computing Euler angles from a rotation matrix (euler.pdf)
|
||||
Gregory G. Slabaugh
|
||||
|
||||
4. Extracting Planes
|
||||
Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
|
||||
Authors:
|
||||
Gil Gribb (ggribb@ravensoft.com)
|
||||
Klaus Hartmann (k_hartmann@osnabrueck.netsurf.de)
|
||||
|
||||
5. Transform AABB
|
||||
Transform Axis Aligned Bounding Boxes:
|
||||
http://dev.theomader.com/transform-bounding-boxes/
|
||||
https://github.com/erich666/GraphicsGems/blob/master/gems/TransBox.c
|
||||
|
||||
6. Cull frustum
|
||||
http://www.txutxi.com/?p=584
|
||||
http://old.cescg.org/CESCG-2002/DSykoraJJelinek/
|
||||
|
||||
7. Quaternions
|
||||
Initial mat4_quat is borrowed from Apple's simd library
|
||||
|
||||
|
||||
8. Vector Rotation using Quaternion
|
||||
https://gamedev.stackexchange.com/questions/28395/rotating-vector3-by-a-quaternion
|
||||
33
LICENSE
33
LICENSE
@@ -19,36 +19,3 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
-
|
||||
|
||||
This library [initially] used some [piece of] implementations
|
||||
(may include codes) from these open source projects/resources:
|
||||
|
||||
1. Affine Transforms
|
||||
The original glm repo (g-truc), url: https://github.com/g-truc/glm
|
||||
|
||||
LICENSE[S]:
|
||||
The Happy Bunny License (Modified MIT License)
|
||||
The MIT License
|
||||
Copyright (c) 2005 - 2016 G-Truc Creation
|
||||
|
||||
FULL LICENSE: https://github.com/g-truc/glm/blob/master/copying.txt
|
||||
|
||||
2. Quaternions
|
||||
Anton's OpenGL 4 Tutorials book source code:
|
||||
|
||||
LICENSE:
|
||||
OpenGL 4 Example Code.
|
||||
Accompanies written series "Anton's OpenGL 4 Tutorials"
|
||||
Email: anton at antongerdelan dot net
|
||||
First version 27 Jan 2014
|
||||
Copyright Dr Anton Gerdelan, Trinity College Dublin, Ireland.
|
||||
|
||||
3. Euler Angles
|
||||
David Eberly
|
||||
Geometric Tools, LLC http://www.geometrictools.com/
|
||||
Copyright (c) 1998-2016. All Rights Reserved.
|
||||
|
||||
Computing Euler angles from a rotation matrix (euler.pdf)
|
||||
Gregory G. Slabaugh
|
||||
|
||||
136
README.md
136
README.md
@@ -1,26 +1,50 @@
|
||||
# 🎥 OpenGL Mathematics (glm) for `C`
|
||||
[](https://travis-ci.org/recp/cglm)
|
||||
[](https://ci.appveyor.com/project/recp/cglm/branch/master)
|
||||
[](https://ci.appveyor.com/project/recp/cglm/branch/master)
|
||||
[](http://cglm.readthedocs.io/en/latest/?badge=latest)
|
||||
[](https://coveralls.io/github/recp/cglm?branch=master)
|
||||
[](https://www.codacy.com/app/recp/cglm?utm_source=github.com&utm_medium=referral&utm_content=recp/cglm&utm_campaign=Badge_Grade)
|
||||
[](#backers)
|
||||
[](#sponsors)
|
||||
|
||||
The original glm library is for C++ only (templates, namespaces, classes...), this library targeted to C99 but currently you can use it for C89 safely by language extensions e.g `__register`
|
||||
The original glm library is for C++ only (templates, namespaces, classes...), this library targeted to C99 but currently you can use it for C89 safely by language extensions e.g `__restrict`
|
||||
|
||||
#### Documentation
|
||||
|
||||
Almost all functions (inline versions) and parameters are documented inside related headers. <br />
|
||||
Complete documentation is in progress: http://cglm.readthedocs.io
|
||||
Complete documentation: http://cglm.readthedocs.io
|
||||
|
||||
#### Note for previous versions:
|
||||
|
||||
- _dup (duplicate) is changed to _copy. For instance `glm_vec_dup -> glm_vec_copy`
|
||||
- OpenGL related functions are dropped to make this lib platform/third-party independent
|
||||
- make sure you have latest version and feel free to report bugs, troubles
|
||||
- **[bugfix]** euler angles was implemented in reverse order (extrinsic) it was fixed, now they are intrinsic. Make sure that you have the latest version
|
||||
|
||||
#### Note for C++ developers:
|
||||
If you don't aware about original GLM library yet, you may also want to look at:
|
||||
https://github.com/g-truc/glm
|
||||
|
||||
#### Note for new comers (Important):
|
||||
- `vec4` and `mat4` variables must be aligned. (There will be unaligned versions later)
|
||||
- **in** and **[in, out]** parameters must be initialized (please). But **[out]** parameters not, initializing out param is also redundant
|
||||
- All functions are inline if you don't want to use pre-compiled versions with glmc_ prefix, you can ignore build process. Just incliude headers.
|
||||
- if your debugger takes you to cglm headers then make sure you are not trying to copy vec4 to vec3 or alig issues...
|
||||
- Welcome!
|
||||
|
||||
#### Note for experienced developers:
|
||||
- Since I'm testing this library in my projects, sometimes bugs occurs; finding that bug[s] and making improvements would be more easy with multiple developer/contributor and their projects or knowledge. Consider to make some tests if you suspect something is wrong and any feedbacks, contributions and bug reports are always welcome.
|
||||
|
||||
#### Allocations?
|
||||
`cglm` doesn't alloc any memory on heap. So it doesn't provide any allocator. You should alloc memory for **out** parameters too if you pass pointer of memory location. Don't forget that **vec4** (also quat/**versor**) and **mat4** must be aligned (16-bytes), because *cglm* uses SIMD instructions to optimize most operations if available.
|
||||
|
||||
#### Returning vector or matrix... ?
|
||||
Since almost all types are arrays and **C** doesn't allow returning arrays, so **cglm** doesn't support this feature. In the future *cglm* may use **struct** for some types for this purpose.
|
||||
|
||||
#### Other APIs like Vulkan, Metal, Dx?
|
||||
Currently *cglm* uses default clip space configuration (-1, 1) for camera functions (perspective, extract corners...), in the future other clip space configurations will be supported
|
||||
|
||||
<hr/>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
@@ -50,6 +74,9 @@ https://github.com/g-truc/glm
|
||||
- euler angles / yaw-pitch-roll to matrix
|
||||
- extract euler angles
|
||||
- inline or pre-compiled function call
|
||||
- frustum (extract view frustum planes, corners...)
|
||||
- bounding box (AABB in Frustum (culling), crop, merge...)
|
||||
- project, unproject
|
||||
|
||||
<hr />
|
||||
|
||||
@@ -91,6 +118,36 @@ glm_mul(T, R, modelMat);
|
||||
glm_inv_tr(modelMat);
|
||||
```
|
||||
|
||||
## Contributors
|
||||
|
||||
This project exists thanks to all the people who contribute. [[Contribute](CONTRIBUTING.md)].
|
||||
<a href="graphs/contributors"><img src="https://opencollective.com/cglm/contributors.svg?width=890&button=false" /></a>
|
||||
|
||||
|
||||
## Backers
|
||||
|
||||
Thank you to all our backers! 🙏 [[Become a backer](https://opencollective.com/cglm#backer)]
|
||||
|
||||
<a href="https://opencollective.com/cglm#backers" target="_blank"><img src="https://opencollective.com/cglm/backers.svg?width=890"></a>
|
||||
|
||||
|
||||
## Sponsors
|
||||
|
||||
Support this project by becoming a sponsor. Your logo will show up here with a link to your website. [[Become a sponsor](https://opencollective.com/cglm#sponsor)]
|
||||
|
||||
<a href="https://opencollective.com/cglm/sponsor/0/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/0/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/1/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/1/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/2/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/2/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/3/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/3/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/4/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/4/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/5/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/5/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/6/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/6/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/7/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/7/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/8/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/8/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/9/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/9/avatar.svg"></a>
|
||||
|
||||
|
||||
|
||||
## License
|
||||
MIT. check the LICENSE file
|
||||
|
||||
@@ -98,13 +155,15 @@ MIT. check the LICENSE file
|
||||
|
||||
### Unix (Autotools)
|
||||
|
||||
```text
|
||||
$ sh ./build-deps.sh # run only once (dependencies)
|
||||
```bash
|
||||
$ sh ./build-deps.sh # run only once (dependencies) [Optional].
|
||||
$ # You can pass this step if you don't want to run `make check` for tests.
|
||||
$ # cglm uses cmocka for tests and it may reqiure cmake for building it
|
||||
$
|
||||
$ sh autogen.sh
|
||||
$ ./configure
|
||||
$ make
|
||||
$ make install
|
||||
$ make check # [Optional] (if you run `sh ./build-deps.sh`)
|
||||
$ [sudo] make install
|
||||
```
|
||||
|
||||
@@ -122,12 +181,21 @@ if `msbuild` won't work (because of multi version VS) then try to build with `de
|
||||
$ devenv cglm.sln /Build Release
|
||||
```
|
||||
|
||||
### Building Docs
|
||||
First you need install Sphinx: http://www.sphinx-doc.org/en/master/usage/installation.html
|
||||
then:
|
||||
```bash
|
||||
$ cd docs
|
||||
$ sphinx-build source build
|
||||
```
|
||||
it will compile docs into build folder, you can run index.html inside that function.
|
||||
|
||||
## How to use
|
||||
If you want to use inline versions of funcstions then; include main header
|
||||
```C
|
||||
#include <cglm/cglm.h>
|
||||
```
|
||||
the haeder will include all headers. Then call func you want e.g. rotate vector by axis:
|
||||
the header will include all headers. Then call func you want e.g. rotate vector by axis:
|
||||
```C
|
||||
glm_vec_rotate(v1, glm_rad(45), (vec3){1.0f, 0.0f, 0.0f});
|
||||
```
|
||||
@@ -146,12 +214,60 @@ to call pre-compiled versions include header with `c` postfix, c means call. Pre
|
||||
```C
|
||||
#include <cglm/call.h>
|
||||
```
|
||||
this header will include all heaers with c postfix. You need to call functions with c posfix:
|
||||
this header will include all headers with c postfix. You need to call functions with c posfix:
|
||||
```C
|
||||
glmc_vec_normalize(vec);
|
||||
```
|
||||
|
||||
Function usage and parameters are documented inside related headers.
|
||||
Function usage and parameters are documented inside related headers. You may see same parameter passed twice in some examples like this:
|
||||
```C
|
||||
glm_mat4_mul(m1, m2, m1);
|
||||
|
||||
/* or */
|
||||
glm_mat4_mul(m1, m1, m1);
|
||||
```
|
||||
the first two parameter are **[in]** and the last one is **[out]** parameter. After multiplied *m1* and *m2* the result is stored in *m1*. This is why we send *m1* twice. You may store result in different matrix, this just an example.
|
||||
|
||||
### Example: Computing MVP matrix
|
||||
|
||||
#### Option 1
|
||||
```C
|
||||
mat4 proj, view, model, mvp;
|
||||
|
||||
/* init proj, view and model ... */
|
||||
|
||||
glm_mat4_mul(proj, view, viewProj);
|
||||
glm_mat4_mul(viewProj, model, mvp);
|
||||
```
|
||||
|
||||
#### Option 2
|
||||
```C
|
||||
mat4 proj, view, model, mvp;
|
||||
|
||||
/* init proj, view and model ... */
|
||||
|
||||
glm_mat4_mulN((mat4 *[]){&proj, &view, &model}, 3, mvp);
|
||||
```
|
||||
|
||||
## How to send matrix to OpenGL
|
||||
|
||||
mat4 is array of vec4 and vec4 is array of floats. `glUniformMatrix4fv` functions accecpts `float*` as `value` (last param), so you can cast mat4 to float* or you can pass first column of matrix as beginning of memory of matrix:
|
||||
|
||||
Option 1: Send first column
|
||||
```C
|
||||
glUniformMatrix4fv(location, 1, GL_FALSE, matrix[0]);
|
||||
|
||||
/* array of matrices */
|
||||
glUniformMatrix4fv(location, 1, GL_FALSE, matrix[0][0]);
|
||||
```
|
||||
|
||||
Option 2: Cast matrix to pointer type (also valid for multiple dimensional arrays)
|
||||
```C
|
||||
glUniformMatrix4fv(location, 1, GL_FALSE, (float *)matrix);
|
||||
```
|
||||
|
||||
You can pass same way to another APIs e.g. Vulkan, DX...
|
||||
|
||||
## Notes
|
||||
|
||||
- This library uses float types only, does not support Integers, Double... yet
|
||||
@@ -162,5 +278,5 @@ Function usage and parameters are documented inside related headers.
|
||||
- [ ] Unit tests for comparing cglm with glm results
|
||||
- [x] Add version info
|
||||
- [ ] Unaligned operations (e.g. `glm_umat4_mul`)
|
||||
- [ ] Extra documentation
|
||||
- [x] Extra documentation
|
||||
- [ ] ARM Neon Arch (In Progress)
|
||||
|
||||
@@ -16,14 +16,18 @@ cd $(dirname "$0")
|
||||
if [ "$(uname)" = "Darwin" ]; then
|
||||
libtoolBin=$(which glibtoolize)
|
||||
libtoolBinDir=$(dirname "${libtoolBin}")
|
||||
ln -s $libtoolBin "${libtoolBinDir}/libtoolize"
|
||||
|
||||
if [ ! -f "${libtoolBinDir}/libtoolize" ]; then
|
||||
ln -s $libtoolBin "${libtoolBinDir}/libtoolize"
|
||||
fi
|
||||
fi
|
||||
|
||||
# general deps: gcc make autoconf automake libtool cmake
|
||||
|
||||
# test - cmocka
|
||||
cd ./test/lib/cmocka
|
||||
mkdir build
|
||||
rm -rf build
|
||||
mkdir -p build
|
||||
cd build
|
||||
cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_BUILD_TYPE=Debug ..
|
||||
make -j8
|
||||
|
||||
@@ -7,7 +7,7 @@
|
||||
#*****************************************************************************
|
||||
|
||||
AC_PREREQ([2.69])
|
||||
AC_INIT([cglm], [0.2.1], [info@recp.me])
|
||||
AC_INIT([cglm], [0.4.0], [info@recp.me])
|
||||
AM_INIT_AUTOMAKE([-Wall -Werror foreign subdir-objects])
|
||||
|
||||
AC_CONFIG_MACRO_DIR([m4])
|
||||
|
||||
77
docs/source/affine-mat.rst
Normal file
77
docs/source/affine-mat.rst
Normal file
@@ -0,0 +1,77 @@
|
||||
.. default-domain:: C
|
||||
|
||||
affine transform matrix (specialized functions)
|
||||
================================================================================
|
||||
|
||||
Header: cglm/affine-mat.h
|
||||
|
||||
We mostly use glm_mat4_* for 4x4 general and transform matrices. **cglm**
|
||||
provides optimized version of some functions. Because affine transform matrix is
|
||||
a known format, for instance all last item of first three columns is zero.
|
||||
|
||||
You should be careful when using these functions. For instance :c:func:`glm_mul`
|
||||
assumes matrix will be this format:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
R R R X
|
||||
R R R Y
|
||||
R R R Z
|
||||
0 0 0 W
|
||||
|
||||
if you override zero values here then use :c:func:`glm_mat4_mul` version.
|
||||
You cannot use :c:func:`glm_mul` anymore.
|
||||
|
||||
Same is also true for :c:func:`glm_inv_tr` if you only have rotation and
|
||||
translation then it will work as expected, otherwise you cannot use that.
|
||||
|
||||
In the future it may accept scale factors too but currectly it does not.
|
||||
|
||||
Table of contents (click func go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_mul`
|
||||
#. :c:func:`glm_inv_tr`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_mul(mat4 m1, mat4 m2, mat4 dest)
|
||||
|
||||
| this is similar to glm_mat4_mul but specialized to affine transform
|
||||
|
||||
Matrix format should be:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
R R R X
|
||||
R R R Y
|
||||
R R R Z
|
||||
0 0 0 W
|
||||
|
||||
this reduces some multiplications. It should be faster than mat4_mul.
|
||||
if you are not sure about matrix format then DON'T use this! use mat4_mul
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m1** affine matrix 1
|
||||
| *[in]* **m2** affine matrix 2
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_inv_tr(mat4 mat)
|
||||
|
||||
| inverse orthonormal rotation + translation matrix (ridig-body)
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
X = | R T | X' = | R' -R'T |
|
||||
| 0 1 | | 0 1 |
|
||||
|
||||
use this if you only have rotation + translation, this should work faster
|
||||
than :c:func:`glm_mat4_inv`
|
||||
|
||||
Don't use this if your matrix includes other things e.g. scale, shear...
|
||||
|
||||
Parameters:
|
||||
| *[in,out]* **mat** affine matrix
|
||||
242
docs/source/affine.rst
Normal file
242
docs/source/affine.rst
Normal file
@@ -0,0 +1,242 @@
|
||||
.. default-domain:: C
|
||||
|
||||
affine transforms
|
||||
================================================================================
|
||||
|
||||
Header: cglm/affine.h
|
||||
|
||||
Functions with **_make** prefix expect you don't have a matrix and they create
|
||||
a matrix for you. You don't need to pass identity matrix.
|
||||
|
||||
But other functions expect you have a matrix and you want to transform them. If
|
||||
you didn't have any existing matrix you have to initialize matrix to identity
|
||||
before sending to transfrom functions.
|
||||
|
||||
There are also functions to decompose transform matrix. These functions can't
|
||||
decompose matrix after projected.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_translate_to`
|
||||
#. :c:func:`glm_translate`
|
||||
#. :c:func:`glm_translate_x`
|
||||
#. :c:func:`glm_translate_y`
|
||||
#. :c:func:`glm_translate_z`
|
||||
#. :c:func:`glm_translate_make`
|
||||
#. :c:func:`glm_scale_to`
|
||||
#. :c:func:`glm_scale_make`
|
||||
#. :c:func:`glm_scale`
|
||||
#. :c:func:`glm_scale1`
|
||||
#. :c:func:`glm_scale_uni`
|
||||
#. :c:func:`glm_rotate_x`
|
||||
#. :c:func:`glm_rotate_y`
|
||||
#. :c:func:`glm_rotate_z`
|
||||
#. :c:func:`glm_rotate_ndc_make`
|
||||
#. :c:func:`glm_rotate_make`
|
||||
#. :c:func:`glm_rotate_ndc`
|
||||
#. :c:func:`glm_rotate`
|
||||
#. :c:func:`glm_decompose_scalev`
|
||||
#. :c:func:`glm_uniscaled`
|
||||
#. :c:func:`glm_decompose_rs`
|
||||
#. :c:func:`glm_decompose`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_translate_to(mat4 m, vec3 v, mat4 dest)
|
||||
|
||||
translate existing transform matrix by *v* vector and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transfrom
|
||||
| *[in]* **v** translate vector [x, y, z]
|
||||
| *[out]* **dest** translated matrix
|
||||
|
||||
.. c:function:: void glm_translate(mat4 m, vec3 v)
|
||||
|
||||
translate existing transform matrix by *v* vector
|
||||
and stores result in same matrix
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** translate vector [x, y, z]
|
||||
|
||||
.. c:function:: void glm_translate_x(mat4 m, float x)
|
||||
|
||||
translate existing transform matrix by x factor
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** x factor
|
||||
|
||||
.. c:function:: void glm_translate_y(mat4 m, float y)
|
||||
|
||||
translate existing transform matrix by *y* factor
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** y factor
|
||||
|
||||
.. c:function:: void glm_translate_z(mat4 m, float z)
|
||||
|
||||
translate existing transform matrix by *z* factor
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** z factor
|
||||
|
||||
.. c:function:: void glm_translate_make(mat4 m, vec3 v)
|
||||
|
||||
creates NEW translate transform matrix by *v* vector.
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** translate vector [x, y, z]
|
||||
|
||||
.. c:function:: void glm_scale_to(mat4 m, vec3 v, mat4 dest)
|
||||
|
||||
scale existing transform matrix by *v* vector and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transfrom
|
||||
| *[in]* **v** scale vector [x, y, z]
|
||||
| *[out]* **dest** scaled matrix
|
||||
|
||||
.. c:function:: void glm_scale_make(mat4 m, vec3 v)
|
||||
|
||||
creates NEW scale matrix by v vector
|
||||
|
||||
Parameters:
|
||||
| *[out]* **m** affine transfrom
|
||||
| *[in]* **v** scale vector [x, y, z]
|
||||
|
||||
.. c:function:: void glm_scale(mat4 m, vec3 v)
|
||||
|
||||
scales existing transform matrix by v vector
|
||||
and stores result in same matrix
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** scale vector [x, y, z]
|
||||
|
||||
.. c:function:: void glm_scale1(mat4 m, float s)
|
||||
|
||||
DEPRECATED! Use glm_scale_uni
|
||||
|
||||
.. c:function:: void glm_scale_uni(mat4 m, float s)
|
||||
|
||||
applies uniform scale to existing transform matrix v = [s, s, s]
|
||||
and stores result in same matrix
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** scale factor
|
||||
|
||||
.. c:function:: void glm_rotate_x(mat4 m, float angle, mat4 dest)
|
||||
|
||||
rotate existing transform matrix around X axis by angle
|
||||
and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transfrom
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[out]* **dest** rotated matrix
|
||||
|
||||
.. c:function:: void glm_rotate_y(mat4 m, float angle, mat4 dest)
|
||||
|
||||
rotate existing transform matrix around Y axis by angle
|
||||
and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transfrom
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[out]* **dest** rotated matrix
|
||||
|
||||
.. c:function:: void glm_rotate_z(mat4 m, float angle, mat4 dest)
|
||||
|
||||
rotate existing transform matrix around Z axis by angle
|
||||
and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transfrom
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[out]* **dest** rotated matrix
|
||||
|
||||
.. c:function:: void glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc)
|
||||
|
||||
creates NEW rotation matrix by angle and axis
|
||||
this name may change in the future. axis must be is normalized
|
||||
|
||||
Parameters:
|
||||
| *[out]* **m** affine transfrom
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[in]* **axis_ndc** normalized axis
|
||||
|
||||
.. c:function:: void glm_rotate_make(mat4 m, float angle, vec3 axis)
|
||||
|
||||
creates NEW rotation matrix by angle and axis,
|
||||
axis will be normalized so you don't need to normalize it
|
||||
|
||||
Parameters:
|
||||
| *[out]* **m** affine transfrom
|
||||
| *[in]* **axis** angle (radians)
|
||||
| *[in]* **axis** axis
|
||||
|
||||
.. c:function:: void glm_rotate_ndc(mat4 m, float angle, vec3 axis_ndc)
|
||||
|
||||
rotate existing transform matrix around Z axis by angle and axis
|
||||
this name may change in the future, axis must be normalized.
|
||||
|
||||
Parameters:
|
||||
| *[out]* **m** affine transfrom
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[in]* **axis_ndc** normalized axis
|
||||
|
||||
.. c:function:: void glm_rotate(mat4 m, float angle, vec3 axis)
|
||||
|
||||
rotate existing transform matrix around Z axis by angle and axis
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[in]* **axis** axis
|
||||
|
||||
.. c:function:: void glm_decompose_scalev(mat4 m, vec3 s)
|
||||
|
||||
decompose scale vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transform
|
||||
| *[out]* **s** scale vector (Sx, Sy, Sz)
|
||||
|
||||
.. c:function:: bool glm_uniscaled(mat4 m)
|
||||
|
||||
returns true if matrix is uniform scaled.
|
||||
This is helpful for creating normal matrix.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** matrix
|
||||
|
||||
.. c:function:: void glm_decompose_rs(mat4 m, mat4 r, vec3 s)
|
||||
|
||||
decompose rotation matrix (mat4) and scale vector [Sx, Sy, Sz]
|
||||
DON'T pass projected matrix here
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transform
|
||||
| *[out]* **r** rotation matrix
|
||||
| *[out]* **s** scale matrix
|
||||
|
||||
.. c:function:: void glm_decompose(mat4 m, vec4 t, mat4 r, vec3 s)
|
||||
|
||||
decompose affine transform, TODO: extract shear factors.
|
||||
DON'T pass projected matrix here
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transfrom
|
||||
| *[out]* **t** translation vector
|
||||
| *[out]* **r** rotation matrix (mat4)
|
||||
| *[out]* **s** scaling vector [X, Y, Z]
|
||||
47
docs/source/api.rst
Normal file
47
docs/source/api.rst
Normal file
@@ -0,0 +1,47 @@
|
||||
API documentation
|
||||
================================
|
||||
|
||||
Some functions may exist twice,
|
||||
once for their namespace and once for global namespace
|
||||
to make easier to write very common functions
|
||||
|
||||
For instance, in general we use :code:`glm_vec_dot` to get dot product
|
||||
of two **vec3**. Now we can also do this with :code:`glm_dot`,
|
||||
same for *_cross* and so on...
|
||||
|
||||
The original function stays where it is, the function in global namespace
|
||||
of same name is just an alias, so there is no call version of those functions.
|
||||
e.g there is no func like :code:`glmc_dot` because *glm_dot* is just alias for
|
||||
:code:`glm_vec_dot`
|
||||
|
||||
By including **cglm/cglm.h** header you will include all inline version
|
||||
of functions. Since functions in this header[s] are inline you don't need to
|
||||
build or link *cglm* against your project.
|
||||
|
||||
But by including **cglm/call.h** header you will include all *non-inline*
|
||||
version of functions. You need to build *cglm* and link it.
|
||||
Follow the :doc:`build` documentation for this
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: API categories:
|
||||
|
||||
affine
|
||||
affine-mat
|
||||
cam
|
||||
frustum
|
||||
box
|
||||
quat
|
||||
euler
|
||||
mat4
|
||||
mat3
|
||||
vec3
|
||||
vec3-ext
|
||||
vec4
|
||||
vec4-ext
|
||||
color
|
||||
plane
|
||||
project
|
||||
util
|
||||
io
|
||||
call
|
||||
133
docs/source/box.rst
Normal file
133
docs/source/box.rst
Normal file
@@ -0,0 +1,133 @@
|
||||
.. default-domain:: C
|
||||
|
||||
axis aligned bounding box (AABB)
|
||||
================================================================================
|
||||
|
||||
Header: cglm/box.h
|
||||
|
||||
Some convenient functions provided for AABB.
|
||||
|
||||
**Definition of box:**
|
||||
|
||||
cglm defines box as two dimensional array of vec3.
|
||||
The first element is **min** point and the second one is **max** point.
|
||||
If you have another type e.g. struct or even another representation then you must
|
||||
convert it before and after call cglm box function.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_aabb_transform`
|
||||
#. :c:func:`glm_aabb_merge`
|
||||
#. :c:func:`glm_aabb_crop`
|
||||
#. :c:func:`glm_aabb_crop_until`
|
||||
#. :c:func:`glm_aabb_frustum`
|
||||
#. :c:func:`glm_aabb_invalidate`
|
||||
#. :c:func:`glm_aabb_isvalid`
|
||||
#. :c:func:`glm_aabb_size`
|
||||
#. :c:func:`glm_aabb_radius`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2])
|
||||
|
||||
| apply transform to Axis-Aligned Bounding Box
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
| *[in]* **m** transform matrix
|
||||
| *[out]* **dest** transformed bounding box
|
||||
|
||||
.. c:function:: void glm_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2])
|
||||
|
||||
| merges two AABB bounding box and creates new one
|
||||
|
||||
two box must be in same space, if one of box is in different space then
|
||||
you should consider to convert it's space by glm_box_space
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box1** bounding box 1
|
||||
| *[in]* **box2** bounding box 2
|
||||
| *[out]* **dest** merged bounding box
|
||||
|
||||
.. c:function:: void glm_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2])
|
||||
|
||||
| crops a bounding box with another one.
|
||||
|
||||
this could be useful for gettng a bbox which fits with view frustum and
|
||||
object bounding boxes. In this case you crop view frustum box with objects
|
||||
box
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box 1
|
||||
| *[in]* **cropBox** crop box
|
||||
| *[out]* **dest** cropped bounding box
|
||||
|
||||
.. c:function:: void glm_aabb_crop_until(vec3 box[2], vec3 cropBox[2], vec3 clampBox[2], vec3 dest[2])
|
||||
|
||||
| crops a bounding box with another one.
|
||||
|
||||
this could be useful for gettng a bbox which fits with view frustum and
|
||||
object bounding boxes. In this case you crop view frustum box with objects
|
||||
box
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
| *[in]* **cropBox** crop box
|
||||
| *[in]* **clampBox** miniumum box
|
||||
| *[out]* **dest** cropped bounding box
|
||||
|
||||
.. c:function:: bool glm_aabb_frustum(vec3 box[2], vec4 planes[6])
|
||||
|
||||
| check if AABB intersects with frustum planes
|
||||
|
||||
this could be useful for frustum culling using AABB.
|
||||
|
||||
OPTIMIZATION HINT:
|
||||
if planes order is similar to LEFT, RIGHT, BOTTOM, TOP, NEAR, FAR
|
||||
then this method should run even faster because it would only use two
|
||||
planes if object is not inside the two planes
|
||||
fortunately cglm extracts planes as this order! just pass what you got!
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
| *[out]* **planes** frustum planes
|
||||
|
||||
.. c:function:: void glm_aabb_invalidate(vec3 box[2])
|
||||
|
||||
| invalidate AABB min and max values
|
||||
|
||||
| It fills *max* values with -FLT_MAX and *min* values with +FLT_MAX
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **box** bounding box
|
||||
|
||||
.. c:function:: bool glm_aabb_isvalid(vec3 box[2])
|
||||
|
||||
| check if AABB is valid or not
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
|
||||
Returns:
|
||||
returns true if aabb is valid otherwise false
|
||||
|
||||
.. c:function:: float glm_aabb_size(vec3 box[2])
|
||||
|
||||
| distance between of min and max
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
|
||||
Returns:
|
||||
distance between min - max
|
||||
|
||||
.. c:function:: float glm_aabb_radius(vec3 box[2])
|
||||
|
||||
| radius of sphere which surrounds AABB
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
19
docs/source/call.rst
Normal file
19
docs/source/call.rst
Normal file
@@ -0,0 +1,19 @@
|
||||
.. default-domain:: C
|
||||
|
||||
precompiled functions (call)
|
||||
================================================================================
|
||||
|
||||
All funcitons in **glm_** namespace are forced to **inline**.
|
||||
Most functions also have pre-compiled version.
|
||||
|
||||
Precompiled versions are in **glmc_** namespace. *c* in the namespace stands for
|
||||
"call".
|
||||
|
||||
Since precompiled functions are just wrapper for inline verisons,
|
||||
these functions are not documented individually.
|
||||
It would be duplicate documentation also it
|
||||
would be hard to sync documentation between inline and call verison for me.
|
||||
|
||||
By including **clgm/cglm.h** you include all inline verisons. To get precompiled
|
||||
versions you need to include **cglm/call.h** header it also includes all
|
||||
call versions plus *clgm/cglm.h* (inline verisons)
|
||||
298
docs/source/cam.rst
Normal file
298
docs/source/cam.rst
Normal file
@@ -0,0 +1,298 @@
|
||||
.. default-domain:: C
|
||||
|
||||
camera
|
||||
======
|
||||
|
||||
Header: cglm/cam.h
|
||||
|
||||
There are many convenient functions for camera. For instance :c:func:`glm_look`
|
||||
is just wrapper for :c:func:`glm_lookat`. Sometimes you only have direction
|
||||
instead of target, so that makes easy to build view matrix using direction.
|
||||
There is also :c:func:`glm_look_anyup` function which can help build view matrix
|
||||
without providing UP axis. It uses :c:func:`glm_vec_ortho` to get a UP axis and
|
||||
builds view matrix.
|
||||
|
||||
You can also *_default* versions of ortho and perspective to build projection
|
||||
fast if you don't care specific projection values.
|
||||
|
||||
*_decomp* means decompose; these function can help to decompose projection
|
||||
matrices.
|
||||
|
||||
**NOTE**: Be careful when working with high range (very small near, very large
|
||||
far) projection matrices. You may not get exact value you gave.
|
||||
**float** type cannot store very high precision so you will lose precision.
|
||||
Also your projection matrix will be inaccurate due to losing precision
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_frustum`
|
||||
#. :c:func:`glm_ortho`
|
||||
#. :c:func:`glm_ortho_aabb`
|
||||
#. :c:func:`glm_ortho_aabb_p`
|
||||
#. :c:func:`glm_ortho_aabb_pz`
|
||||
#. :c:func:`glm_ortho_default`
|
||||
#. :c:func:`glm_ortho_default_s`
|
||||
#. :c:func:`glm_perspective`
|
||||
#. :c:func:`glm_perspective_default`
|
||||
#. :c:func:`glm_perspective_resize`
|
||||
#. :c:func:`glm_lookat`
|
||||
#. :c:func:`glm_look`
|
||||
#. :c:func:`glm_look_anyup`
|
||||
#. :c:func:`glm_persp_decomp`
|
||||
#. :c:func:`glm_persp_decompv`
|
||||
#. :c:func:`glm_persp_decomp_x`
|
||||
#. :c:func:`glm_persp_decomp_y`
|
||||
#. :c:func:`glm_persp_decomp_z`
|
||||
#. :c:func:`glm_persp_decomp_far`
|
||||
#. :c:func:`glm_persp_decomp_near`
|
||||
#. :c:func:`glm_persp_fovy`
|
||||
#. :c:func:`glm_persp_aspect`
|
||||
#. :c:func:`glm_persp_sizes`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_frustum(float left, float right, float bottom, float top, float nearVal, float farVal, mat4 dest)
|
||||
|
||||
| set up perspective peprojection matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **left** viewport.left
|
||||
| *[in]* **right** viewport.right
|
||||
| *[in]* **bottom** viewport.bottom
|
||||
| *[in]* **top** viewport.top
|
||||
| *[in]* **nearVal** near clipping plane
|
||||
| *[in]* **farVal** far clipping plane
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_ortho(float left, float right, float bottom, float top, float nearVal, float farVal, mat4 dest)
|
||||
|
||||
| set up orthographic projection matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **left** viewport.left
|
||||
| *[in]* **right** viewport.right
|
||||
| *[in]* **bottom** viewport.bottom
|
||||
| *[in]* **top** viewport.top
|
||||
| *[in]* **nearVal** near clipping plane
|
||||
| *[in]* **farVal** far clipping plane
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_ortho_aabb(vec3 box[2], mat4 dest)
|
||||
|
||||
| set up orthographic projection matrix using bounding box
|
||||
| bounding box (AABB) must be in view space
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** AABB
|
||||
| *[in]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest)
|
||||
|
||||
| set up orthographic projection matrix using bounding box
|
||||
| bounding box (AABB) must be in view space
|
||||
|
||||
this version adds padding to box
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** AABB
|
||||
| *[in]* **padding** padding
|
||||
| *[out]* **d** result matrix
|
||||
|
||||
.. c:function:: void glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest)
|
||||
|
||||
| set up orthographic projection matrix using bounding box
|
||||
| bounding box (AABB) must be in view space
|
||||
|
||||
this version adds Z padding to box
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** AABB
|
||||
| *[in]* **padding** padding for near and far
|
||||
| *[out]* **d** result matrix
|
||||
|
||||
Returns:
|
||||
square of norm / magnitude
|
||||
|
||||
.. c:function:: void glm_ortho_default(float aspect, mat4 dest)
|
||||
|
||||
| set up unit orthographic projection matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **aspect** aspect ration ( width / height )
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_ortho_default_s(float aspect, float size, mat4 dest)
|
||||
|
||||
| set up orthographic projection matrix with given CUBE size
|
||||
|
||||
Parameters:
|
||||
| *[in]* **aspect** aspect ration ( width / height )
|
||||
| *[in]* **size** cube size
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_perspective(float fovy, float aspect, float nearVal, float farVal, mat4 dest)
|
||||
|
||||
| set up perspective projection matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **fovy** field of view angle
|
||||
| *[in]* **aspect** aspect ratio ( width / height )
|
||||
| *[in]* **nearVal** near clipping plane
|
||||
| *[in]* **farVal** far clipping planes
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_perspective_default(float aspect, mat4 dest)
|
||||
|
||||
| set up perspective projection matrix with default near/far
|
||||
and angle values
|
||||
|
||||
Parameters:
|
||||
| *[in]* **aspect** aspect aspect ratio ( width / height )
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_perspective_resize(float aspect, mat4 proj)
|
||||
|
||||
| resize perspective matrix by aspect ratio ( width / height )
|
||||
this makes very easy to resize proj matrix when window / viewport reized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **aspect** aspect ratio ( width / height )
|
||||
| *[in, out]* **proj** perspective projection matrix
|
||||
|
||||
.. c:function:: void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest)
|
||||
|
||||
| set up view matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **eye** eye vector
|
||||
| *[in]* **center** center vector
|
||||
| *[in]* **up** up vector
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest)
|
||||
|
||||
| set up view matrix
|
||||
|
||||
convenient wrapper for :c:func:`glm_lookat`: if you only have direction not
|
||||
target self then this might be useful. Because you need to get target
|
||||
from direction.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **eye** eye vector
|
||||
| *[in]* **center** direction vector
|
||||
| *[in]* **up** up vector
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_look_anyup(vec3 eye, vec3 dir, mat4 dest)
|
||||
|
||||
| set up view matrix
|
||||
|
||||
convenient wrapper for :c:func:`glm_look` if you only have direction
|
||||
and if you don't care what UP vector is then this might be useful
|
||||
to create view matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **eye** eye vector
|
||||
| *[in]* **center** direction vector
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_persp_decomp(mat4 proj, float *nearVal, float *farVal, float *top, float *bottom, float *left, float *right)
|
||||
|
||||
| decomposes frustum values of perspective projection.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **eye** perspective projection matrix
|
||||
| *[out]* **nearVal** near
|
||||
| *[out]* **farVal** far
|
||||
| *[out]* **top** top
|
||||
| *[out]* **bottom** bottom
|
||||
| *[out]* **left** left
|
||||
| *[out]* **right** right
|
||||
|
||||
.. c:function:: void glm_persp_decompv(mat4 proj, float dest[6])
|
||||
|
||||
| decomposes frustum values of perspective projection.
|
||||
| this makes easy to get all values at once
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[out]* **dest** array
|
||||
|
||||
.. c:function:: void glm_persp_decomp_x(mat4 proj, float *left, float *right)
|
||||
|
||||
| decomposes left and right values of perspective projection.
|
||||
| x stands for x axis (left / right axis)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[out]* **left** left
|
||||
| *[out]* **right** right
|
||||
|
||||
.. c:function:: void glm_persp_decomp_y(mat4 proj, float *top, float *bottom)
|
||||
|
||||
| decomposes top and bottom values of perspective projection.
|
||||
| y stands for y axis (top / botom axis)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[out]* **top** top
|
||||
| *[out]* **bottom** bottom
|
||||
|
||||
.. c:function:: void glm_persp_decomp_z(mat4 proj, float *nearVal, float *farVal)
|
||||
|
||||
| decomposes near and far values of perspective projection.
|
||||
| z stands for z axis (near / far axis)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[out]* **nearVal** near
|
||||
| *[out]* **farVal** far
|
||||
|
||||
.. c:function:: void glm_persp_decomp_far(mat4 proj, float * __restrict farVal)
|
||||
|
||||
| decomposes far value of perspective projection.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[out]* **farVal** far
|
||||
|
||||
.. c:function:: void glm_persp_decomp_near(mat4 proj, float * __restrict nearVal)
|
||||
|
||||
| decomposes near value of perspective projection.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[out]* **nearVal** near
|
||||
|
||||
.. c:function:: float glm_persp_fovy(mat4 proj)
|
||||
|
||||
| returns field of view angle along the Y-axis (in radians)
|
||||
|
||||
if you need to degrees, use glm_deg to convert it or use this:
|
||||
fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
|
||||
Returns:
|
||||
| fovy in radians
|
||||
|
||||
.. c:function:: float glm_persp_aspect(mat4 proj)
|
||||
|
||||
| returns aspect ratio of perspective projection
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
|
||||
.. c:function:: void glm_persp_sizes(mat4 proj, float fovy, vec4 dest)
|
||||
|
||||
| returns sizes of near and far planes of perspective projection
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[in]* **fovy** fovy (see brief)
|
||||
| *[out]* **dest** sizes order: [Wnear, Hnear, Wfar, Hfar]
|
||||
BIN
docs/source/cglm-intro.png
Normal file
BIN
docs/source/cglm-intro.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 72 KiB |
34
docs/source/color.rst
Normal file
34
docs/source/color.rst
Normal file
@@ -0,0 +1,34 @@
|
||||
.. default-domain:: C
|
||||
|
||||
color
|
||||
================================================================================
|
||||
|
||||
Header: cglm/color.h
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_luminance`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: float glm_luminance(vec3 rgb)
|
||||
|
||||
| averages the color channels into one value
|
||||
|
||||
This function uses formula in COLLADA 1.5 spec which is
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
luminance = (color.r * 0.212671) +
|
||||
(color.g * 0.715160) +
|
||||
(color.b * 0.072169)
|
||||
|
||||
It is based on the ISO/CIE color standards (see ITU-R Recommendation BT.709-4),
|
||||
that averages the color channels into one value
|
||||
|
||||
Parameters:
|
||||
| *[in]* **rgb** RGB color
|
||||
@@ -30,7 +30,15 @@
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = []
|
||||
extensions = [
|
||||
'sphinx.ext.doctest',
|
||||
'sphinx.ext.todo',
|
||||
'sphinx.ext.coverage',
|
||||
'sphinx.ext.mathjax',
|
||||
'sphinx.ext.ifconfig',
|
||||
'sphinx.ext.viewcode',
|
||||
'sphinx.ext.githubpages'
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
@@ -54,9 +62,9 @@ author = u'Recep Aslantas'
|
||||
# built documents.
|
||||
#
|
||||
# The short X.Y version.
|
||||
version = u'0.2.1'
|
||||
version = u'0.3.4'
|
||||
# The full version, including alpha/beta/rc tags.
|
||||
release = u'0.2.1'
|
||||
release = u'0.3.4'
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
@@ -161,3 +169,31 @@ texinfo_documents = [
|
||||
author, 'cglm', 'One line description of project.',
|
||||
'Miscellaneous'),
|
||||
]
|
||||
|
||||
# -- Options for Epub output -------------------------------------------------
|
||||
|
||||
# Bibliographic Dublin Core info.
|
||||
epub_title = project
|
||||
epub_author = author
|
||||
epub_publisher = author
|
||||
epub_copyright = copyright
|
||||
|
||||
# The unique identifier of the text. This can be a ISBN number
|
||||
# or the project homepage.
|
||||
#
|
||||
# epub_identifier = ''
|
||||
|
||||
# A unique identification for the text.
|
||||
#
|
||||
# epub_uid = ''
|
||||
|
||||
# A list of files that should not be packed into the epub file.
|
||||
epub_exclude_files = ['search.html']
|
||||
|
||||
|
||||
# -- Extension configuration -------------------------------------------------
|
||||
|
||||
# -- Options for todo extension ----------------------------------------------
|
||||
|
||||
# If true, `todo` and `todoList` produce output, else they produce nothing.
|
||||
todo_include_todos = True
|
||||
|
||||
182
docs/source/euler.rst
Normal file
182
docs/source/euler.rst
Normal file
@@ -0,0 +1,182 @@
|
||||
.. default-domain:: C
|
||||
|
||||
euler angles
|
||||
============
|
||||
|
||||
Header: cglm/euler.h
|
||||
|
||||
You may wonder what **glm_euler_sq** type ( **_sq** stands for sequence ) and
|
||||
:c:func:`glm_euler_by_order` do.
|
||||
I used them to convert euler angles in one coordinate system to another. For
|
||||
instance if you have **Z_UP** euler angles and if you want to convert it
|
||||
to **Y_UP** axis then :c:func:`glm_euler_by_order` is your friend. For more
|
||||
information check :c:func:`glm_euler_order` documentation
|
||||
|
||||
You must pass arrays as array, if you use C compiler then you can use something
|
||||
like this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
float pitch, yaw, roll;
|
||||
mat4 rot;
|
||||
|
||||
/* pitch = ...; yaw = ...; roll = ... */
|
||||
glm_euler((vec3){pitch, yaw, roll}, rot);
|
||||
|
||||
Rotation Conveniention
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
Current *cglm*'s euler functions uses these convention:
|
||||
|
||||
* Tait–Bryan angles (x-y-z convention)
|
||||
* Intrinsic rotations (pitch, yaw and roll).
|
||||
This is reserve order of extrinsic (elevation, heading and bank) rotation
|
||||
* Right hand rule (actually all rotations in *cglm* use **RH**)
|
||||
* All angles used in *cglm* are **RADIANS** not degrees
|
||||
|
||||
|
||||
**NOTE**: The default :c:func:`glm_euler` function is the short name of
|
||||
:c:func:`glm_euler_xyz` this is why you can't see :c:func:`glm_euler_xyz`.
|
||||
When you see an euler function which doesn't have any X, Y, Z suffix then
|
||||
assume that uses **_xyz** (or instead it accept order as parameter).
|
||||
|
||||
If rotation doesn't work properly, your options:
|
||||
|
||||
1. If you use (or paste) degrees convert it to radians before calling an euler function
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
float pitch, yaw, roll;
|
||||
mat4 rot;
|
||||
|
||||
/* pitch = degrees; yaw = degrees; roll = degrees */
|
||||
glm_euler((vec3){glm_rad(pitch), glm_rad(yaw), glm_rad(roll)}, rot);
|
||||
|
||||
2. Convention mismatch. You may have extrinsic angles,
|
||||
if you do (if you must) then consider to use reverse order e.g if you have
|
||||
**xyz** extrinsic then use **zyx**
|
||||
|
||||
3. *cglm* may implemented it wrong, consider to create an issue to report it
|
||||
or pull request to fix it
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Types:
|
||||
|
||||
1. glm_euler_sq
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_euler_order`
|
||||
#. :c:func:`glm_euler_angles`
|
||||
#. :c:func:`glm_euler`
|
||||
#. :c:func:`glm_euler_xyz`
|
||||
#. :c:func:`glm_euler_zyx`
|
||||
#. :c:func:`glm_euler_zxy`
|
||||
#. :c:func:`glm_euler_xzy`
|
||||
#. :c:func:`glm_euler_yzx`
|
||||
#. :c:func:`glm_euler_yxz`
|
||||
#. :c:func:`glm_euler_by_order`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: glm_euler_sq glm_euler_order(int ord[3])
|
||||
|
||||
| packs euler angles order to glm_euler_sq enum.
|
||||
|
||||
To use :c:func:`glm_euler_by_order` function you need *glm_euler_sq*. You
|
||||
can get it with this function.
|
||||
|
||||
You can build param like this:
|
||||
|
||||
| X = 0, Y = 1, Z = 2
|
||||
|
||||
if you have ZYX order then you pass this: [2, 1, 0] = ZYX.
|
||||
if you have YXZ order then you pass this: [1, 0, 2] = YXZ
|
||||
|
||||
As you can see first item specifies which axis will be first then the
|
||||
second one specifies which one will be next an so on.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **ord** euler angles order [Angle1, Angle2, Angle2]
|
||||
|
||||
Returns:
|
||||
packed euler order
|
||||
|
||||
.. c:function:: void glm_euler_angles(mat4 m, vec3 dest)
|
||||
|
||||
| extract euler angles (in radians) using xyz order
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transform
|
||||
| *[out]* **dest** angles vector [x, y, z]
|
||||
|
||||
.. c:function:: void glm_euler(vec3 angles, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles
|
||||
|
||||
this is alias of glm_euler_xyz function
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_xyz(vec3 angles, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_zyx(vec3 angles, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_zxy(vec3 angles, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_xzy(vec3 angles, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_yzx(vec3 angles, mat4 dest)
|
||||
|
||||
build rotation matrix from euler angles
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_yxz(vec3 angles, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_by_order(vec3 angles, glm_euler_sq ord, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles with given euler order.
|
||||
|
||||
Use :c:func:`glm_euler_order` function to build *ord* parameter
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **ord** euler order
|
||||
| *[in]* **dest** rotation matrix
|
||||
168
docs/source/frustum.rst
Normal file
168
docs/source/frustum.rst
Normal file
@@ -0,0 +1,168 @@
|
||||
.. default-domain:: C
|
||||
|
||||
frustum
|
||||
=============
|
||||
|
||||
Header: cglm/frustum.h
|
||||
|
||||
cglm provides convenient functions to extract frustum planes, corners...
|
||||
All extracted corners are **vec4** so you must create array of **vec4**
|
||||
not **vec3**. If you want to store them to save space you msut convert them
|
||||
yourself.
|
||||
|
||||
**vec4** is used to speed up functions need to corners. This is why frustum
|
||||
fucntions use *vec4* instead of *vec3*
|
||||
|
||||
Currenty related-functions use [-1, 1] clip space configuration to extract
|
||||
corners but you can override it by prodiving **GLM_CUSTOM_CLIPSPACE** macro.
|
||||
If you provide it then you have to all bottom macros as *vec4*
|
||||
|
||||
Current configuration:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
/* near */
|
||||
GLM_CSCOORD_LBN {-1.0f, -1.0f, -1.0f, 1.0f}
|
||||
GLM_CSCOORD_LTN {-1.0f, 1.0f, -1.0f, 1.0f}
|
||||
GLM_CSCOORD_RTN { 1.0f, 1.0f, -1.0f, 1.0f}
|
||||
GLM_CSCOORD_RBN { 1.0f, -1.0f, -1.0f, 1.0f}
|
||||
|
||||
/* far */
|
||||
GLM_CSCOORD_LBF {-1.0f, -1.0f, 1.0f, 1.0f}
|
||||
GLM_CSCOORD_LTF {-1.0f, 1.0f, 1.0f, 1.0f}
|
||||
GLM_CSCOORD_RTF { 1.0f, 1.0f, 1.0f, 1.0f}
|
||||
GLM_CSCOORD_RBF { 1.0f, -1.0f, 1.0f, 1.0f}
|
||||
|
||||
|
||||
Explain of short names:
|
||||
* **LBN**: left bottom near
|
||||
* **LTN**: left top near
|
||||
* **RTN**: right top near
|
||||
* **RBN**: right bottom near
|
||||
* **LBF**: left bottom far
|
||||
* **LTF**: left top far
|
||||
* **RTF**: right top far
|
||||
* **RBF**: right bottom far
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Macros:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
GLM_LBN 0 /* left bottom near */
|
||||
GLM_LTN 1 /* left top near */
|
||||
GLM_RTN 2 /* right top near */
|
||||
GLM_RBN 3 /* right bottom near */
|
||||
|
||||
GLM_LBF 4 /* left bottom far */
|
||||
GLM_LTF 5 /* left top far */
|
||||
GLM_RTF 6 /* right top far */
|
||||
GLM_RBF 7 /* right bottom far */
|
||||
|
||||
GLM_LEFT 0
|
||||
GLM_RIGHT 1
|
||||
GLM_BOTTOM 2
|
||||
GLM_TOP 3
|
||||
GLM_NEAR 4
|
||||
GLM_FAR 5
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_frustum_planes`
|
||||
#. :c:func:`glm_frustum_corners`
|
||||
#. :c:func:`glm_frustum_center`
|
||||
#. :c:func:`glm_frustum_box`
|
||||
#. :c:func:`glm_frustum_corners_at`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_frustum_planes(mat4 m, vec4 dest[6])
|
||||
|
||||
| extracts view frustum planes
|
||||
|
||||
planes' space:
|
||||
- if m = proj: View Space
|
||||
- if m = viewProj: World Space
|
||||
- if m = MVP: Object Space
|
||||
|
||||
You probably want to extract planes in world space so use viewProj as m
|
||||
Computing viewProj:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
glm_mat4_mul(proj, view, viewProj);
|
||||
|
||||
Exracted planes order: [left, right, bottom, top, near, far]
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** matrix
|
||||
| *[out]* **dest** exracted view frustum planes
|
||||
|
||||
.. c:function:: void glm_frustum_corners(mat4 invMat, vec4 dest[8])
|
||||
|
||||
| extracts view frustum corners using clip-space coordinates
|
||||
|
||||
corners' space:
|
||||
- if m = invViewProj: World Space
|
||||
- if m = invMVP: Object Space
|
||||
|
||||
You probably want to extract corners in world space so use **invViewProj**
|
||||
Computing invViewProj:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
glm_mat4_mul(proj, view, viewProj);
|
||||
...
|
||||
glm_mat4_inv(viewProj, invViewProj);
|
||||
|
||||
if you have a near coord at **i** index,
|
||||
you can get it's far coord by i + 4;
|
||||
follow example below to understand that
|
||||
|
||||
For instance to find center coordinates between a near and its far coord:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
for (j = 0; j < 4; j++) {
|
||||
glm_vec_center(corners[i], corners[i + 4], centerCorners[i]);
|
||||
}
|
||||
|
||||
corners[i + 4] is far of corners[i] point.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **invMat** matrix
|
||||
| *[out]* **dest** exracted view frustum corners
|
||||
|
||||
.. c:function:: void glm_frustum_center(vec4 corners[8], vec4 dest)
|
||||
|
||||
| finds center of view frustum
|
||||
|
||||
Parameters:
|
||||
| *[in]* **corners** view frustum corners
|
||||
| *[out]* **dest** view frustum center
|
||||
|
||||
.. c:function:: void glm_frustum_box(vec4 corners[8], mat4 m, vec3 box[2])
|
||||
|
||||
| finds bounding box of frustum relative to given matrix e.g. view mat
|
||||
|
||||
Parameters:
|
||||
| *[in]* **corners** view frustum corners
|
||||
| *[in]* **m** matrix to convert existing conners
|
||||
| *[out]* **box** bounding box as array [min, max]
|
||||
|
||||
.. c:function:: void glm_frustum_corners_at(vec4 corners[8], float splitDist, float farDist, vec4 planeCorners[4])
|
||||
|
||||
| finds planes corners which is between near and far planes (parallel)
|
||||
|
||||
this will be helpful if you want to split a frustum e.g. CSM/PSSM. This will
|
||||
find planes' corners but you will need to one more plane.
|
||||
Actually you have it, it is near, far or created previously with this func ;)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **corners** frustum corners
|
||||
| *[in]* **splitDist** split distance
|
||||
| *[in]* **farDist** far distance (zFar)
|
||||
| *[out]* **planeCorners** plane corners [LB, LT, RT, RB]
|
||||
@@ -1,6 +1,9 @@
|
||||
Getting Started
|
||||
================================
|
||||
|
||||
Types:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
**cglm** uses **glm** prefix for all functions e.g. glm_lookat. You can see supported types in common header file:
|
||||
|
||||
.. code-block:: c
|
||||
@@ -18,23 +21,50 @@ Getting Started
|
||||
As you can see types don't store extra informations in favor of space.
|
||||
You can send these values e.g. matrix to OpenGL directly without casting or calling a function like *value_ptr*
|
||||
|
||||
*vec4* and *mat4* requires 16 byte aligment because vec4 and mat4 operations are
|
||||
Aligment is Required:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
**vec4** and **mat4** requires 16 byte aligment because vec4 and mat4 operations are
|
||||
vectorized by SIMD instructions (SSE/AVX).
|
||||
|
||||
Allocations:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
*cglm* doesn't alloc any memory on heap. So it doesn't provide any allocator.
|
||||
You must allocate memory yourself. You should alloc memory for out parameters too if you pass pointer of memory location.
|
||||
When allocating memory don't forget that **vec4** and **mat4** requires aligment.
|
||||
|
||||
**NOTE:** Unaligned vec4 and unaligned mat4 operations will be supported in the future. Check todo list.
|
||||
Because you may want to multiply a CGLM matrix with external matrix.
|
||||
There is no guarantee that non-CGLM matrix is aligned. Unaligned types will have *u* prefix e.g. **umat4**
|
||||
|
||||
Array vs Struct:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
*cglm* uses arrays for vector and matrix types. So you can't access individual
|
||||
elements like vec.x, vec.y, vec.z... You must use subscript to access vector elements
|
||||
e.g. vec[0], vec[1], vec[2].
|
||||
|
||||
Also I think it is more meaningful to access matrix elements with subscript
|
||||
e.g **matrix[2][3]** instead of **matrix._23**. Since matrix is array of vectors,
|
||||
vectors are also defined as array. This makes types homogeneous.
|
||||
|
||||
**Return arrays?**
|
||||
|
||||
Since C doesn't support return arrays, cglm also doesn't support this feature.
|
||||
|
||||
Function design:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. image:: cglm-intro.png
|
||||
:width: 492px
|
||||
:height: 297px
|
||||
:align: center
|
||||
|
||||
cglm provides a few way to call a function to do same operation.
|
||||
|
||||
* Inline - *glm_, glm_u*
|
||||
* aligned
|
||||
* unaligned (todo)
|
||||
* Pre-compiled - *glmc_, glmc_u*
|
||||
* aligned
|
||||
* unaligned (todo)
|
||||
|
||||
For instance **glm_mat4_mul** is inline (all *glm_* functions are inline), to make it non-inline (pre-compiled)
|
||||
For instance **glm_mat4_mul** is inline (all *glm_* functions are inline), to make it non-inline (pre-compiled),
|
||||
call it as **glmc_mat4_mul** from library, to use unaligned version use **glm_umat4_mul** (todo).
|
||||
|
||||
Most functions have **dest** parameter for output. For instance mat4_mul func looks like this:
|
||||
|
||||
@@ -9,7 +9,7 @@ Welcome to cglm's documentation!
|
||||
**cglm** is optimized 3D math library written in C99 (compatible with C89).
|
||||
It is similar to original **glm** library except this is mainly for **C**
|
||||
|
||||
This library stores matrices as row-major order but in the future column-major
|
||||
This library stores matrices as column-major order but in the future row-major
|
||||
is considered to be supported as optional.
|
||||
|
||||
Also currently only **float** type is supported for most operations.
|
||||
@@ -28,14 +28,18 @@ Also currently only **float** type is supported for most operations.
|
||||
* euler angles / yaw-pitch-roll to matrix
|
||||
* extract euler angles
|
||||
* inline or pre-compiled function call
|
||||
* more features (todo)
|
||||
* frustum (extract view frustum planes, corners...)
|
||||
* bounding box (AABB in Frustum (culling), crop, merge...)
|
||||
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:maxdepth: 1
|
||||
:caption: Table Of Contents:
|
||||
|
||||
build
|
||||
getting_started
|
||||
opengl
|
||||
api
|
||||
|
||||
Indices and tables
|
||||
==================
|
||||
|
||||
102
docs/source/io.rst
Normal file
102
docs/source/io.rst
Normal file
@@ -0,0 +1,102 @@
|
||||
.. default-domain:: C
|
||||
|
||||
io (input / output e.g. print)
|
||||
================================================================================
|
||||
|
||||
Header: cglm/io.h
|
||||
|
||||
There are some built-in print functions which may save your time,
|
||||
especially for debugging.
|
||||
|
||||
All functions accept **FILE** parameter which makes very flexible.
|
||||
You can even print it to file on disk.
|
||||
|
||||
In general you will want to print them to console to see results.
|
||||
You can use **stdout** and **stderr** to write results to console.
|
||||
Some programs may occupy **stdout** but you can still use **stderr**.
|
||||
Using **stderr** is suggested.
|
||||
|
||||
Example to print mat4 matrix:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat4 transform;
|
||||
/* ... */
|
||||
glm_mat4_print(transform, stderr);
|
||||
|
||||
**NOTE:** print functions use **%0.4f** precision if you need more
|
||||
(you probably will in some cases), you can change it temporary.
|
||||
cglm may provide precision parameter in the future
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_mat4_print`
|
||||
#. :c:func:`glm_mat3_print`
|
||||
#. :c:func:`glm_vec4_print`
|
||||
#. :c:func:`glm_vec3_print`
|
||||
#. :c:func:`glm_ivec3_print`
|
||||
#. :c:func:`glm_versor_print`
|
||||
#. :c:func:`glm_aabb_print`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_mat4_print(mat4 matrix, FILE * __restrict ostream)
|
||||
|
||||
| print mat4 to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **matrix** matrix
|
||||
| *[in]* **ostream** FILE to write
|
||||
|
||||
.. c:function:: void glm_mat3_print(mat3 matrix, FILE * __restrict ostream)
|
||||
|
||||
| print mat3 to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **matrix** matrix
|
||||
| *[in]* **ostream** FILE to write
|
||||
|
||||
.. c:function:: void glm_vec4_print(vec4 vec, FILE * __restrict ostream)
|
||||
|
||||
| print vec4 to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector
|
||||
| *[in]* **ostream** FILE to write
|
||||
|
||||
.. c:function:: void glm_vec3_print(vec3 vec, FILE * __restrict ostream)
|
||||
|
||||
| print vec3 to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector
|
||||
| *[in]* **ostream** FILE to write
|
||||
|
||||
.. c:function:: void glm_ivec3_print(ivec3 vec, FILE * __restrict ostream)
|
||||
|
||||
| print ivec3 to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector
|
||||
| *[in]* **ostream** FILE to write
|
||||
|
||||
.. c:function:: void glm_versor_print(versor vec, FILE * __restrict ostream)
|
||||
|
||||
| print quaternion to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** quaternion
|
||||
| *[in]* **ostream** FILE to write
|
||||
|
||||
.. c:function:: void glm_aabb_print(versor vec, const char * __restrict tag, FILE * __restrict ostream)
|
||||
|
||||
| print aabb to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** aabb (axis-aligned bounding box)
|
||||
| *[in]* **tag** tag to find it more easly in logs
|
||||
| *[in]* **ostream** FILE to write
|
||||
134
docs/source/mat3.rst
Normal file
134
docs/source/mat3.rst
Normal file
@@ -0,0 +1,134 @@
|
||||
.. default-domain:: C
|
||||
|
||||
mat3
|
||||
====
|
||||
|
||||
Header: cglm/mat3.h
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Macros:
|
||||
|
||||
1. GLM_MAT3_IDENTITY_INIT
|
||||
#. GLM_MAT3_ZERO_INIT
|
||||
#. GLM_MAT3_IDENTITY
|
||||
#. GLM_MAT3_ZERO
|
||||
#. glm_mat3_dup(mat, dest)
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_mat3_copy`
|
||||
#. :c:func:`glm_mat3_identity`
|
||||
#. :c:func:`glm_mat3_mul`
|
||||
#. :c:func:`glm_mat3_transpose_to`
|
||||
#. :c:func:`glm_mat3_transpose`
|
||||
#. :c:func:`glm_mat3_mulv`
|
||||
#. :c:func:`glm_mat3_scale`
|
||||
#. :c:func:`glm_mat3_det`
|
||||
#. :c:func:`glm_mat3_inv`
|
||||
#. :c:func:`glm_mat3_swap_col`
|
||||
#. :c:func:`glm_mat3_swap_row`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_mat3_copy(mat3 mat, mat3 dest)
|
||||
|
||||
copy mat3 to another one (dest).
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat3_identity(mat3 mat)
|
||||
|
||||
copy identity mat3 to mat, or makes mat to identiy
|
||||
|
||||
Parameters:
|
||||
| *[out]* **mat** matrix
|
||||
|
||||
.. c:function:: void glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest)
|
||||
|
||||
multiply m1 and m2 to dest
|
||||
m1, m2 and dest matrices can be same matrix, it is possible to write this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat3 m = GLM_MAT3_IDENTITY_INIT;
|
||||
glm_mat3_mul(m, m, m);
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m1** left matrix
|
||||
| *[in]* **m2** right matrix
|
||||
| *[out]* **dest** destination matrix
|
||||
|
||||
.. c:function:: void glm_mat3_transpose_to(mat3 m, mat3 dest)
|
||||
|
||||
transpose mat4 and store in dest
|
||||
source matrix will not be transposed unless dest is m
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat3_transpose(mat3 m)
|
||||
|
||||
tranpose mat3 and store result in same matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat3_mulv(mat3 m, vec3 v, vec3 dest)
|
||||
|
||||
multiply mat4 with vec4 (column vector) and store in dest vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** mat3 (left)
|
||||
| *[in]* **v** vec3 (right, column vector)
|
||||
| *[out]* **dest** destination (result, column vector)
|
||||
|
||||
.. c:function:: void glm_mat3_scale(mat3 m, float s)
|
||||
|
||||
multiply matrix with scalar
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **mat** matrix
|
||||
| *[in]* **dest** scalar
|
||||
|
||||
.. c:function:: float glm_mat3_det(mat3 mat)
|
||||
|
||||
returns mat3 determinant
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** matrix
|
||||
|
||||
Returns:
|
||||
mat3 determinant
|
||||
|
||||
.. c:function:: void glm_mat3_inv(mat3 mat, mat3 dest)
|
||||
|
||||
inverse mat3 and store in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** matrix
|
||||
| *[out]* **dest** destination (inverse matrix)
|
||||
|
||||
.. c:function:: void glm_mat3_swap_col(mat3 mat, int col1, int col2)
|
||||
|
||||
swap two matrix columns
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **mat** matrix
|
||||
| *[in]* **col1** col1
|
||||
| *[in]* **col2** col2
|
||||
|
||||
.. c:function:: void glm_mat3_swap_row(mat3 mat, int row1, int row2)
|
||||
|
||||
swap two matrix rows
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **mat** matrix
|
||||
| *[in]* **row1** row1
|
||||
| *[in]* **row2** row2
|
||||
231
docs/source/mat4.rst
Normal file
231
docs/source/mat4.rst
Normal file
@@ -0,0 +1,231 @@
|
||||
.. default-domain:: C
|
||||
|
||||
mat4
|
||||
====
|
||||
|
||||
Header: cglm/mat4.h
|
||||
|
||||
Important: :c:func:`glm_mat4_scale` multiplies mat4 with scalar, if you need to
|
||||
apply scale transform use :c:func:`glm_scale` functions.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Macros:
|
||||
|
||||
1. GLM_MAT4_IDENTITY_INIT
|
||||
#. GLM_MAT4_ZERO_INIT
|
||||
#. GLM_MAT4_IDENTITY
|
||||
#. GLM_MAT4_ZERO
|
||||
#. glm_mat4_udup(mat, dest)
|
||||
#. glm_mat4_dup(mat, dest)
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_mat4_ucopy`
|
||||
#. :c:func:`glm_mat4_copy`
|
||||
#. :c:func:`glm_mat4_identity`
|
||||
#. :c:func:`glm_mat4_pick3`
|
||||
#. :c:func:`glm_mat4_pick3t`
|
||||
#. :c:func:`glm_mat4_ins3`
|
||||
#. :c:func:`glm_mat4_mul`
|
||||
#. :c:func:`glm_mat4_mulN`
|
||||
#. :c:func:`glm_mat4_mulv`
|
||||
#. :c:func:`glm_mat4_mulv3`
|
||||
#. :c:func:`glm_mat4_transpose_to`
|
||||
#. :c:func:`glm_mat4_transpose`
|
||||
#. :c:func:`glm_mat4_scale_p`
|
||||
#. :c:func:`glm_mat4_scale`
|
||||
#. :c:func:`glm_mat4_det`
|
||||
#. :c:func:`glm_mat4_inv`
|
||||
#. :c:func:`glm_mat4_inv_fast`
|
||||
#. :c:func:`glm_mat4_swap_col`
|
||||
#. :c:func:`glm_mat4_swap_row`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_mat4_ucopy(mat4 mat, mat4 dest)
|
||||
|
||||
copy mat4 to another one (dest). u means align is not required for dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat4_copy(mat4 mat, mat4 dest)
|
||||
|
||||
copy mat4 to another one (dest).
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat4_identity(mat4 mat)
|
||||
|
||||
copy identity mat4 to mat, or makes mat to identiy
|
||||
|
||||
Parameters:
|
||||
| *[out]* **mat** matrix
|
||||
|
||||
.. c:function:: void glm_mat4_pick3(mat4 mat, mat3 dest)
|
||||
|
||||
copy upper-left of mat4 to mat3
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat4_pick3t(mat4 mat, mat4 dest)
|
||||
|
||||
copy upper-left of mat4 to mat3 (transposed)
|
||||
the postfix t stands for transpose
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat4_ins3(mat3 mat, mat4 dest)
|
||||
|
||||
copy mat3 to mat4's upper-left. this function does not fill mat4's other
|
||||
elements. To do that use glm_mat4.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest)
|
||||
|
||||
multiply m1 and m2 to dest
|
||||
m1, m2 and dest matrices can be same matrix, it is possible to write this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat4 m = GLM_MAT4_IDENTITY_INIT;
|
||||
glm_mat4_mul(m, m, m);
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m1** left matrix
|
||||
| *[in]* **m2** right matrix
|
||||
| *[out]* **dest** destination matrix
|
||||
|
||||
.. c:function:: void glm_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest)
|
||||
|
||||
mupliply N mat4 matrices and store result in dest
|
||||
| this function lets you multiply multiple (more than two or more...)
|
||||
| matrices
|
||||
|
||||
| multiplication will be done in loop, this may reduce instructions
|
||||
| size but if **len** is too small then compiler may unroll whole loop
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat m1, m2, m3, m4, res;
|
||||
glm_mat4_mulN((mat4 *[]){&m1, &m2, &m3, &m4}, 4, res);
|
||||
|
||||
Parameters:
|
||||
| *[in]* **matrices** array of mat4
|
||||
| *[in]* **len** matrices count
|
||||
| *[out]* **dest** destination matrix
|
||||
|
||||
.. c:function:: void glm_mat4_mulv(mat4 m, vec4 v, vec4 dest)
|
||||
|
||||
multiply mat4 with vec4 (column vector) and store in dest vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** mat4 (left)
|
||||
| *[in]* **v** vec4 (right, column vector)
|
||||
| *[out]* **dest** vec4 (result, column vector)
|
||||
|
||||
.. c:function:: void glm_mat4_mulv3(mat4 m, vec3 v, vec3 dest)
|
||||
|
||||
multiply vector with mat4's mat3 part(rotation)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** mat4 (left)
|
||||
| *[in]* **v** vec3 (right, column vector)
|
||||
| *[out]* **dest** vec3 (result, column vector)
|
||||
|
||||
.. c:function:: void glm_mat4_transpose_to(mat4 m, mat4 dest)
|
||||
|
||||
transpose mat4 and store in dest
|
||||
source matrix will not be transposed unless dest is m
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** matrix
|
||||
| *[out]* **dest** destination matrix
|
||||
|
||||
.. c:function:: void glm_mat4_transpose(mat4 m)
|
||||
|
||||
tranpose mat4 and store result in same matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** source
|
||||
| *[out]* **dest** destination matrix
|
||||
|
||||
.. c:function:: void glm_mat4_scale_p(mat4 m, float s)
|
||||
|
||||
scale (multiply with scalar) matrix without simd optimization
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** matrix
|
||||
| *[in]* **s** scalar
|
||||
|
||||
.. c:function:: void glm_mat4_scale(mat4 m, float s)
|
||||
|
||||
scale (multiply with scalar) matrix
|
||||
THIS IS NOT SCALE TRANSFORM, use glm_scale for that.
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** matrix
|
||||
| *[in]* **s** scalar
|
||||
|
||||
.. c:function:: float glm_mat4_det(mat4 mat)
|
||||
|
||||
mat4 determinant
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** matrix
|
||||
|
||||
Return:
|
||||
| determinant
|
||||
|
||||
.. c:function:: void glm_mat4_inv(mat4 mat, mat4 dest)
|
||||
|
||||
inverse mat4 and store in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination matrix (inverse matrix)
|
||||
|
||||
.. c:function:: void glm_mat4_inv_fast(mat4 mat, mat4 dest)
|
||||
|
||||
inverse mat4 and store in dest
|
||||
|
||||
| this func uses reciprocal approximation without extra corrections
|
||||
| e.g Newton-Raphson. this should work faster than normal,
|
||||
| to get more precise use glm_mat4_inv version.
|
||||
|
||||
| NOTE: You will lose precision, glm_mat4_inv is more accurate
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat4_swap_col(mat4 mat, int col1, int col2)
|
||||
|
||||
swap two matrix columns
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **mat** matrix
|
||||
| *[in]* **col1** col1
|
||||
| *[in]* **col2** col2
|
||||
|
||||
.. c:function:: void glm_mat4_swap_row(mat4 mat, int row1, int row2)
|
||||
|
||||
swap two matrix rows
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **mat** matrix
|
||||
| *[in]* **row1** row1
|
||||
| *[in]* **row2** row2
|
||||
61
docs/source/opengl.rst
Normal file
61
docs/source/opengl.rst
Normal file
@@ -0,0 +1,61 @@
|
||||
How to send vector or matrix to OpenGL like API
|
||||
==================================================
|
||||
|
||||
*cglm*'s vector and matrix types are arrays. So you can send them directly to a
|
||||
function which accecpts pointer. But you may got warnings for matrix because it is
|
||||
two dimensional array.
|
||||
|
||||
Passing / Uniforming Matrix to OpenGL:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
**glUniformMatrix4fv** accepts float pointer, you can pass matrix to that parameter
|
||||
and it should work but with warnings. "You can pass" doesn't mean that you must pass like that.
|
||||
|
||||
**Correct options:**
|
||||
|
||||
Correct doesn't mean correct way to use OpenGL it is just shows correct way to pass cglm type to it.
|
||||
|
||||
1. Pass first column
|
||||
---------------------
|
||||
|
||||
The goal is that pass address of matrix, first element of matrix is also address of matrix,
|
||||
because it is array of vectors and vector is array of floats.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat4 matrix;
|
||||
/* ... */
|
||||
glUniformMatrix4fv(location, 1, GL_FALSE, matrix[0]);
|
||||
|
||||
array of matrices:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat4 matrix;
|
||||
/* ... */
|
||||
glUniformMatrix4fv(location, count, GL_FALSE, matrix[0][0]);
|
||||
|
||||
1. Cast matrix to pointer
|
||||
--------------------------
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat4 matrix;
|
||||
/* ... */
|
||||
glUniformMatrix4fv(location, count, GL_FALSE, (float *)matrix);
|
||||
|
||||
in this way, passing aray of matrices is same
|
||||
|
||||
Passing / Uniforming Vectors to OpenGL:¶
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
You don't need to do extra thing when passing cglm vectors to OpengL or other APIs.
|
||||
Because a function like **glUniform4fv** accepts vector as pointer. cglm's vectors
|
||||
are array of floats. So you can pass it directly ot those functions:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
vec4 vec;
|
||||
/* ... */
|
||||
glUniform4fv(location, 1, vec);
|
||||
|
||||
this show how to pass **vec4** others are same.
|
||||
33
docs/source/plane.rst
Normal file
33
docs/source/plane.rst
Normal file
@@ -0,0 +1,33 @@
|
||||
.. default-domain:: C
|
||||
|
||||
plane
|
||||
================================================================================
|
||||
|
||||
Header: cglm/plane.h
|
||||
|
||||
Plane extract functions are in frustum header and documented
|
||||
in :doc:`frustum` page.
|
||||
|
||||
**Definition of plane:**
|
||||
|
||||
Plane equation: **Ax + By + Cz + D = 0**
|
||||
|
||||
Plan is stored in **vec4** as **[A, B, C, D]**. (A, B, C) is normal and D is distance
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_plane_normalize`
|
||||
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_plane_normalize(vec4 plane)
|
||||
|
||||
| normalizes a plane
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **plane** pnale to normalize
|
||||
102
docs/source/project.rst
Normal file
102
docs/source/project.rst
Normal file
@@ -0,0 +1,102 @@
|
||||
.. default-domain:: C
|
||||
|
||||
Project / UnProject
|
||||
================================================================================
|
||||
|
||||
Header: cglm/project.h
|
||||
|
||||
Viewport is required as *vec4* **[X, Y, Width, Height]** but this doesn't mean
|
||||
that you should store it as **vec4**. You can convert your data representation
|
||||
to vec4 before passing it to related functions.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_unprojecti`
|
||||
#. :c:func:`glm_unproject`
|
||||
#. :c:func:`glm_project`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest)
|
||||
|
||||
| maps the specified viewport coordinates into specified space [1]
|
||||
the matrix should contain projection matrix.
|
||||
|
||||
if you don't have ( and don't want to have ) an inverse matrix then use
|
||||
glm_unproject version. You may use existing inverse of matrix in somewhere
|
||||
else, this is why glm_unprojecti exists to save save inversion cost
|
||||
|
||||
[1] space:
|
||||
- if m = invProj: View Space
|
||||
- if m = invViewProj: World Space
|
||||
- if m = invMVP: Object Space
|
||||
|
||||
You probably want to map the coordinates into object space
|
||||
so use invMVP as m
|
||||
|
||||
Computing viewProj:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
glm_mat4_mul(proj, view, viewProj);
|
||||
glm_mat4_mul(viewProj, model, MVP);
|
||||
glm_mat4_inv(viewProj, invMVP);
|
||||
|
||||
Parameters:
|
||||
| *[in]* **pos** point/position in viewport coordinates
|
||||
| *[in]* **invMat** matrix (see brief)
|
||||
| *[in]* **vp** viewport as [x, y, width, height]
|
||||
| *[out]* **dest** unprojected coordinates
|
||||
|
||||
.. c:function:: void glm_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest)
|
||||
|
||||
| maps the specified viewport coordinates into specified space [1]
|
||||
the matrix should contain projection matrix.
|
||||
|
||||
this is same as glm_unprojecti except this function get inverse matrix for
|
||||
you.
|
||||
|
||||
[1] space:
|
||||
- if m = proj: View Space
|
||||
- if m = viewProj: World Space
|
||||
- if m = MVP: Object Space
|
||||
|
||||
You probably want to map the coordinates into object space so use MVP as m
|
||||
|
||||
Computing viewProj and MVP:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
glm_mat4_mul(proj, view, viewProj);
|
||||
glm_mat4_mul(viewProj, model, MVP);
|
||||
|
||||
Parameters:
|
||||
| *[in]* **pos** point/position in viewport coordinates
|
||||
| *[in]* **m** matrix (see brief)
|
||||
| *[in]* **vp** viewport as [x, y, width, height]
|
||||
| *[out]* **dest** unprojected coordinates
|
||||
|
||||
.. c:function:: void glm_project(vec3 pos, mat4 m, vec4 vp, vec3 dest)
|
||||
|
||||
| map object coordinates to window coordinates
|
||||
|
||||
Computing MVP:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
glm_mat4_mul(proj, view, viewProj);
|
||||
glm_mat4_mul(viewProj, model, MVP);
|
||||
|
||||
this could be useful for gettng a bbox which fits with view frustum and
|
||||
object bounding boxes. In this case you crop view frustum box with objects
|
||||
box
|
||||
|
||||
Parameters:
|
||||
| *[in]* **pos** object coordinates
|
||||
| *[in]* **m** MVP matrix
|
||||
| *[in]* **vp** viewport as [x, y, width, height]
|
||||
| *[out]* **dest** projected coordinates
|
||||
356
docs/source/quat.rst
Normal file
356
docs/source/quat.rst
Normal file
@@ -0,0 +1,356 @@
|
||||
.. default-domain:: C
|
||||
|
||||
quaternions
|
||||
===========
|
||||
|
||||
Header: cglm/quat.h
|
||||
|
||||
**Important:** *cglm* stores quaternion as **[x, y, z, w]** in memory
|
||||
since **v0.4.0** it was **[w, x, y, z]**
|
||||
before v0.4.0 ( **v0.3.5 and earlier** ). w is real part.
|
||||
|
||||
What you can do with quaternions with existing functions is (Some of them):
|
||||
|
||||
- You can rotate transform matrix using quaterion
|
||||
- You can rotate vector using quaterion
|
||||
- You can create view matrix using quaterion
|
||||
- You can create a lookrotation (from source point to dest)
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Macros:
|
||||
|
||||
1. GLM_QUAT_IDENTITY_INIT
|
||||
#. GLM_QUAT_IDENTITY
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_quat_identity`
|
||||
#. :c:func:`glm_quat_init`
|
||||
#. :c:func:`glm_quat`
|
||||
#. :c:func:`glm_quatv`
|
||||
#. :c:func:`glm_quat_copy`
|
||||
#. :c:func:`glm_quat_norm`
|
||||
#. :c:func:`glm_quat_normalize`
|
||||
#. :c:func:`glm_quat_normalize_to`
|
||||
#. :c:func:`glm_quat_dot`
|
||||
#. :c:func:`glm_quat_conjugate`
|
||||
#. :c:func:`glm_quat_inv`
|
||||
#. :c:func:`glm_quat_add`
|
||||
#. :c:func:`glm_quat_sub`
|
||||
#. :c:func:`glm_quat_real`
|
||||
#. :c:func:`glm_quat_imag`
|
||||
#. :c:func:`glm_quat_imagn`
|
||||
#. :c:func:`glm_quat_imaglen`
|
||||
#. :c:func:`glm_quat_angle`
|
||||
#. :c:func:`glm_quat_axis`
|
||||
#. :c:func:`glm_quat_mul`
|
||||
#. :c:func:`glm_quat_mat4`
|
||||
#. :c:func:`glm_quat_mat4t`
|
||||
#. :c:func:`glm_quat_mat3`
|
||||
#. :c:func:`glm_quat_mat3t`
|
||||
#. :c:func:`glm_quat_lerp`
|
||||
#. :c:func:`glm_quat_slerp`
|
||||
#. :c:func:`glm_quat_look`
|
||||
#. :c:func:`glm_quat_for`
|
||||
#. :c:func:`glm_quat_forp`
|
||||
#. :c:func:`glm_quat_rotatev`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_quat_identity(versor q)
|
||||
|
||||
| makes given quat to identity
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **q** quaternion
|
||||
|
||||
.. c:function:: void glm_quat_init(versor q, float x, float y, float z, float w)
|
||||
|
||||
| inits quaternion with given values
|
||||
|
||||
Parameters:
|
||||
| *[out]* **q** quaternion
|
||||
| *[in]* **x** imag.x
|
||||
| *[in]* **y** imag.y
|
||||
| *[in]* **z** imag.z
|
||||
| *[in]* **w** w (real part)
|
||||
|
||||
.. c:function:: void glm_quat(versor q, float angle, float x, float y, float z)
|
||||
|
||||
| creates NEW quaternion with individual axis components
|
||||
|
||||
| given axis will be normalized
|
||||
|
||||
Parameters:
|
||||
| *[out]* **q** quaternion
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[in]* **x** axis.x
|
||||
| *[in]* **y** axis.y
|
||||
| *[in]* **z** axis.z
|
||||
|
||||
.. c:function:: void glm_quatv(versor q, float angle, vec3 axis)
|
||||
|
||||
| creates NEW quaternion with axis vector
|
||||
|
||||
| given axis will be normalized
|
||||
|
||||
Parameters:
|
||||
| *[out]* **q** quaternion
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[in]* **axis** axis (will be normalized)
|
||||
|
||||
.. c:function:: void glm_quat_copy(versor q, versor dest)
|
||||
|
||||
| copy quaternion to another one
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** source quaternion
|
||||
| *[out]* **dest** destination quaternion
|
||||
|
||||
.. c:function:: float glm_quat_norm(versor q)
|
||||
|
||||
| returns norm (magnitude) of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** quaternion
|
||||
|
||||
Returns:
|
||||
norm (magnitude)
|
||||
|
||||
.. c:function:: void glm_quat_normalize_to(versor q, versor dest)
|
||||
|
||||
| normalize quaternion and store result in dest, original one will not be normalized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion to normalize into
|
||||
| *[out]* **dest** destination quaternion
|
||||
|
||||
.. c:function:: void glm_quat_normalize(versor q)
|
||||
|
||||
| normalize quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **q** quaternion
|
||||
|
||||
.. c:function:: float glm_quat_dot(versor p, versor q)
|
||||
|
||||
dot product of two quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **p** quaternion 1
|
||||
| *[in]* **q** quaternion 2
|
||||
|
||||
Returns:
|
||||
dot product
|
||||
|
||||
.. c:function:: void glm_quat_conjugate(versor q, versor dest)
|
||||
|
||||
conjugate of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[in]* **dest** conjugate
|
||||
|
||||
.. c:function:: void glm_quat_inv(versor q, versor dest)
|
||||
|
||||
inverse of non-zero quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[in]* **dest** inverse quaternion
|
||||
|
||||
.. c:function:: void glm_quat_add(versor p, versor q, versor dest)
|
||||
|
||||
add (componentwise) two quaternions and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **p** quaternion 1
|
||||
| *[in]* **q** quaternion 2
|
||||
| *[in]* **dest** result quaternion
|
||||
|
||||
.. c:function:: void glm_quat_sub(versor p, versor q, versor dest)
|
||||
|
||||
subtract (componentwise) two quaternions and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **p** quaternion 1
|
||||
| *[in]* **q** quaternion 2
|
||||
| *[in]* **dest** result quaternion
|
||||
|
||||
.. c:function:: float glm_quat_real(versor q)
|
||||
|
||||
returns real part of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
|
||||
Returns:
|
||||
real part (quat.w)
|
||||
|
||||
.. c:function:: void glm_quat_imag(versor q, vec3 dest)
|
||||
|
||||
returns imaginary part of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** imag
|
||||
|
||||
.. c:function:: void glm_quat_imagn(versor q, vec3 dest)
|
||||
|
||||
returns normalized imaginary part of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** imag
|
||||
|
||||
.. c:function:: float glm_quat_imaglen(versor q)
|
||||
|
||||
returns length of imaginary part of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
|
||||
Returns:
|
||||
norm of imaginary part
|
||||
|
||||
.. c:function:: float glm_quat_angle(versor q)
|
||||
|
||||
returns angle of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
|
||||
Returns:
|
||||
angles of quat (radians)
|
||||
|
||||
.. c:function:: void glm_quat_axis(versor q, versor dest)
|
||||
|
||||
axis of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **p** quaternion
|
||||
| *[out]* **dest** axis of quaternion
|
||||
|
||||
.. c:function:: void glm_quat_mul(versor p, versor q, versor dest)
|
||||
|
||||
| multiplies two quaternion and stores result in dest
|
||||
|
||||
| this is also called Hamilton Product
|
||||
|
||||
| According to WikiPedia:
|
||||
| The product of two rotation quaternions [clarification needed] will be
|
||||
equivalent to the rotation q followed by the rotation p
|
||||
|
||||
Parameters:
|
||||
| *[in]* **p** quaternion 1 (first rotation)
|
||||
| *[in]* **q** quaternion 2 (second rotation)
|
||||
| *[out]* **dest** result quaternion
|
||||
|
||||
.. c:function:: void glm_quat_mat4(versor q, mat4 dest)
|
||||
|
||||
| convert quaternion to mat4
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_mat4t(versor q, mat4 dest)
|
||||
|
||||
| convert quaternion to mat4 (transposed). This is transposed version of glm_quat_mat4
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_mat3(versor q, mat3 dest)
|
||||
|
||||
| convert quaternion to mat3
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_mat3t(versor q, mat3 dest)
|
||||
|
||||
| convert quaternion to mat3 (transposed). This is transposed version of glm_quat_mat3
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_lerp(versor from, versor to, float t, versor dest)
|
||||
|
||||
| interpolates between two quaternions
|
||||
| using spherical linear interpolation (LERP)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** from
|
||||
| *[in]* **to** to
|
||||
| *[in]* **t** interpolant (amount) clamped between 0 and 1
|
||||
| *[out]* **dest** result quaternion
|
||||
|
||||
.. c:function:: void glm_quat_slerp(versor q, versor r, float t, versor dest)
|
||||
|
||||
| interpolates between two quaternions
|
||||
| using spherical linear interpolation (SLERP)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** from
|
||||
| *[in]* **to** to
|
||||
| *[in]* **t** interpolant (amount) clamped between 0 and 1
|
||||
| *[out]* **dest** result quaternion
|
||||
|
||||
.. c:function:: void glm_quat_look(vec3 eye, versor ori, mat4 dest)
|
||||
|
||||
| creates view matrix using quaternion as camera orientation
|
||||
|
||||
Parameters:
|
||||
| *[in]* **eye** eye
|
||||
| *[in]* **ori** orientation in world space as quaternion
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest)
|
||||
|
||||
| creates look rotation quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **dir** direction to look
|
||||
| *[in]* **fwd** forward vector
|
||||
| *[in]* **up** up vector
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest)
|
||||
|
||||
| creates look rotation quaternion using source and destination positions p suffix stands for position
|
||||
|
||||
| this is similar to glm_quat_for except this computes direction for glm_quat_for for you.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** source point
|
||||
| *[in]* **to** destination point
|
||||
| *[in]* **fwd** forward vector
|
||||
| *[in]* **up** up vector
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_rotatev(versor q, vec3 v, vec3 dest)
|
||||
|
||||
| crotate vector using using quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[in]* **v** vector to rotate
|
||||
| *[out]* **dest** rotated vector
|
||||
|
||||
.. c:function:: void glm_quat_rotate(mat4 m, versor q, mat4 dest)
|
||||
|
||||
| rotate existing transform matrix using quaternion
|
||||
|
||||
instead of passing identity matrix, consider to use quat_mat4 functions
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** existing transform matrix to rotate
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** rotated matrix/transform
|
||||
138
docs/source/util.rst
Normal file
138
docs/source/util.rst
Normal file
@@ -0,0 +1,138 @@
|
||||
.. default-domain:: C
|
||||
|
||||
utils / helpers
|
||||
================================================================================
|
||||
|
||||
Header: cglm/util.h
|
||||
|
||||
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_sign`
|
||||
#. :c:func:`glm_signf`
|
||||
#. :c:func:`glm_rad`
|
||||
#. :c:func:`glm_deg`
|
||||
#. :c:func:`glm_make_rad`
|
||||
#. :c:func:`glm_make_deg`
|
||||
#. :c:func:`glm_pow2`
|
||||
#. :c:func:`glm_min`
|
||||
#. :c:func:`glm_max`
|
||||
#. :c:func:`glm_clamp`
|
||||
#. :c:func:`glm_lerp`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: int glm_sign(int val)
|
||||
|
||||
| returns sign of 32 bit integer as +1, -1, 0
|
||||
|
||||
| **Important**: It returns 0 for zero input
|
||||
|
||||
Parameters:
|
||||
| *[in]* **val** an integer
|
||||
|
||||
Returns:
|
||||
sign of given number
|
||||
|
||||
.. c:function:: float glm_signf(float val)
|
||||
|
||||
| returns sign of 32 bit integer as +1.0, -1.0, 0.0
|
||||
|
||||
| **Important**: It returns 0.0f for zero input
|
||||
|
||||
Parameters:
|
||||
| *[in]* **val** a float
|
||||
|
||||
Returns:
|
||||
sign of given number
|
||||
|
||||
.. c:function:: float glm_rad(float deg)
|
||||
|
||||
| convert degree to radians
|
||||
|
||||
Parameters:
|
||||
| *[in]* **deg** angle in degrees
|
||||
|
||||
.. c:function:: float glm_deg(float rad)
|
||||
|
||||
| convert radians to degree
|
||||
|
||||
Parameters:
|
||||
| *[in]* **rad** angle in radians
|
||||
|
||||
.. c:function:: void glm_make_rad(float *degm)
|
||||
|
||||
| convert exsisting degree to radians. this will override degrees value
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **deg** pointer to angle in degrees
|
||||
|
||||
.. c:function:: void glm_make_deg(float *rad)
|
||||
|
||||
| convert exsisting radians to degree. this will override radians value
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **rad** pointer to angle in radians
|
||||
|
||||
.. c:function:: float glm_pow2(float x)
|
||||
|
||||
| multiplies given parameter with itself = x * x or powf(x, 2)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **x** value
|
||||
|
||||
Returns:
|
||||
square of a given number
|
||||
|
||||
.. c:function:: float glm_min(float a, float b)
|
||||
|
||||
| returns minimum of given two values
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** number 1
|
||||
| *[in]* **b** number 2
|
||||
|
||||
Returns:
|
||||
minimum value
|
||||
|
||||
.. c:function:: float glm_max(float a, float b)
|
||||
|
||||
| returns maximum of given two values
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** number 1
|
||||
| *[in]* **b** number 2
|
||||
|
||||
Returns:
|
||||
maximum value
|
||||
|
||||
.. c:function:: void glm_clamp(float val, float minVal, float maxVal)
|
||||
|
||||
constrain a value to lie between two further values
|
||||
|
||||
Parameters:
|
||||
| *[in]* **val** input value
|
||||
| *[in]* **minVal** minimum value
|
||||
| *[in]* **maxVal** maximum value
|
||||
|
||||
Returns:
|
||||
clamped value
|
||||
|
||||
.. c:function:: float glm_lerp(float from, float to, float t)
|
||||
|
||||
linear interpolation between two number
|
||||
|
||||
| formula: from + s * (to - from)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** from value
|
||||
| *[in]* **to** to value
|
||||
| *[in]* **t** interpolant (amount) clamped between 0 and 1
|
||||
|
||||
Returns:
|
||||
interpolated value
|
||||
143
docs/source/vec3-ext.rst
Normal file
143
docs/source/vec3-ext.rst
Normal file
@@ -0,0 +1,143 @@
|
||||
.. default-domain:: C
|
||||
|
||||
vec3 extra
|
||||
==========
|
||||
|
||||
Header: cglm/vec3-ext.h
|
||||
|
||||
There are some functions are in called in extra header. These are called extra
|
||||
because they are not used like other functions in vec3.h in the future some of
|
||||
these functions ma be moved to vec3 header.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_vec_mulv`
|
||||
#. :c:func:`glm_vec_broadcast`
|
||||
#. :c:func:`glm_vec_eq`
|
||||
#. :c:func:`glm_vec_eq_eps`
|
||||
#. :c:func:`glm_vec_eq_all`
|
||||
#. :c:func:`glm_vec_eqv`
|
||||
#. :c:func:`glm_vec_eqv_eps`
|
||||
#. :c:func:`glm_vec_max`
|
||||
#. :c:func:`glm_vec_min`
|
||||
#. :c:func:`glm_vec_isnan`
|
||||
#. :c:func:`glm_vec_isinf`
|
||||
#. :c:func:`glm_vec_isvalid`
|
||||
#. :c:func:`glm_vec_sign`
|
||||
#. :c:func:`glm_vec_sqrt`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_vec_mulv(vec3 a, vec3 b, vec3 d)
|
||||
|
||||
multiplies individual items
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vec1
|
||||
| *[in]* **b** vec2
|
||||
| *[out]* **d** destination (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2])
|
||||
|
||||
.. c:function:: void glm_vec_broadcast(float val, vec3 d)
|
||||
|
||||
fill a vector with specified value
|
||||
|
||||
Parameters:
|
||||
| *[in]* **val** value
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: bool glm_vec_eq(vec3 v, float val)
|
||||
|
||||
check if vector is equal to value (without epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **val** value
|
||||
|
||||
.. c:function:: bool glm_vec_eq_eps(vec3 v, float val)
|
||||
|
||||
check if vector is equal to value (with epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **val** value
|
||||
|
||||
.. c:function:: bool glm_vec_eq_all(vec3 v)
|
||||
|
||||
check if vectors members are equal (without epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec_eqv(vec3 v1, vec3 v2)
|
||||
|
||||
check if vector is equal to another (without epsilon) vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector 1
|
||||
| *[in]* **vec** vector 2
|
||||
|
||||
.. c:function:: bool glm_vec_eqv_eps(vec3 v1, vec3 v2)
|
||||
|
||||
check if vector is equal to another (with epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
|
||||
.. c:function:: float glm_vec_max(vec3 v)
|
||||
|
||||
max value of vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: float glm_vec_min(vec3 v)
|
||||
|
||||
min value of vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec_isnan(vec3 v)
|
||||
|
||||
| check if one of items is NaN (not a number)
|
||||
| you should only use this in DEBUG mode or very critical asserts
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec_isinf(vec3 v)
|
||||
|
||||
| check if one of items is INFINITY
|
||||
| you should only use this in DEBUG mode or very critical asserts
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec_isvalid(vec3 v)
|
||||
|
||||
| check if all items are valid number
|
||||
| you should only use this in DEBUG mode or very critical asserts
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec_sign(vec3 v, vec3 dest)
|
||||
|
||||
get sign of 32 bit float as +1, -1, 0
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** sign vector (only keeps signs as -1, 0, -1)
|
||||
|
||||
.. c:function:: void glm_vec_sqrt(vec3 v, vec3 dest)
|
||||
|
||||
square root of each vector item
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** destination vector (sqrt(v))
|
||||
305
docs/source/vec3.rst
Normal file
305
docs/source/vec3.rst
Normal file
@@ -0,0 +1,305 @@
|
||||
.. default-domain:: C
|
||||
|
||||
vec3
|
||||
====
|
||||
|
||||
Header: cglm/vec3.h
|
||||
|
||||
We mostly use vectors in graphics math, to make writing code faster
|
||||
and easy to read, some *vec3* functions are aliased in global namespace.
|
||||
For instance :c:func:`glm_dot` is alias of :c:func:`glm_vec_dot`,
|
||||
alias means inline wrapper here. There is no call verison of alias functions
|
||||
|
||||
There are also functions for rotating *vec3* vector. **_m4**, **_m3** prefixes
|
||||
rotate *vec3* with matrix.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Macros:
|
||||
|
||||
1. glm_vec_dup(v, dest)
|
||||
#. GLM_VEC3_ONE_INIT
|
||||
#. GLM_VEC3_ZERO_INIT
|
||||
#. GLM_VEC3_ONE
|
||||
#. GLM_VEC3_ZERO
|
||||
#. GLM_YUP
|
||||
#. GLM_ZUP
|
||||
#. GLM_XUP
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_vec3`
|
||||
#. :c:func:`glm_vec_copy`
|
||||
#. :c:func:`glm_vec_dot`
|
||||
#. :c:func:`glm_vec_cross`
|
||||
#. :c:func:`glm_vec_norm2`
|
||||
#. :c:func:`glm_vec_norm`
|
||||
#. :c:func:`glm_vec_add`
|
||||
#. :c:func:`glm_vec_sub`
|
||||
#. :c:func:`glm_vec_scale`
|
||||
#. :c:func:`glm_vec_scale_as`
|
||||
#. :c:func:`glm_vec_flipsign`
|
||||
#. :c:func:`glm_vec_flipsign_to`
|
||||
#. :c:func:`glm_vec_inv`
|
||||
#. :c:func:`glm_vec_inv_to`
|
||||
#. :c:func:`glm_vec_normalize`
|
||||
#. :c:func:`glm_vec_normalize_to`
|
||||
#. :c:func:`glm_vec_distance`
|
||||
#. :c:func:`glm_vec_angle`
|
||||
#. :c:func:`glm_vec_rotate`
|
||||
#. :c:func:`glm_vec_rotate_m4`
|
||||
#. :c:func:`glm_vec_proj`
|
||||
#. :c:func:`glm_vec_center`
|
||||
#. :c:func:`glm_vec_maxv`
|
||||
#. :c:func:`glm_vec_minv`
|
||||
#. :c:func:`glm_vec_ortho`
|
||||
#. :c:func:`glm_vec_clamp`
|
||||
#. :c:func:`glm_vec_lerp`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_vec3(vec4 v4, vec3 dest)
|
||||
|
||||
init vec3 using vec4
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v4** vector4
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec_copy(vec3 a, vec3 dest)
|
||||
|
||||
copy all members of [a] to [dest]
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: float glm_vec_dot(vec3 a, vec3 b)
|
||||
|
||||
dot product of vec3
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector1
|
||||
| *[in]* **b** vector2
|
||||
|
||||
Returns:
|
||||
dot product
|
||||
|
||||
.. c:function:: void glm_vec_cross(vec3 a, vec3 b, vec3 d)
|
||||
|
||||
cross product
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** source 1
|
||||
| *[in]* **b** source 2
|
||||
| *[out]* **d** destination
|
||||
|
||||
.. c:function:: float glm_vec_norm2(vec3 v)
|
||||
|
||||
norm * norm (magnitude) of vector
|
||||
|
||||
we can use this func instead of calling norm * norm, because it would call
|
||||
sqrtf fuction twice but with this func we can avoid func call, maybe this is
|
||||
not good name for this func
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
Returns:
|
||||
square of norm / magnitude
|
||||
|
||||
.. c:function:: float glm_vec_norm(vec3 vec)
|
||||
|
||||
norm (magnitude) of vec3
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector
|
||||
|
||||
.. c:function:: void glm_vec_add(vec3 v1, vec3 v2, vec3 dest)
|
||||
|
||||
add v2 vector to v1 vector store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec_sub(vec3 v1, vec3 v2, vec3 dest)
|
||||
|
||||
subtract v2 vector from v1 vector store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec_scale(vec3 v, float s, vec3 dest)
|
||||
|
||||
multiply/scale vec3 vector with scalar: result = v * s
|
||||
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec_scale_as(vec3 v, float s, vec3 dest)
|
||||
|
||||
make vec3 vector scale as specified: result = unit(v) * s
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec_flipsign(vec3 v)
|
||||
|
||||
flip sign of all vec3 members
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec_flipsign_to(vec3 v, vec3 dest)
|
||||
|
||||
flip sign of all vec3 members and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** negated vector
|
||||
|
||||
.. c:function:: void glm_vec_inv(vec3 v)
|
||||
|
||||
make vector as inverse/opposite of itself
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec_inv_to(vec3 v, vec3 dest)
|
||||
|
||||
inverse/opposite vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec_normalize(vec3 v)
|
||||
|
||||
normalize vec3 and store result in same vec
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec_normalize_to(vec3 vec, vec3 dest)
|
||||
|
||||
normalize vec3 to dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: float glm_vec_angle(vec3 v1, vec3 v2)
|
||||
|
||||
angle betwen two vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
|
||||
Return:
|
||||
| angle as radians
|
||||
|
||||
.. c:function:: void glm_vec_rotate(vec3 v, float angle, vec3 axis)
|
||||
|
||||
rotate vec3 around axis by angle using Rodrigues' rotation formula
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
| *[in]* **axis** axis vector (will be normalized)
|
||||
| *[out]* **angle** angle (radians)
|
||||
|
||||
.. c:function:: void glm_vec_rotate_m4(mat4 m, vec3 v, vec3 dest)
|
||||
|
||||
apply rotation matrix to vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine matrix or rot matrix
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** rotated vector
|
||||
|
||||
.. c:function:: void glm_vec_proj(vec3 a, vec3 b, vec3 dest)
|
||||
|
||||
project a vector onto b vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector1
|
||||
| *[in]* **b** vector2
|
||||
| *[out]* **dest** projected vector
|
||||
|
||||
.. c:function:: void glm_vec_center(vec3 v1, vec3 v2, vec3 dest)
|
||||
|
||||
find center point of two vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** center point
|
||||
|
||||
.. c:function:: float glm_vec_distance(vec3 v1, vec3 v2)
|
||||
|
||||
distance between two vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** vector1
|
||||
| *[in]* **row1** vector2
|
||||
|
||||
Returns:
|
||||
| distance
|
||||
|
||||
.. c:function:: void glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest)
|
||||
|
||||
max values of vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec_minv(vec3 v1, vec3 v2, vec3 dest)
|
||||
|
||||
min values of vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec_ortho(vec3 v, vec3 dest)
|
||||
|
||||
possible orthogonal/perpendicular vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** vector
|
||||
| *[out]* **dest** orthogonal/perpendicular vector
|
||||
|
||||
.. c:function:: void glm_vec_clamp(vec3 v, float minVal, float maxVal)
|
||||
|
||||
constrain a value to lie between two further values
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
| *[in]* **minVal** minimum value
|
||||
| *[in]* **maxVal** maximum value
|
||||
|
||||
.. c:function:: void glm_vec_lerp(vec3 from, vec3 to, float t, vec3 dest)
|
||||
|
||||
linear interpolation between two vector
|
||||
|
||||
| formula: from + s * (to - from)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** from value
|
||||
| *[in]* **to** to value
|
||||
| *[in]* **t** interpolant (amount) clamped between 0 and 1
|
||||
| *[out]* **dest** destination
|
||||
138
docs/source/vec4-ext.rst
Normal file
138
docs/source/vec4-ext.rst
Normal file
@@ -0,0 +1,138 @@
|
||||
.. default-domain:: C
|
||||
|
||||
vec4 extra
|
||||
==========
|
||||
|
||||
Header: cglm/vec4-ext.h
|
||||
|
||||
There are some functions are in called in extra header. These are called extra
|
||||
because they are not used like other functions in vec4.h in the future some of
|
||||
these functions ma be moved to vec4 header.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_vec4_mulv`
|
||||
#. :c:func:`glm_vec4_broadcast`
|
||||
#. :c:func:`glm_vec4_eq`
|
||||
#. :c:func:`glm_vec4_eq_eps`
|
||||
#. :c:func:`glm_vec4_eq_all`
|
||||
#. :c:func:`glm_vec4_eqv`
|
||||
#. :c:func:`glm_vec4_eqv_eps`
|
||||
#. :c:func:`glm_vec4_max`
|
||||
#. :c:func:`glm_vec4_min`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_vec4_mulv(vec4 a, vec4 b, vec4 d)
|
||||
|
||||
multiplies individual items
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vec1
|
||||
| *[in]* **b** vec2
|
||||
| *[out]* **d** destination
|
||||
|
||||
.. c:function:: void glm_vec4_broadcast(float val, vec4 d)
|
||||
|
||||
fill a vector with specified value
|
||||
|
||||
Parameters:
|
||||
| *[in]* **val** value
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: bool glm_vec4_eq(vec4 v, float val)
|
||||
|
||||
check if vector is equal to value (without epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **val** value
|
||||
|
||||
.. c:function:: bool glm_vec4_eq_eps(vec4 v, float val)
|
||||
|
||||
check if vector is equal to value (with epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **val** value
|
||||
|
||||
.. c:function:: bool glm_vec4_eq_all(vec4 v)
|
||||
|
||||
check if vectors members are equal (without epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec4_eqv(vec4 v1, vec4 v2)
|
||||
|
||||
check if vector is equal to another (without epsilon) vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector 1
|
||||
| *[in]* **vec** vector 2
|
||||
|
||||
.. c:function:: bool glm_vec4_eqv_eps(vec4 v1, vec4 v2)
|
||||
|
||||
check if vector is equal to another (with epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
|
||||
.. c:function:: float glm_vec4_max(vec4 v)
|
||||
|
||||
max value of vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: float glm_vec4_min(vec4 v)
|
||||
|
||||
min value of vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec4_isnan(vec4 v)
|
||||
|
||||
| check if one of items is NaN (not a number)
|
||||
| you should only use this in DEBUG mode or very critical asserts
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec4_isinf(vec4 v)
|
||||
|
||||
| check if one of items is INFINITY
|
||||
| you should only use this in DEBUG mode or very critical asserts
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec4_isvalid(vec4 v)
|
||||
|
||||
| check if all items are valid number
|
||||
| you should only use this in DEBUG mode or very critical asserts
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec4_sign(vec4 v, vec4 dest)
|
||||
|
||||
get sign of 32 bit float as +1, -1, 0
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** sign vector (only keeps signs as -1, 0, -1)
|
||||
|
||||
.. c:function:: void glm_vec4_sqrt(vec4 v, vec4 dest)
|
||||
|
||||
square root of each vector item
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** destination vector (sqrt(v))
|
||||
242
docs/source/vec4.rst
Normal file
242
docs/source/vec4.rst
Normal file
@@ -0,0 +1,242 @@
|
||||
.. default-domain:: C
|
||||
|
||||
vec4
|
||||
====
|
||||
|
||||
Header: cglm/vec4.h
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Macros:
|
||||
|
||||
1. glm_vec4_dup3(v, dest)
|
||||
#. glm_vec4_dup(v, dest)
|
||||
#. GLM_VEC4_ONE_INIT
|
||||
#. GLM_VEC4_BLACK_INIT
|
||||
#. GLM_VEC4_ZERO_INIT
|
||||
#. GLM_VEC4_ONE
|
||||
#. GLM_VEC4_BLACK
|
||||
#. GLM_VEC4_ZERO
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_vec4`
|
||||
#. :c:func:`glm_vec4_copy3`
|
||||
#. :c:func:`glm_vec4_copy`
|
||||
#. :c:func:`glm_vec4_dot`
|
||||
#. :c:func:`glm_vec4_norm2`
|
||||
#. :c:func:`glm_vec4_norm`
|
||||
#. :c:func:`glm_vec4_add`
|
||||
#. :c:func:`glm_vec4_sub`
|
||||
#. :c:func:`glm_vec4_scale`
|
||||
#. :c:func:`glm_vec4_scale_as`
|
||||
#. :c:func:`glm_vec4_flipsign`
|
||||
#. :c:func:`glm_vec_flipsign_to`
|
||||
#. :c:func:`glm_vec4_inv`
|
||||
#. :c:func:`glm_vec4_inv_to`
|
||||
#. :c:func:`glm_vec4_normalize`
|
||||
#. :c:func:`glm_vec4_normalize_to`
|
||||
#. :c:func:`glm_vec4_distance`
|
||||
#. :c:func:`glm_vec4_maxv`
|
||||
#. :c:func:`glm_vec4_minv`
|
||||
#. :c:func:`glm_vec4_clamp`
|
||||
#. :c:func:`glm_vec4_lerp`
|
||||
#. :c:func:`glm_vec4_isnan`
|
||||
#. :c:func:`glm_vec4_isinf`
|
||||
#. :c:func:`glm_vec4_isvalid`
|
||||
#. :c:func:`glm_vec4_sign`
|
||||
#. :c:func:`glm_vec4_sqrt`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_vec4(vec3 v3, float last, vec4 dest)
|
||||
|
||||
init vec4 using vec3, since you are initializing vec4 with vec3
|
||||
you need to set last item. cglm could set it zero but making it parameter
|
||||
gives more control
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v3** vector4
|
||||
| *[in]* **last** last item of vec4
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec4_copy3(vec4 a, vec3 dest)
|
||||
|
||||
copy first 3 members of [a] to [dest]
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec4_copy(vec4 v, vec4 dest)
|
||||
|
||||
copy all members of [a] to [dest]
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** source
|
||||
| *[in]* **dest** destination
|
||||
|
||||
.. c:function:: float glm_vec4_dot(vec4 a, vec4 b)
|
||||
|
||||
dot product of vec4
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector1
|
||||
| *[in]* **b** vector2
|
||||
|
||||
Returns:
|
||||
dot product
|
||||
|
||||
.. c:function:: float glm_vec4_norm2(vec4 v)
|
||||
|
||||
norm * norm (magnitude) of vector
|
||||
|
||||
we can use this func instead of calling norm * norm, because it would call
|
||||
sqrtf fuction twice but with this func we can avoid func call, maybe this is
|
||||
not good name for this func
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
Returns:
|
||||
square of norm / magnitude
|
||||
|
||||
.. c:function:: float glm_vec4_norm(vec4 vec)
|
||||
|
||||
norm (magnitude) of vec4
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector
|
||||
|
||||
.. c:function:: void glm_vec4_add(vec4 v1, vec4 v2, vec4 dest)
|
||||
|
||||
add v2 vector to v1 vector store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec4_sub(vec4 v1, vec4 v2, vec4 dest)
|
||||
|
||||
subtract v2 vector from v1 vector store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec4_scale(vec4 v, float s, vec4 dest)
|
||||
|
||||
multiply/scale vec4 vector with scalar: result = v * s
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec4_scale_as(vec4 v, float s, vec4 dest)
|
||||
|
||||
make vec4 vector scale as specified: result = unit(v) * s
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec4_flipsign(vec4 v)
|
||||
|
||||
flip sign of all vec4 members
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec4_flipsign_to(vec4 v, vec4 dest)
|
||||
|
||||
flip sign of all vec4 members and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** negated vector
|
||||
|
||||
.. c:function:: void glm_vec4_inv(vec4 v)
|
||||
|
||||
make vector as inverse/opposite of itself
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec4_inv_to(vec4 v, vec4 dest)
|
||||
|
||||
inverse/opposite vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec4_normalize(vec4 v)
|
||||
|
||||
normalize vec4 and store result in same vec
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec4_normalize_to(vec4 vec, vec4 dest)
|
||||
|
||||
normalize vec4 to dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: float glm_vec4_distance(vec4 v1, vec4 v2)
|
||||
|
||||
distance between two vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** vector1
|
||||
| *[in]* **row1** vector2
|
||||
|
||||
Returns:
|
||||
| distance
|
||||
|
||||
.. c:function:: void glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest)
|
||||
|
||||
max values of vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest)
|
||||
|
||||
min values of vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec4_clamp(vec4 v, float minVal, float maxVal)
|
||||
|
||||
constrain a value to lie between two further values
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
| *[in]* **minVal** minimum value
|
||||
| *[in]* **maxVal** maximum value
|
||||
|
||||
.. c:function:: void glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest)
|
||||
|
||||
linear interpolation between two vector
|
||||
|
||||
| formula: from + s * (to - from)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** from value
|
||||
| *[in]* **to** to value
|
||||
| *[in]* **t** interpolant (amount) clamped between 0 and 1
|
||||
| *[out]* **dest** destination
|
||||
@@ -25,8 +25,22 @@
|
||||
# include "simd/avx/affine.h"
|
||||
#endif
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
/*!
|
||||
* @brief this is similar to glm_mat4_mul but specialized to affine transform
|
||||
*
|
||||
* Matrix format should be:
|
||||
* R R R X
|
||||
* R R R Y
|
||||
* R R R Z
|
||||
* 0 0 0 W
|
||||
*
|
||||
* this reduces some multiplications. It should be faster than mat4_mul.
|
||||
* if you are not sure about matrix format then DON'T use this! use mat4_mul
|
||||
*
|
||||
* @param[in] m1 affine matrix 1
|
||||
* @param[in] m2 affine matrix 2
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mul(mat4 m1, mat4 m2, mat4 dest) {
|
||||
|
||||
@@ -17,12 +17,13 @@
|
||||
CGLM_INLINE void glm_scale_make(mat4 m, vec3 v);
|
||||
CGLM_INLINE void glm_scale(mat4 m, vec3 v);
|
||||
CGLM_INLINE void glm_scale1(mat4 m, float s);
|
||||
CGLM_INLINE void glm_rotate_x(mat4 m, float rad, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_y(mat4 m, float rad, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_z(mat4 m, float rad, mat4 dest);
|
||||
CGLM_INLINE void glm_scale_uni(mat4 m, float s);
|
||||
CGLM_INLINE void glm_rotate_x(mat4 m, float angle, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_y(mat4 m, float angle, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_z(mat4 m, float angle, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc);
|
||||
CGLM_INLINE void glm_rotate_make(mat4 m, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_rotate_ndc(mat4 m, float angle, vec3 axis_ndc);
|
||||
CGLM_INLINE void glm_rotate_ndc(mat4 m, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_rotate(mat4 m, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_decompose_scalev(mat4 m, vec3 s);
|
||||
CGLM_INLINE bool glm_uniscaled(mat4 m);
|
||||
@@ -38,6 +39,14 @@
|
||||
#include "affine-mat.h"
|
||||
#include "util.h"
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by v vector
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] v translate vector [x, y, z]
|
||||
* @param[out] dest translated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_to(mat4 m, vec3 v, mat4 dest) {
|
||||
@@ -72,6 +81,13 @@ glm_translate_to(mat4 m, vec3 v, mat4 dest) {
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by v vector
|
||||
* and stores result in same matrix
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] v translate vector [x, y, z]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate(mat4 m, vec3 v) {
|
||||
@@ -98,54 +114,78 @@ glm_translate(mat4 m, vec3 v) {
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by x factor
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] x x factor
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_x(mat4 m, float to) {
|
||||
glm_translate_x(mat4 m, float x) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]),
|
||||
_mm_set1_ps(to)),
|
||||
_mm_set1_ps(x)),
|
||||
_mm_load_ps(m[3])))
|
||||
;
|
||||
#else
|
||||
vec4 v1;
|
||||
glm_vec4_scale(m[0], to, v1);
|
||||
glm_vec4_scale(m[0], x, v1);
|
||||
glm_vec4_add(v1, m[3], m[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by y factor
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] y y factor
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_y(mat4 m, float to) {
|
||||
glm_translate_y(mat4 m, float y) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[1]),
|
||||
_mm_set1_ps(to)),
|
||||
_mm_set1_ps(y)),
|
||||
_mm_load_ps(m[3])))
|
||||
;
|
||||
#else
|
||||
vec4 v1;
|
||||
glm_vec4_scale(m[1], to, v1);
|
||||
glm_vec4_scale(m[1], y, v1);
|
||||
glm_vec4_add(v1, m[3], m[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by z factor
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] z z factor
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_z(mat4 m, float to) {
|
||||
glm_translate_z(mat4 m, float z) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]),
|
||||
_mm_set1_ps(to)),
|
||||
_mm_set1_ps(z)),
|
||||
_mm_load_ps(m[3])))
|
||||
;
|
||||
#else
|
||||
vec4 v1;
|
||||
glm_vec4_scale(m[2], to, v1);
|
||||
glm_vec4_scale(m[2], z, v1);
|
||||
glm_vec4_add(v1, m[3], m[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW translate transform matrix by v vector
|
||||
*
|
||||
* @param[out] m affine transfrom
|
||||
* @param[in] v translate vector [x, y, z]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_make(mat4 m, vec3 v) {
|
||||
@@ -153,8 +193,14 @@ glm_translate_make(mat4 m, vec3 v) {
|
||||
glm_translate_to(t, v, m);
|
||||
}
|
||||
|
||||
/* scale */
|
||||
|
||||
/*!
|
||||
* @brief scale existing transform matrix by v vector
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] v scale vector [x, y, z]
|
||||
* @param[out] dest scaled matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_scale_to(mat4 m, vec3 v, mat4 dest) {
|
||||
@@ -165,6 +211,12 @@ glm_scale_to(mat4 m, vec3 v, mat4 dest) {
|
||||
glm_vec4_copy(m[3], dest[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW scale matrix by v vector
|
||||
*
|
||||
* @param[out] m affine transfrom
|
||||
* @param[in] v scale vector [x, y, z]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_scale_make(mat4 m, vec3 v) {
|
||||
@@ -172,12 +224,22 @@ glm_scale_make(mat4 m, vec3 v) {
|
||||
glm_scale_to(t, v, m);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief scales existing transform matrix by v vector
|
||||
* and stores result in same matrix
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] v scale vector [x, y, z]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_scale(mat4 m, vec3 v) {
|
||||
glm_scale_to(m, v, m);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief DEPRECATED! Use glm_scale_uni
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_scale1(mat4 m, float s) {
|
||||
@@ -185,15 +247,37 @@ glm_scale1(mat4 m, float s) {
|
||||
glm_scale_to(m, v, m);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief applies uniform scale to existing transform matrix v = [s, s, s]
|
||||
* and stores result in same matrix
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] s scale factor
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_x(mat4 m, float rad, mat4 dest) {
|
||||
glm_scale_uni(mat4 m, float s) {
|
||||
vec3 v = { s, s, s };
|
||||
glm_scale_to(m, v, m);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around X axis by angle
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[out] dest rotated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_x(mat4 m, float angle, mat4 dest) {
|
||||
float cosVal;
|
||||
float sinVal;
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
|
||||
cosVal = cosf(rad);
|
||||
sinVal = sinf(rad);
|
||||
cosVal = cosf(angle);
|
||||
sinVal = sinf(angle);
|
||||
|
||||
t[1][1] = cosVal;
|
||||
t[1][2] = sinVal;
|
||||
@@ -203,15 +287,23 @@ glm_rotate_x(mat4 m, float rad, mat4 dest) {
|
||||
glm_mat4_mul(m, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around Y axis by angle
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[out] dest rotated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_y(mat4 m, float rad, mat4 dest) {
|
||||
glm_rotate_y(mat4 m, float angle, mat4 dest) {
|
||||
float cosVal;
|
||||
float sinVal;
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
|
||||
cosVal = cosf(rad);
|
||||
sinVal = sinf(rad);
|
||||
cosVal = cosf(angle);
|
||||
sinVal = sinf(angle);
|
||||
|
||||
t[0][0] = cosVal;
|
||||
t[0][2] = -sinVal;
|
||||
@@ -221,15 +313,23 @@ glm_rotate_y(mat4 m, float rad, mat4 dest) {
|
||||
glm_mat4_mul(m, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around Z axis by angle
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[out] dest rotated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_z(mat4 m, float rad, mat4 dest) {
|
||||
glm_rotate_z(mat4 m, float angle, mat4 dest) {
|
||||
float cosVal;
|
||||
float sinVal;
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
|
||||
cosVal = cosf(rad);
|
||||
sinVal = sinf(rad);
|
||||
cosVal = cosf(angle);
|
||||
sinVal = sinf(angle);
|
||||
|
||||
t[0][0] = cosVal;
|
||||
t[0][1] = sinVal;
|
||||
@@ -239,6 +339,15 @@ glm_rotate_z(mat4 m, float rad, mat4 dest) {
|
||||
glm_mat4_mul(m, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW rotation matrix by angle and axis
|
||||
*
|
||||
* this name may change in the future. axis must be is normalized
|
||||
*
|
||||
* @param[out] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis_ndc normalized axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc) {
|
||||
@@ -272,6 +381,15 @@ glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc) {
|
||||
m[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW rotation matrix by angle and axis
|
||||
*
|
||||
* axis will be normalized so you don't need to normalize it
|
||||
*
|
||||
* @param[out] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_make(mat4 m, float angle, vec3 axis) {
|
||||
@@ -281,6 +399,15 @@ glm_rotate_make(mat4 m, float angle, vec3 axis) {
|
||||
glm_rotate_ndc_make(m, angle, axis_ndc);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around Z axis by angle and axis
|
||||
*
|
||||
* this name may change in the future, axis must be normalized.
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis_ndc normalized axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_ndc(mat4 m, float angle, vec3 axis_ndc) {
|
||||
@@ -311,6 +438,13 @@ glm_rotate_ndc(mat4 m, float angle, vec3 axis_ndc) {
|
||||
glm_vec4_copy(tmp[3], m[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around Z axis by angle and axis
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate(mat4 m, float angle, vec3 axis) {
|
||||
@@ -323,8 +457,8 @@ glm_rotate(mat4 m, float angle, vec3 axis) {
|
||||
/*!
|
||||
* @brief decompose scale vector
|
||||
*
|
||||
* @param[in] m affine transform
|
||||
* @param[out] s scale vector (Sx, Sy, Sz)
|
||||
* @param[in] m affine transform
|
||||
* @param[out] s scale vector (Sx, Sy, Sz)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
|
||||
202
include/cglm/box.h
Normal file
202
include/cglm/box.h
Normal file
@@ -0,0 +1,202 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_box_h
|
||||
#define cglm_box_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
|
||||
/*!
|
||||
* @brief apply transform to Axis-Aligned Bounding Box
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] m transform matrix
|
||||
* @param[out] dest transformed bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]) {
|
||||
vec3 v[2], xa, xb, ya, yb, za, zb, tmp;
|
||||
|
||||
glm_vec_scale(m[0], box[0][0], xa);
|
||||
glm_vec_scale(m[0], box[1][0], xb);
|
||||
|
||||
glm_vec_scale(m[1], box[0][1], ya);
|
||||
glm_vec_scale(m[1], box[1][1], yb);
|
||||
|
||||
glm_vec_scale(m[2], box[0][2], za);
|
||||
glm_vec_scale(m[2], box[1][2], zb);
|
||||
|
||||
/* min(xa, xb) + min(ya, yb) + min(za, zb) + translation */
|
||||
glm_vec_minv(xa, xb, v[0]);
|
||||
glm_vec_minv(ya, yb, tmp);
|
||||
glm_vec_add(v[0], tmp, v[0]);
|
||||
glm_vec_minv(za, zb, tmp);
|
||||
glm_vec_add(v[0], tmp, v[0]);
|
||||
glm_vec_add(v[0], m[3], v[0]);
|
||||
|
||||
/* max(xa, xb) + max(ya, yb) + max(za, zb) + translation */
|
||||
glm_vec_maxv(xa, xb, v[1]);
|
||||
glm_vec_maxv(ya, yb, tmp);
|
||||
glm_vec_add(v[1], tmp, v[1]);
|
||||
glm_vec_maxv(za, zb, tmp);
|
||||
glm_vec_add(v[1], tmp, v[1]);
|
||||
glm_vec_add(v[1], m[3], v[1]);
|
||||
|
||||
glm_vec_copy(v[0], dest[0]);
|
||||
glm_vec_copy(v[1], dest[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief merges two AABB bounding box and creates new one
|
||||
*
|
||||
* two box must be in same space, if one of box is in different space then
|
||||
* you should consider to convert it's space by glm_box_space
|
||||
*
|
||||
* @param[in] box1 bounding box 1
|
||||
* @param[in] box2 bounding box 2
|
||||
* @param[out] dest merged bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2]) {
|
||||
dest[0][0] = glm_min(box1[0][0], box2[0][0]);
|
||||
dest[0][1] = glm_min(box1[0][1], box2[0][1]);
|
||||
dest[0][2] = glm_min(box1[0][2], box2[0][2]);
|
||||
|
||||
dest[1][0] = glm_max(box1[1][0], box2[1][0]);
|
||||
dest[1][1] = glm_max(box1[1][1], box2[1][1]);
|
||||
dest[1][2] = glm_max(box1[1][2], box2[1][2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief crops a bounding box with another one.
|
||||
*
|
||||
* this could be useful for gettng a bbox which fits with view frustum and
|
||||
* object bounding boxes. In this case you crop view frustum box with objects
|
||||
* box
|
||||
*
|
||||
* @param[in] box bounding box 1
|
||||
* @param[in] cropBox crop box
|
||||
* @param[out] dest cropped bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2]) {
|
||||
dest[0][0] = glm_max(box[0][0], cropBox[0][0]);
|
||||
dest[0][1] = glm_max(box[0][1], cropBox[0][1]);
|
||||
dest[0][2] = glm_max(box[0][2], cropBox[0][2]);
|
||||
|
||||
dest[1][0] = glm_min(box[1][0], cropBox[1][0]);
|
||||
dest[1][1] = glm_min(box[1][1], cropBox[1][1]);
|
||||
dest[1][2] = glm_min(box[1][2], cropBox[1][2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief crops a bounding box with another one.
|
||||
*
|
||||
* this could be useful for gettng a bbox which fits with view frustum and
|
||||
* object bounding boxes. In this case you crop view frustum box with objects
|
||||
* box
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] cropBox crop box
|
||||
* @param[in] clampBox miniumum box
|
||||
* @param[out] dest cropped bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_crop_until(vec3 box[2],
|
||||
vec3 cropBox[2],
|
||||
vec3 clampBox[2],
|
||||
vec3 dest[2]) {
|
||||
glm_aabb_crop(box, cropBox, dest);
|
||||
glm_aabb_merge(clampBox, dest, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB intersects with frustum planes
|
||||
*
|
||||
* this could be useful for frustum culling using AABB.
|
||||
*
|
||||
* OPTIMIZATION HINT:
|
||||
* if planes order is similar to LEFT, RIGHT, BOTTOM, TOP, NEAR, FAR
|
||||
* then this method should run even faster because it would only use two
|
||||
* planes if object is not inside the two planes
|
||||
* fortunately cglm extracts planes as this order! just pass what you got!
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] planes frustum planes
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_frustum(vec3 box[2], vec4 planes[6]) {
|
||||
float *p, dp;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 6; i++) {
|
||||
p = planes[i];
|
||||
dp = p[0] * box[p[0] > 0.0f][0]
|
||||
+ p[1] * box[p[1] > 0.0f][1]
|
||||
+ p[2] * box[p[2] > 0.0f][2];
|
||||
|
||||
if (dp < -p[3])
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief invalidate AABB min and max values
|
||||
*
|
||||
* @param[in, out] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_invalidate(vec3 box[2]) {
|
||||
glm_vec_broadcast(FLT_MAX, box[0]);
|
||||
glm_vec_broadcast(-FLT_MAX, box[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB is valid or not
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_isvalid(vec3 box[2]) {
|
||||
return glm_vec_max(box[0]) != FLT_MAX
|
||||
&& glm_vec_min(box[1]) != -FLT_MAX;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief distance between of min and max
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_aabb_size(vec3 box[2]) {
|
||||
return glm_vec_distance(box[0], box[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief radius of sphere which surrounds AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_aabb_radius(vec3 box[2]) {
|
||||
return glm_aabb_size(box) * 0.5f;
|
||||
}
|
||||
|
||||
#endif /* cglm_box_h */
|
||||
@@ -20,7 +20,11 @@ extern "C" {
|
||||
#include "call/cam.h"
|
||||
#include "call/quat.h"
|
||||
#include "call/euler.h"
|
||||
#include "call/plane.h"
|
||||
#include "call/frustum.h"
|
||||
#include "call/box.h"
|
||||
#include "call/io.h"
|
||||
#include "call/project.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
39
include/cglm/call/box.h
Normal file
39
include/cglm/call/box.h
Normal file
@@ -0,0 +1,39 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_box_h
|
||||
#define cglmc_box_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_crop_until(vec3 box[2],
|
||||
vec3 cropBox[2],
|
||||
vec3 clampBox[2],
|
||||
vec3 dest[2]);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_box_h */
|
||||
|
||||
@@ -43,10 +43,15 @@ glmc_perspective(float fovy,
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_lookat(vec3 eye,
|
||||
vec3 center,
|
||||
vec3 up,
|
||||
mat4 dest);
|
||||
glmc_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_look(vec3 eye, vec3 dir, vec3 up, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_look_anyup(vec3 eye, vec3 dir, mat4 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@@ -21,6 +21,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_euler(vec3 angles, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xyz(vec3 angles, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zyx(vec3 angles, mat4 dest);
|
||||
|
||||
41
include/cglm/call/frustum.h
Normal file
41
include/cglm/call/frustum.h
Normal file
@@ -0,0 +1,41 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_frustum_h
|
||||
#define cglmc_frustum_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_planes(mat4 m, vec4 dest[6]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_corners(mat4 invMat, vec4 dest[8]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_center(vec4 corners[8], vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_corners_at(vec4 corners[8],
|
||||
float splitDist,
|
||||
float farDist,
|
||||
vec4 planeCorners[4]);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_frustum_h */
|
||||
@@ -47,12 +47,16 @@ glmc_mat4_mul(mat4 m1, mat4 m2, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest);
|
||||
glmc_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_mulv(mat4 m, vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_quat(mat4 m, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_transpose_to(mat4 m, mat4 dest);
|
||||
|
||||
23
include/cglm/call/plane.h
Normal file
23
include/cglm/call/plane.h
Normal file
@@ -0,0 +1,23 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_plane_h
|
||||
#define cglmc_plane_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_plane_normalize(vec4 plane);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_plane_h */
|
||||
33
include/cglm/call/project.h
Normal file
33
include/cglm/call/project.h
Normal file
@@ -0,0 +1,33 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_project_h
|
||||
#define cglmc_project_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_project(vec3 pos, mat4 m, vec4 vp, vec3 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_project_h */
|
||||
|
||||
|
||||
@@ -19,33 +19,79 @@ glmc_quat_identity(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat(versor q,
|
||||
float angle,
|
||||
float x,
|
||||
float y,
|
||||
float z);
|
||||
glmc_quat_init(versor q, float x, float y, float z, float w);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quatv(versor q,
|
||||
float angle,
|
||||
vec3 v);
|
||||
glmc_quat(versor q, float angle, float x, float y, float z);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quatv(versor q, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_copy(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_norm(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_normalize_to(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_normalize(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_dot(versor q, versor r);
|
||||
glmc_quat_dot(versor p, versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mulv(versor q1, versor q2, versor dest);
|
||||
glmc_quat_conjugate(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_inv(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_add(versor p, versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_sub(versor p, versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_real(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_imag(versor q, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_imagn(versor q, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_imaglen(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_angle(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_axis(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mul(versor p, versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
@@ -53,10 +99,43 @@ glmc_quat_mat4(versor q, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_slerp(versor q,
|
||||
versor r,
|
||||
float t,
|
||||
versor dest);
|
||||
glmc_quat_mat4t(versor q, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mat3(versor q, mat3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mat3t(versor q, mat3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_lerp(versor from, versor to, float t, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_slerp(versor q, versor r, float t, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_look(vec3 eye, versor ori, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotatev(versor from, vec3 to, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotate(mat4 m, versor q, mat4 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@@ -16,6 +16,10 @@ extern "C" {
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glmc_vec_dup(v, dest) glmc_vec_copy(v, dest)
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3(vec4 v4, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_copy(vec3 a, vec3 dest);
|
||||
@@ -64,6 +68,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_flipsign(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_flipsign_to(vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_inv(vec3 v);
|
||||
@@ -104,6 +112,76 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_minv(vec3 v1, vec3 v2, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_clamp(vec3 v, float minVal, float maxVal);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_ortho(vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_lerp(vec3 from, vec3 to, float t, vec3 dest);
|
||||
|
||||
/* ext */
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_mulv(vec3 a, vec3 b, vec3 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_broadcast(float val, vec3 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_eq(vec3 v, float val);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_eq_eps(vec3 v, float val);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_eq_all(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_eqv(vec3 v1, vec3 v2);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_eqv_eps(vec3 v1, vec3 v2);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_max(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_min(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_isnan(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_isinf(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_isvalid(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_sign(vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_sqrt(vec3 v, vec3 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -17,6 +17,10 @@ extern "C" {
|
||||
#define glmc_vec4_dup3(v, dest) glmc_vec4_copy3(v, dest)
|
||||
#define glmc_vec4_dup(v, dest) glmc_vec4_copy(v, dest)
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4(vec3 v3, float last, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_copy3(vec4 a, vec3 dest);
|
||||
@@ -65,6 +69,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_flipsign(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_flipsign_to(vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_inv(vec4 v);
|
||||
@@ -85,6 +93,72 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_minv(vec4 v1, vec4 v2, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_clamp(vec4 v, float minVal, float maxVal);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest);
|
||||
|
||||
/* ext */
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_mulv(vec4 a, vec4 b, vec4 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_broadcast(float val, vec4 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq(vec4 v, float val);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq_eps(vec4 v, float val);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq_all(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eqv(vec4 v1, vec4 v2);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eqv_eps(vec4 v1, vec4 v2);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_max(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_min(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isnan(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isinf(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isvalid(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sign(vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sqrt(vec4 v, vec4 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -7,55 +7,60 @@
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE void glm_frustum(float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest);
|
||||
CGLM_INLINE void glm_ortho(float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest);
|
||||
CGLM_INLINE void glm_ortho_default(float aspect, mat4 dest);
|
||||
CGLM_INLINE void glm_ortho_default_s(float aspect, float size, mat4 dest);
|
||||
CGLM_INLINE void glm_perspective(float fovy,
|
||||
float aspect,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest);
|
||||
CGLM_INLINE void glm_perspective_default(float aspect, mat4 dest);
|
||||
CGLM_INLINE void glm_perspective_resize(float aspect, mat4 proj);
|
||||
CGLM_INLINE void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest);
|
||||
CGLM_INLINE void glm_persp_decomp(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom,
|
||||
float * __restrict left,
|
||||
float * __restrict right);
|
||||
CGLM_INLINE void glm_persp_decompv(mat4 proj, float dest[6]);
|
||||
CGLM_INLINE void glm_persp_decomp_x(mat4 proj,
|
||||
float * __restrict left,
|
||||
float * __restrict right);
|
||||
CGLM_INLINE void glm_persp_decomp_y(mat4 proj,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom);
|
||||
CGLM_INLINE void glm_persp_decomp_z(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal);
|
||||
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float * __restrict farVal);
|
||||
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *__restrict nearVal);
|
||||
CGLM_INLINE void glm_frustum(float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest)
|
||||
CGLM_INLINE void glm_ortho(float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_aabb(vec3 box[2], mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_default(float aspect, mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_default_s(float aspect, float size, mat4 dest)
|
||||
CGLM_INLINE void glm_perspective(float fovy,
|
||||
float aspect,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest)
|
||||
CGLM_INLINE void glm_perspective_default(float aspect, mat4 dest)
|
||||
CGLM_INLINE void glm_perspective_resize(float aspect, mat4 proj)
|
||||
CGLM_INLINE void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest)
|
||||
CGLM_INLINE void glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest)
|
||||
CGLM_INLINE void glm_look_anyup(vec3 eye, vec3 dir, mat4 dest)
|
||||
CGLM_INLINE void glm_persp_decomp(mat4 proj,
|
||||
float *nearVal,
|
||||
float *farVal,
|
||||
float *top,
|
||||
float *bottom,
|
||||
float *left,
|
||||
float *right)
|
||||
CGLM_INLINE void glm_persp_decompv(mat4 proj, float dest[6])
|
||||
CGLM_INLINE void glm_persp_decomp_x(mat4 proj, float *left, float *right)
|
||||
CGLM_INLINE void glm_persp_decomp_y(mat4 proj, float *top, float *bottom)
|
||||
CGLM_INLINE void glm_persp_decomp_z(mat4 proj,
|
||||
float *nearVal,
|
||||
float *farVal)
|
||||
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float *farVal)
|
||||
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *nearVal)
|
||||
CGLM_INLINE float glm_persp_fovy(mat4 proj)
|
||||
CGLM_INLINE float glm_persp_aspect(mat4 proj)
|
||||
CGLM_INLINE void glm_persp_sizes(mat4 proj, float fovy, vec4 dest)
|
||||
*/
|
||||
|
||||
#ifndef cglm_vcam_h
|
||||
#define cglm_vcam_h
|
||||
|
||||
#include "common.h"
|
||||
#include "plane.h"
|
||||
|
||||
/*!
|
||||
* @brief set up perspective peprojection matrix
|
||||
@@ -132,6 +137,59 @@ glm_ortho(float left,
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up orthographic projection matrix using bounding box
|
||||
*
|
||||
* bounding box (AABB) must be in view space
|
||||
*
|
||||
* @param[in] box AABB
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_ortho_aabb(vec3 box[2], mat4 dest) {
|
||||
glm_ortho(box[0][0], box[1][0],
|
||||
box[0][1], box[1][1],
|
||||
-box[1][2], -box[0][2],
|
||||
dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up orthographic projection matrix using bounding box
|
||||
*
|
||||
* bounding box (AABB) must be in view space
|
||||
*
|
||||
* @param[in] box AABB
|
||||
* @param[in] padding padding
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest) {
|
||||
glm_ortho(box[0][0] - padding, box[1][0] + padding,
|
||||
box[0][1] - padding, box[1][1] + padding,
|
||||
-(box[1][2] + padding), -(box[0][2] - padding),
|
||||
dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up orthographic projection matrix using bounding box
|
||||
*
|
||||
* bounding box (AABB) must be in view space
|
||||
*
|
||||
* @param[in] box AABB
|
||||
* @param[in] padding padding for near and far
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest) {
|
||||
glm_ortho(box[0][0], box[1][0],
|
||||
box[0][1], box[1][1],
|
||||
-(box[1][2] + padding), -(box[0][2] - padding),
|
||||
dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up unit orthographic projection matrix
|
||||
*
|
||||
@@ -244,7 +302,7 @@ glm_perspective_default(float aspect,
|
||||
|
||||
/*!
|
||||
* @brief resize perspective matrix by aspect ratio ( width / height )
|
||||
* this very make easy to resize proj matrix when window, viewport
|
||||
* this makes very easy to resize proj matrix when window /viewport
|
||||
* reized
|
||||
*
|
||||
* @param[in] aspect aspect ratio ( width / height )
|
||||
@@ -300,6 +358,43 @@ glm_lookat(vec3 eye,
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up view matrix
|
||||
*
|
||||
* convenient wrapper for lookat: if you only have direction not target self
|
||||
* then this might be useful. Because you need to get target from direction.
|
||||
*
|
||||
* @param[in] eye eye vector
|
||||
* @param[in] dir direction vector
|
||||
* @param[in] up up vector
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
|
||||
vec3 target;
|
||||
glm_vec_add(eye, dir, target);
|
||||
glm_lookat(eye, target, up, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up view matrix
|
||||
*
|
||||
* convenient wrapper for look: if you only have direction and if you don't
|
||||
* care what UP vector is then this might be useful to create view matrix
|
||||
*
|
||||
* @param[in] eye eye vector
|
||||
* @param[in] dir direction vector
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
|
||||
vec3 up;
|
||||
glm_vec_ortho(dir, up);
|
||||
glm_look(eye, dir, up, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decomposes frustum values of perspective projection.
|
||||
*
|
||||
@@ -320,12 +415,28 @@ glm_persp_decomp(mat4 proj,
|
||||
float * __restrict bottom,
|
||||
float * __restrict left,
|
||||
float * __restrict right) {
|
||||
*nearVal = proj[3][2] / (proj[2][2] - 1);
|
||||
*farVal = proj[3][2] / (proj[2][2] + 1);
|
||||
*bottom = *nearVal * (proj[2][1] - 1) / proj[1][1];
|
||||
*top = *nearVal * (proj[2][1] + 1) / proj[1][1];
|
||||
*left = *nearVal * (proj[2][0] - 1) / proj[0][0];
|
||||
*right = *nearVal * (proj[2][0] + 1) / proj[0][0];
|
||||
float m00, m11, m20, m21, m22, m32, n, f;
|
||||
float n_m11, n_m00;
|
||||
|
||||
m00 = proj[0][0];
|
||||
m11 = proj[1][1];
|
||||
m20 = proj[2][0];
|
||||
m21 = proj[2][1];
|
||||
m22 = proj[2][2];
|
||||
m32 = proj[3][2];
|
||||
|
||||
n = m32 / (m22 - 1.0f);
|
||||
f = m32 / (m22 + 1.0f);
|
||||
|
||||
n_m11 = n / m11;
|
||||
n_m00 = n / m00;
|
||||
|
||||
*nearVal = n;
|
||||
*farVal = f;
|
||||
*bottom = n_m11 * (m21 - 1.0f);
|
||||
*top = n_m11 * (m21 + 1.0f);
|
||||
*left = n_m00 * (m20 - 1.0f);
|
||||
*right = n_m00 * (m20 + 1.0f);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -346,7 +457,7 @@ glm_persp_decompv(mat4 proj, float dest[6]) {
|
||||
* @brief decomposes left and right values of perspective projection.
|
||||
* x stands for x axis (left / right axis)
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[out] left left
|
||||
* @param[out] right right
|
||||
*/
|
||||
@@ -355,11 +466,14 @@ void
|
||||
glm_persp_decomp_x(mat4 proj,
|
||||
float * __restrict left,
|
||||
float * __restrict right) {
|
||||
float nearVal;
|
||||
float nearVal, m20, m00;
|
||||
|
||||
nearVal = proj[3][2] / (proj[3][3] - 1);
|
||||
*left = nearVal * (proj[2][0] - 1) / proj[0][0];
|
||||
*right = nearVal * (proj[2][0] + 1) / proj[0][0];
|
||||
m00 = proj[0][0];
|
||||
m20 = proj[2][0];
|
||||
|
||||
nearVal = proj[3][2] / (proj[3][3] - 1.0f);
|
||||
*left = nearVal * (m20 - 1.0f) / m00;
|
||||
*right = nearVal * (m20 + 1.0f) / m00;
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -375,11 +489,14 @@ void
|
||||
glm_persp_decomp_y(mat4 proj,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom) {
|
||||
float nearVal;
|
||||
float nearVal, m21, m11;
|
||||
|
||||
nearVal = proj[3][2] / (proj[3][3] - 1);
|
||||
*bottom = nearVal * (proj[2][1] - 1) / proj[1][1];
|
||||
*top = nearVal * (proj[2][1] + 1) / proj[1][1];
|
||||
m21 = proj[2][1];
|
||||
m11 = proj[1][1];
|
||||
|
||||
nearVal = proj[3][2] / (proj[3][3] - 1.0f);
|
||||
*bottom = nearVal * (m21 - 1) / m11;
|
||||
*top = nearVal * (m21 + 1) / m11;
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -395,8 +512,13 @@ void
|
||||
glm_persp_decomp_z(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal) {
|
||||
*nearVal = proj[3][2] / (proj[2][2] - 1);
|
||||
*farVal = proj[3][2] / (proj[2][2] + 1);
|
||||
float m32, m22;
|
||||
|
||||
m32 = proj[3][2];
|
||||
m22 = proj[2][2];
|
||||
|
||||
*nearVal = m32 / (m22 - 1.0f);
|
||||
*farVal = m32 / (m22 + 1.0f);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -408,7 +530,7 @@ glm_persp_decomp_z(mat4 proj,
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_persp_decomp_far(mat4 proj, float * __restrict farVal) {
|
||||
*farVal = proj[3][2] / (proj[2][2] + 1);
|
||||
*farVal = proj[3][2] / (proj[2][2] + 1.0f);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -420,6 +542,55 @@ glm_persp_decomp_far(mat4 proj, float * __restrict farVal) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_persp_decomp_near(mat4 proj, float * __restrict nearVal) {
|
||||
*nearVal = proj[3][2] / (proj[2][2] - 1);
|
||||
*nearVal = proj[3][2] / (proj[2][2] - 1.0f);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns field of view angle along the Y-axis (in radians)
|
||||
*
|
||||
* if you need to degrees, use glm_deg to convert it or use this:
|
||||
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_persp_fovy(mat4 proj) {
|
||||
return 2.0f * atanf(1.0f / proj[1][1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns aspect ratio of perspective projection
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_persp_aspect(mat4 proj) {
|
||||
return proj[1][1] / proj[0][0];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns sizes of near and far planes of perspective projection
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[in] fovy fovy (see brief)
|
||||
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_persp_sizes(mat4 proj, float fovy, vec4 dest) {
|
||||
float t, a, nearVal, farVal;
|
||||
|
||||
t = 2.0f * tanf(fovy * 0.5f);
|
||||
a = glm_persp_aspect(proj);
|
||||
|
||||
glm_persp_decomp_z(proj, &nearVal, &farVal);
|
||||
|
||||
dest[1] = t * nearVal;
|
||||
dest[3] = t * farVal;
|
||||
dest[0] = a * dest[1];
|
||||
dest[2] = a * dest[3];
|
||||
}
|
||||
|
||||
#endif /* cglm_vcam_h */
|
||||
|
||||
@@ -15,9 +15,14 @@
|
||||
#include "mat3.h"
|
||||
#include "affine.h"
|
||||
#include "cam.h"
|
||||
#include "frustum.h"
|
||||
#include "quat.h"
|
||||
#include "euler.h"
|
||||
#include "plane.h"
|
||||
#include "box.h"
|
||||
#include "color.h"
|
||||
#include "util.h"
|
||||
#include "io.h"
|
||||
#include "project.h"
|
||||
|
||||
#endif /* cglm_h */
|
||||
|
||||
26
include/cglm/color.h
Normal file
26
include/cglm/color.h
Normal file
@@ -0,0 +1,26 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_color_h
|
||||
#define cglm_color_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec3.h"
|
||||
|
||||
/*!
|
||||
* @brief averages the color channels into one value
|
||||
*
|
||||
* @param[in] rgb RGB color
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_luminance(vec3 rgb) {
|
||||
vec3 l = {0.212671f, 0.715160f, 0.072169f};
|
||||
return glm_dot(rgb, l);
|
||||
}
|
||||
|
||||
#endif /* cglm_color_h */
|
||||
@@ -12,6 +12,7 @@
|
||||
|
||||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
|
||||
#if defined(_WIN32)
|
||||
# ifdef CGLM_DLL
|
||||
|
||||
@@ -5,21 +5,30 @@
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*
|
||||
NOTE:
|
||||
angles must be passed as [X-Angle, Y-Angle, Z-angle] order
|
||||
For instance you don't pass angles as [Z-Angle, X-Angle, Y-angle] to
|
||||
glm_euler_zxy funciton, All RELATED functions accept angles same order
|
||||
which is [X, Y, Z].
|
||||
*/
|
||||
|
||||
/*
|
||||
Types:
|
||||
enum glm_euler_sq
|
||||
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE glm_euler_sq glm_euler_order(int newOrder[3]);
|
||||
CGLM_INLINE void glm_euler_angles(mat4 m, vec3 dest);
|
||||
CGLM_INLINE void glm_euler(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_xyz(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_zyx(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_zxy(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_xzy(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_yzx(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_yxz(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_by_order(vec3 angles,
|
||||
glm_euler_sq axis,
|
||||
glm_euler_sq ord,
|
||||
mat4 dest);
|
||||
*/
|
||||
|
||||
@@ -48,12 +57,12 @@ typedef enum glm_euler_sq {
|
||||
|
||||
CGLM_INLINE
|
||||
glm_euler_sq
|
||||
glm_euler_order(int newOrder[3]) {
|
||||
return (glm_euler_sq)(newOrder[0] | newOrder[1] << 2 | newOrder[2] << 4);
|
||||
glm_euler_order(int ord[3]) {
|
||||
return (glm_euler_sq)(ord[0] << 0 | ord[1] << 2 | ord[2] << 4);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief euler angles (in radian) using xyz sequence
|
||||
* @brief extract euler angles (in radians) using xyz order
|
||||
*
|
||||
* @param[in] m affine transform
|
||||
* @param[out] dest angles vector [x, y, z]
|
||||
@@ -61,225 +70,289 @@ glm_euler_order(int newOrder[3]) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_angles(mat4 m, vec3 dest) {
|
||||
if (m[0][2] < 1.0f) {
|
||||
if (m[0][2] > -1.0f) {
|
||||
vec3 a[2];
|
||||
float cy1, cy2;
|
||||
int path;
|
||||
|
||||
a[0][1] = asinf(-m[0][2]);
|
||||
a[1][1] = CGLM_PI - a[0][1];
|
||||
float m00, m01, m10, m11, m20, m21, m22;
|
||||
float thetaX, thetaY, thetaZ;
|
||||
|
||||
cy1 = cosf(a[0][1]);
|
||||
cy2 = cosf(a[1][1]);
|
||||
m00 = m[0][0]; m10 = m[1][0]; m20 = m[2][0];
|
||||
m01 = m[0][1]; m11 = m[1][1]; m21 = m[2][1];
|
||||
m22 = m[2][2];
|
||||
|
||||
a[0][0] = atan2f(m[1][2] / cy1, m[2][2] / cy1);
|
||||
a[1][0] = atan2f(m[1][2] / cy2, m[2][2] / cy2);
|
||||
|
||||
a[0][2] = atan2f(m[0][1] / cy1, m[0][0] / cy1);
|
||||
a[1][2] = atan2f(m[0][1] / cy2, m[0][0] / cy2);
|
||||
|
||||
path = (fabsf(a[0][0]) + fabsf(a[0][1]) + fabsf(a[0][2])) >=
|
||||
(fabsf(a[1][0]) + fabsf(a[1][1]) + fabsf(a[1][2]));
|
||||
|
||||
glm_vec_copy(a[path], dest);
|
||||
} else {
|
||||
dest[0] = atan2f(m[1][0], m[2][0]);
|
||||
dest[1] = CGLM_PI_2;
|
||||
dest[2] = 0.0f;
|
||||
if (m20 < 1.0f) {
|
||||
if (m20 > -1.0f) {
|
||||
thetaY = asinf(m20);
|
||||
thetaX = atan2f(-m21, m22);
|
||||
thetaZ = atan2f(-m10, m00);
|
||||
} else { /* m20 == -1 */
|
||||
/* Not a unique solution */
|
||||
thetaY = -CGLM_PI_2;
|
||||
thetaX = -atan2f(m01, m11);
|
||||
thetaZ = 0.0f;
|
||||
}
|
||||
} else {
|
||||
dest[0] = atan2f(-m[1][0], -m[2][0]);
|
||||
dest[1] =-CGLM_PI_2;
|
||||
dest[2] = 0.0f;
|
||||
} else { /* m20 == +1 */
|
||||
thetaY = CGLM_PI_2;
|
||||
thetaX = atan2f(m01, m11);
|
||||
thetaZ = 0.0f;
|
||||
}
|
||||
|
||||
dest[0] = thetaX;
|
||||
dest[1] = thetaY;
|
||||
dest[2] = thetaZ;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles(ExEyEz/RzRyRx)
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Ex, Ey, Ez]
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_xyz(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz, czsx, cxcz, sysz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
czsx = cz * sx;
|
||||
cxcz = cx * cz;
|
||||
sysz = sy * sz;
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = czsx * sy + cx * sz;
|
||||
dest[0][2] = -cxcz * sy + sx * sz;
|
||||
dest[1][0] = -cy * sz;
|
||||
dest[1][1] = cxcz - sx * sysz;
|
||||
dest[1][2] = czsx + cx * sysz;
|
||||
dest[2][0] = sy;
|
||||
dest[2][1] = -cy * sx;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = cy * sz;
|
||||
dest[0][2] =-sy;
|
||||
dest[1][0] = cz * sx * sy - cx * sz;
|
||||
dest[1][1] = cx * cz + sx * sy * sz;
|
||||
dest[1][2] = cy * sx;
|
||||
dest[2][0] = cx * cz * sy + sx * sz;
|
||||
dest[2][1] =-cz * sx + cx * sy * sz;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
glm_euler_xyz(angles, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles (EzEyEx/RxRyRz)
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_zyx(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_xzy(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, sxsy, cysx, cxsy, cxcy;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = cz * sx * sy + cx * sz;
|
||||
dest[0][2] =-cx * cz * sy + sx * sz;
|
||||
dest[1][0] =-cy * sz;
|
||||
dest[1][1] = cx * cz - sx * sy * sz;
|
||||
dest[1][2] = cz * sx + cx * sy * sz;
|
||||
dest[2][0] = sy;
|
||||
dest[2][1] =-cy * sx;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
sxsy = sx * sy;
|
||||
cysx = cy * sx;
|
||||
cxsy = cx * sy;
|
||||
cxcy = cx * cy;
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = sxsy + cxcy * sz;
|
||||
dest[0][2] = -cxsy + cysx * sz;
|
||||
dest[1][0] = -sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cz * sx;
|
||||
dest[2][0] = cz * sy;
|
||||
dest[2][1] = -cysx + cxsy * sz;
|
||||
dest[2][2] = cxcy + sxsy * sz;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_zxy(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_yxz(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, cycz, sysz, czsy, cysz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz + sx * sy * sz;
|
||||
dest[0][1] = cx * sz;
|
||||
dest[0][2] =-cz * sy + cy * sx * sz;
|
||||
dest[1][0] = cz * sx * sy - cy * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cy * cz * sx + sy * sz;
|
||||
dest[2][0] = cx * sy;
|
||||
dest[2][1] =-sx;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
cycz = cy * cz;
|
||||
sysz = sy * sz;
|
||||
czsy = cz * sy;
|
||||
cysz = cy * sz;
|
||||
|
||||
dest[0][0] = cycz + sx * sysz;
|
||||
dest[0][1] = cx * sz;
|
||||
dest[0][2] = -czsy + cysz * sx;
|
||||
dest[1][0] = -cysz + czsy * sx;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cycz * sx + sysz;
|
||||
dest[2][0] = cx * sy;
|
||||
dest[2][1] = -sx;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_xzy(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_yzx(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, sxsy, cxcy, cysx, cxsy;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = sz;
|
||||
dest[0][2] =-cz * sy;
|
||||
dest[1][0] = sx * sy - cx * cy * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cy * sx + cx * sy * sz;
|
||||
dest[2][0] = cx * sy + cy * sx * sz;
|
||||
dest[2][1] =-cz * sx;
|
||||
dest[2][2] = cx * cy - sx * sy * sz;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
sxsy = sx * sy;
|
||||
cxcy = cx * cy;
|
||||
cysx = cy * sx;
|
||||
cxsy = cx * sy;
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = sz;
|
||||
dest[0][2] = -cz * sy;
|
||||
dest[1][0] = sxsy - cxcy * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cysx + cxsy * sz;
|
||||
dest[2][0] = cxsy + cysx * sz;
|
||||
dest[2][1] = -cz * sx;
|
||||
dest[2][2] = cxcy - sxsy * sz;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_yzx(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_zxy(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, cycz, sxsy, cysz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = sx * sy + cx * cy * sz;
|
||||
dest[0][2] =-cx * sy + cy * sx * sz;
|
||||
dest[1][0] =-sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cz * sx;
|
||||
dest[2][0] = cz * sy;
|
||||
dest[2][1] =-cy * sx + cx * sy * sz;
|
||||
dest[2][2] = cx * cy + sx * sy * sz;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
cycz = cy * cz;
|
||||
sxsy = sx * sy;
|
||||
cysz = cy * sz;
|
||||
|
||||
dest[0][0] = cycz - sxsy * sz;
|
||||
dest[0][1] = cz * sxsy + cysz;
|
||||
dest[0][2] = -cx * sy;
|
||||
dest[1][0] = -cx * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = sx;
|
||||
dest[2][0] = cz * sy + cysz * sx;
|
||||
dest[2][1] = -cycz * sx + sy * sz;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_yxz(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_zyx(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, czsx, cxcz, sysz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz - sx * sy * sz;
|
||||
dest[0][1] = cz * sx * sy + cy * sz;
|
||||
dest[0][2] =-cx * sy;
|
||||
dest[1][0] =-cx * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = sx;
|
||||
dest[2][0] = cz * sy + cy * sx * sz;
|
||||
dest[2][1] =-cy * cz * sx + sy * sz;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
czsx = cz * sx;
|
||||
cxcz = cx * cz;
|
||||
sysz = sy * sz;
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = cy * sz;
|
||||
dest[0][2] = -sy;
|
||||
dest[1][0] = czsx * sy - cx * sz;
|
||||
dest[1][1] = cxcz + sx * sysz;
|
||||
dest[1][2] = cy * sx;
|
||||
dest[2][0] = cxcz * sy + sx * sz;
|
||||
dest[2][1] = -czsx + cx * sysz;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[in] ord euler order
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_by_order(vec3 angles, glm_euler_sq axis, mat4 dest) {
|
||||
glm_euler_by_order(vec3 angles, glm_euler_sq ord, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
|
||||
@@ -297,72 +370,72 @@ glm_euler_by_order(vec3 angles, glm_euler_sq axis, mat4 dest) {
|
||||
czsx = cz * sx; cxsz = cx * sz;
|
||||
sysz = sy * sz;
|
||||
|
||||
switch (axis) {
|
||||
case GLM_EULER_XYZ:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = cysz;
|
||||
dest[0][2] =-sy;
|
||||
dest[1][0] = czsx * sy - cxsz;
|
||||
dest[1][1] = cxcz + sx * sysz;
|
||||
dest[1][2] = cysx;
|
||||
dest[2][0] = cx * czsy + sx * sz;
|
||||
dest[2][1] =-czsx + cx * sysz;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
switch (ord) {
|
||||
case GLM_EULER_XZY:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = sz;
|
||||
dest[0][2] =-czsy;
|
||||
dest[1][0] = sx * sy - cx * cysz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = cysx + cx * sysz;
|
||||
dest[2][0] = cx * sy + cysx * sz;
|
||||
dest[2][1] =-czsx;
|
||||
dest[2][2] = cxcy - sx * sysz;
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = sx * sy + cx * cysz;
|
||||
dest[0][2] = -cx * sy + cysx * sz;
|
||||
dest[1][0] = -sz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = czsx;
|
||||
dest[2][0] = czsy;
|
||||
dest[2][1] = -cysx + cx * sysz;
|
||||
dest[2][2] = cxcy + sx * sysz;
|
||||
break;
|
||||
case GLM_EULER_ZXY:
|
||||
dest[0][0] = cycz + sx * sysz;
|
||||
dest[0][1] = cxsz;
|
||||
dest[0][2] =-czsy + cysx * sz;
|
||||
dest[1][0] = czsx * sy - cysz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = cycz * sx + sysz;
|
||||
dest[2][0] = cx * sy;
|
||||
dest[2][1] =-sx;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
case GLM_EULER_ZYX:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = czsx * sy + cxsz;
|
||||
dest[0][2] =-cx * czsy + sx * sz;
|
||||
dest[1][0] =-cysz;
|
||||
dest[1][1] = cxcz - sx * sysz;
|
||||
dest[1][2] = czsx + cx * sysz;
|
||||
dest[2][0] = sy;
|
||||
dest[2][1] =-cysx;
|
||||
dest[2][2] = cxcy;
|
||||
case GLM_EULER_XYZ:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = czsx * sy + cxsz;
|
||||
dest[0][2] = -cx * czsy + sx * sz;
|
||||
dest[1][0] = -cysz;
|
||||
dest[1][1] = cxcz - sx * sysz;
|
||||
dest[1][2] = czsx + cx * sysz;
|
||||
dest[2][0] = sy;
|
||||
dest[2][1] = -cysx;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
case GLM_EULER_YXZ:
|
||||
dest[0][0] = cycz - sx * sysz;
|
||||
dest[0][1] = czsx * sy + cysz;
|
||||
dest[0][2] =-cx * sy;
|
||||
dest[1][0] =-cxsz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = sx;
|
||||
dest[2][0] = czsy + cysx * sz;
|
||||
dest[2][1] =-cycz * sx + sysz;
|
||||
dest[2][2] = cxcy;
|
||||
dest[0][0] = cycz + sx * sysz;
|
||||
dest[0][1] = cxsz;
|
||||
dest[0][2] = -czsy + cysx * sz;
|
||||
dest[1][0] = czsx * sy - cysz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = cycz * sx + sysz;
|
||||
dest[2][0] = cx * sy;
|
||||
dest[2][1] = -sx;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
case GLM_EULER_YZX:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = sx * sy + cx * cysz;
|
||||
dest[0][2] =-cx * sy + cysx * sz;
|
||||
dest[1][0] =-sz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = czsx;
|
||||
dest[2][0] = czsy;
|
||||
dest[2][1] =-cysx + cx * sysz;
|
||||
dest[2][2] = cxcy + sx * sysz;
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = sz;
|
||||
dest[0][2] = -czsy;
|
||||
dest[1][0] = sx * sy - cx * cysz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = cysx + cx * sysz;
|
||||
dest[2][0] = cx * sy + cysx * sz;
|
||||
dest[2][1] = -czsx;
|
||||
dest[2][2] = cxcy - sx * sysz;
|
||||
break;
|
||||
case GLM_EULER_ZXY:
|
||||
dest[0][0] = cycz - sx * sysz;
|
||||
dest[0][1] = czsx * sy + cysz;
|
||||
dest[0][2] = -cx * sy;
|
||||
dest[1][0] = -cxsz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = sx;
|
||||
dest[2][0] = czsy + cysx * sz;
|
||||
dest[2][1] = -cycz * sx + sysz;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
case GLM_EULER_ZYX:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = cysz;
|
||||
dest[0][2] = -sy;
|
||||
dest[1][0] = czsx * sy - cxsz;
|
||||
dest[1][1] = cxcz + sx * sysz;
|
||||
dest[1][2] = cysx;
|
||||
dest[2][0] = cx * czsy + sx * sz;
|
||||
dest[2][1] = -czsx + cx * sysz;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
252
include/cglm/frustum.h
Normal file
252
include/cglm/frustum.h
Normal file
@@ -0,0 +1,252 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_frustum_h
|
||||
#define cglm_frustum_h
|
||||
|
||||
#include "common.h"
|
||||
#include "plane.h"
|
||||
|
||||
#define GLM_LBN 0 /* left bottom near */
|
||||
#define GLM_LTN 1 /* left top near */
|
||||
#define GLM_RTN 2 /* right top near */
|
||||
#define GLM_RBN 3 /* right bottom near */
|
||||
|
||||
#define GLM_LBF 4 /* left bottom far */
|
||||
#define GLM_LTF 5 /* left top far */
|
||||
#define GLM_RTF 6 /* right top far */
|
||||
#define GLM_RBF 7 /* right bottom far */
|
||||
|
||||
#define GLM_LEFT 0
|
||||
#define GLM_RIGHT 1
|
||||
#define GLM_BOTTOM 2
|
||||
#define GLM_TOP 3
|
||||
#define GLM_NEAR 4
|
||||
#define GLM_FAR 5
|
||||
|
||||
/* you can override clip space coords
|
||||
but you have to provide all with same name
|
||||
e.g.: define GLM_CSCOORD_LBN {0.0f, 0.0f, 1.0f, 1.0f} */
|
||||
#ifndef GLM_CUSTOM_CLIPSPACE
|
||||
|
||||
/* near */
|
||||
#define GLM_CSCOORD_LBN {-1.0f, -1.0f, -1.0f, 1.0f}
|
||||
#define GLM_CSCOORD_LTN {-1.0f, 1.0f, -1.0f, 1.0f}
|
||||
#define GLM_CSCOORD_RTN { 1.0f, 1.0f, -1.0f, 1.0f}
|
||||
#define GLM_CSCOORD_RBN { 1.0f, -1.0f, -1.0f, 1.0f}
|
||||
|
||||
/* far */
|
||||
#define GLM_CSCOORD_LBF {-1.0f, -1.0f, 1.0f, 1.0f}
|
||||
#define GLM_CSCOORD_LTF {-1.0f, 1.0f, 1.0f, 1.0f}
|
||||
#define GLM_CSCOORD_RTF { 1.0f, 1.0f, 1.0f, 1.0f}
|
||||
#define GLM_CSCOORD_RBF { 1.0f, -1.0f, 1.0f, 1.0f}
|
||||
|
||||
#endif
|
||||
|
||||
/*!
|
||||
* @brief extracts view frustum planes
|
||||
*
|
||||
* planes' space:
|
||||
* 1- if m = proj: View Space
|
||||
* 2- if m = viewProj: World Space
|
||||
* 3- if m = MVP: Object Space
|
||||
*
|
||||
* You probably want to extract planes in world space so use viewProj as m
|
||||
* Computing viewProj:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
*
|
||||
* Exracted planes order: [left, right, bottom, top, near, far]
|
||||
*
|
||||
* @param[in] m matrix (see brief)
|
||||
* @param[out] dest exracted view frustum planes (see brief)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_frustum_planes(mat4 m, vec4 dest[6]) {
|
||||
mat4 t;
|
||||
|
||||
glm_mat4_transpose_to(m, t);
|
||||
|
||||
glm_vec4_add(t[3], t[0], dest[0]); /* left */
|
||||
glm_vec4_sub(t[3], t[0], dest[1]); /* right */
|
||||
glm_vec4_add(t[3], t[1], dest[2]); /* bottom */
|
||||
glm_vec4_sub(t[3], t[1], dest[3]); /* top */
|
||||
glm_vec4_add(t[3], t[2], dest[4]); /* near */
|
||||
glm_vec4_sub(t[3], t[2], dest[5]); /* far */
|
||||
|
||||
glm_plane_normalize(dest[0]);
|
||||
glm_plane_normalize(dest[1]);
|
||||
glm_plane_normalize(dest[2]);
|
||||
glm_plane_normalize(dest[3]);
|
||||
glm_plane_normalize(dest[4]);
|
||||
glm_plane_normalize(dest[5]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief extracts view frustum corners using clip-space coordinates
|
||||
*
|
||||
* corners' space:
|
||||
* 1- if m = invViewProj: World Space
|
||||
* 2- if m = invMVP: Object Space
|
||||
*
|
||||
* You probably want to extract corners in world space so use invViewProj
|
||||
* Computing invViewProj:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* ...
|
||||
* glm_mat4_inv(viewProj, invViewProj);
|
||||
*
|
||||
* if you have a near coord at i index, you can get it's far coord by i + 4
|
||||
*
|
||||
* Find center coordinates:
|
||||
* for (j = 0; j < 4; j++) {
|
||||
* glm_vec_center(corners[i], corners[i + 4], centerCorners[i]);
|
||||
* }
|
||||
*
|
||||
* @param[in] invMat matrix (see brief)
|
||||
* @param[out] dest exracted view frustum corners (see brief)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_frustum_corners(mat4 invMat, vec4 dest[8]) {
|
||||
vec4 c[8];
|
||||
|
||||
/* indexOf(nearCoord) = indexOf(farCoord) + 4 */
|
||||
vec4 csCoords[8] = {
|
||||
GLM_CSCOORD_LBN,
|
||||
GLM_CSCOORD_LTN,
|
||||
GLM_CSCOORD_RTN,
|
||||
GLM_CSCOORD_RBN,
|
||||
|
||||
GLM_CSCOORD_LBF,
|
||||
GLM_CSCOORD_LTF,
|
||||
GLM_CSCOORD_RTF,
|
||||
GLM_CSCOORD_RBF
|
||||
};
|
||||
|
||||
glm_mat4_mulv(invMat, csCoords[0], c[0]);
|
||||
glm_mat4_mulv(invMat, csCoords[1], c[1]);
|
||||
glm_mat4_mulv(invMat, csCoords[2], c[2]);
|
||||
glm_mat4_mulv(invMat, csCoords[3], c[3]);
|
||||
glm_mat4_mulv(invMat, csCoords[4], c[4]);
|
||||
glm_mat4_mulv(invMat, csCoords[5], c[5]);
|
||||
glm_mat4_mulv(invMat, csCoords[6], c[6]);
|
||||
glm_mat4_mulv(invMat, csCoords[7], c[7]);
|
||||
|
||||
glm_vec4_scale(c[0], 1.0f / c[0][3], dest[0]);
|
||||
glm_vec4_scale(c[1], 1.0f / c[1][3], dest[1]);
|
||||
glm_vec4_scale(c[2], 1.0f / c[2][3], dest[2]);
|
||||
glm_vec4_scale(c[3], 1.0f / c[3][3], dest[3]);
|
||||
glm_vec4_scale(c[4], 1.0f / c[4][3], dest[4]);
|
||||
glm_vec4_scale(c[5], 1.0f / c[5][3], dest[5]);
|
||||
glm_vec4_scale(c[6], 1.0f / c[6][3], dest[6]);
|
||||
glm_vec4_scale(c[7], 1.0f / c[7][3], dest[7]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief finds center of view frustum
|
||||
*
|
||||
* @param[in] corners view frustum corners
|
||||
* @param[out] dest view frustum center
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_frustum_center(vec4 corners[8], vec4 dest) {
|
||||
vec4 center;
|
||||
|
||||
glm_vec4_copy(corners[0], center);
|
||||
|
||||
glm_vec4_add(corners[1], center, center);
|
||||
glm_vec4_add(corners[2], center, center);
|
||||
glm_vec4_add(corners[3], center, center);
|
||||
glm_vec4_add(corners[4], center, center);
|
||||
glm_vec4_add(corners[5], center, center);
|
||||
glm_vec4_add(corners[6], center, center);
|
||||
glm_vec4_add(corners[7], center, center);
|
||||
|
||||
glm_vec4_scale(center, 0.125f, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief finds bounding box of frustum relative to given matrix e.g. view mat
|
||||
*
|
||||
* @param[in] corners view frustum corners
|
||||
* @param[in] m matrix to convert existing conners
|
||||
* @param[out] box bounding box as array [min, max]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]) {
|
||||
vec4 v;
|
||||
vec3 min, max;
|
||||
int i;
|
||||
|
||||
glm_vec_broadcast(FLT_MAX, min);
|
||||
glm_vec_broadcast(-FLT_MAX, max);
|
||||
|
||||
for (i = 0; i < 8; i++) {
|
||||
glm_mat4_mulv(m, corners[i], v);
|
||||
|
||||
min[0] = glm_min(min[0], v[0]);
|
||||
min[1] = glm_min(min[1], v[1]);
|
||||
min[2] = glm_min(min[2], v[2]);
|
||||
|
||||
max[0] = glm_max(max[0], v[0]);
|
||||
max[1] = glm_max(max[1], v[1]);
|
||||
max[2] = glm_max(max[2], v[2]);
|
||||
}
|
||||
|
||||
glm_vec_copy(min, box[0]);
|
||||
glm_vec_copy(max, box[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief finds planes corners which is between near and far planes (parallel)
|
||||
*
|
||||
* this will be helpful if you want to split a frustum e.g. CSM/PSSM. This will
|
||||
* find planes' corners but you will need to one more plane.
|
||||
* Actually you have it, it is near, far or created previously with this func ;)
|
||||
*
|
||||
* @param[in] corners view frustum corners
|
||||
* @param[in] splitDist split distance
|
||||
* @param[in] farDist far distance (zFar)
|
||||
* @param[out] planeCorners plane corners [LB, LT, RT, RB]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_frustum_corners_at(vec4 corners[8],
|
||||
float splitDist,
|
||||
float farDist,
|
||||
vec4 planeCorners[4]) {
|
||||
vec4 corner;
|
||||
float dist, sc;
|
||||
|
||||
/* because distance and scale is same for all */
|
||||
dist = glm_vec_distance(corners[GLM_RTF], corners[GLM_RTN]);
|
||||
sc = dist * (splitDist / farDist);
|
||||
|
||||
/* left bottom */
|
||||
glm_vec4_sub(corners[GLM_LBF], corners[GLM_LBN], corner);
|
||||
glm_vec4_scale_as(corner, sc, corner);
|
||||
glm_vec4_add(corners[GLM_LBN], corner, planeCorners[0]);
|
||||
|
||||
/* left top */
|
||||
glm_vec4_sub(corners[GLM_LTF], corners[GLM_LTN], corner);
|
||||
glm_vec4_scale_as(corner, sc, corner);
|
||||
glm_vec4_add(corners[GLM_LTN], corner, planeCorners[1]);
|
||||
|
||||
/* right top */
|
||||
glm_vec4_sub(corners[GLM_RTF], corners[GLM_RTN], corner);
|
||||
glm_vec4_scale_as(corner, sc, corner);
|
||||
glm_vec4_add(corners[GLM_RTN], corner, planeCorners[2]);
|
||||
|
||||
/* right bottom */
|
||||
glm_vec4_sub(corners[GLM_RBF], corners[GLM_RBN], corner);
|
||||
glm_vec4_scale_as(corner, sc, corner);
|
||||
glm_vec4_add(corners[GLM_RBN], corner, planeCorners[3]);
|
||||
}
|
||||
|
||||
#endif /* cglm_frustum_h */
|
||||
@@ -171,4 +171,33 @@ glm_versor_print(versor vec,
|
||||
#undef m
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_print(vec3 bbox[2],
|
||||
const char * __restrict tag,
|
||||
FILE * __restrict ostream) {
|
||||
int i, j;
|
||||
|
||||
#define m 3
|
||||
|
||||
fprintf(ostream, "AABB (%s):\n", tag ? tag: "float");
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
fprintf(ostream, "\t|");
|
||||
|
||||
for (j = 0; j < m; j++) {
|
||||
fprintf(ostream, "%0.4f", bbox[i][j]);
|
||||
|
||||
if (j != m - 1)
|
||||
fprintf(ostream, "\t");
|
||||
}
|
||||
|
||||
fprintf(ostream, "|\n");
|
||||
}
|
||||
|
||||
fprintf(ostream, "\n");
|
||||
|
||||
#undef m
|
||||
}
|
||||
|
||||
#endif /* cglm_io_h */
|
||||
|
||||
@@ -45,8 +45,8 @@
|
||||
|
||||
|
||||
/* for C only */
|
||||
#define GLM_MAT3_IDENTITY (mat3)GLM_MAT3_IDENTITY_INIT
|
||||
#define GLM_MAT3_ZERO (mat3)GLM_MAT3_ZERO_INIT
|
||||
#define GLM_MAT3_IDENTITY ((mat3)GLM_MAT3_IDENTITY_INIT)
|
||||
#define GLM_MAT3_ZERO ((mat3)GLM_MAT3_ZERO_INIT)
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glm_mat3_dup(mat, dest) glm_mat3_copy(mat, dest)
|
||||
@@ -186,6 +186,56 @@ glm_mat3_mulv(mat3 m, vec3 v, vec3 dest) {
|
||||
dest[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2];
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* @brief convert mat4's rotation part to quaternion
|
||||
*
|
||||
* @param[in] m left matrix
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_quat(mat3 m, versor dest) {
|
||||
float trace, r, rinv;
|
||||
|
||||
/* it seems using like m12 instead of m[1][2] causes extra instructions */
|
||||
|
||||
trace = m[0][0] + m[1][1] + m[2][2];
|
||||
if (trace >= 0.0f) {
|
||||
r = sqrtf(1.0f + trace);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[1][2] - m[2][1]);
|
||||
dest[1] = rinv * (m[2][0] - m[0][2]);
|
||||
dest[2] = rinv * (m[0][1] - m[1][0]);
|
||||
dest[3] = r * 0.5f;
|
||||
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
|
||||
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = r * 0.5f;
|
||||
dest[1] = rinv * (m[0][1] + m[1][0]);
|
||||
dest[2] = rinv * (m[0][2] + m[2][0]);
|
||||
dest[3] = rinv * (m[1][2] - m[2][1]);
|
||||
} else if (m[1][1] >= m[2][2]) {
|
||||
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[0][1] + m[1][0]);
|
||||
dest[1] = r * 0.5f;
|
||||
dest[2] = rinv * (m[1][2] + m[2][1]);
|
||||
dest[3] = rinv * (m[2][0] - m[0][2]);
|
||||
} else {
|
||||
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[0][2] + m[2][0]);
|
||||
dest[1] = rinv * (m[1][2] + m[2][1]);
|
||||
dest[2] = r * 0.5f;
|
||||
dest[3] = rinv * (m[0][1] - m[1][0]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief scale (multiply with scalar) matrix
|
||||
*
|
||||
|
||||
@@ -45,6 +45,7 @@
|
||||
#define cglm_mat_h
|
||||
|
||||
#include "common.h"
|
||||
#include "quat.h"
|
||||
|
||||
#ifdef CGLM_SSE_FP
|
||||
# include "simd/sse2/mat4.h"
|
||||
@@ -58,7 +59,9 @@
|
||||
# include "simd/neon/mat4.h"
|
||||
#endif
|
||||
|
||||
#include <assert.h>
|
||||
#ifdef DEBUG
|
||||
# include <assert.h>
|
||||
#endif
|
||||
|
||||
#define GLM_MAT4_IDENTITY_INIT {{1.0f, 0.0f, 0.0f, 0.0f}, \
|
||||
{0.0f, 1.0f, 0.0f, 0.0f}, \
|
||||
@@ -71,8 +74,8 @@
|
||||
{0.0f, 0.0f, 0.0f, 0.0f}}
|
||||
|
||||
/* for C only */
|
||||
#define GLM_MAT4_IDENTITY (mat4)GLM_MAT4_IDENTITY_INIT
|
||||
#define GLM_MAT4_ZERO (mat4)GLM_MAT4_ZERO_INIT
|
||||
#define GLM_MAT4_IDENTITY ((mat4)GLM_MAT4_IDENTITY_INIT)
|
||||
#define GLM_MAT4_ZERO ((mat4)GLM_MAT4_ZERO_INIT)
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glm_mat4_udup(mat, dest) glm_mat4_ucopy(mat, dest)
|
||||
@@ -281,19 +284,17 @@ glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest) {
|
||||
int i;
|
||||
glm_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest) {
|
||||
uint32_t i;
|
||||
|
||||
#ifdef DEBUG
|
||||
assert(len > 1 && "there must be least 2 matrices to go!");
|
||||
#endif
|
||||
|
||||
glm_mat4_mul(*matrices[0],
|
||||
*matrices[1],
|
||||
dest);
|
||||
glm_mat4_mul(*matrices[0], *matrices[1], dest);
|
||||
|
||||
for (i = 2; i < len; i++)
|
||||
glm_mat4_mul(dest,
|
||||
*matrices[i],
|
||||
dest);
|
||||
glm_mat4_mul(dest, *matrices[i], dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -318,6 +319,55 @@ glm_mat4_mulv(mat4 m, vec4 v, vec4 dest) {
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert mat4's rotation part to quaternion
|
||||
*
|
||||
* @param[in] m left matrix
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_quat(mat4 m, versor dest) {
|
||||
float trace, r, rinv;
|
||||
|
||||
/* it seems using like m12 instead of m[1][2] causes extra instructions */
|
||||
|
||||
trace = m[0][0] + m[1][1] + m[2][2];
|
||||
if (trace >= 0.0f) {
|
||||
r = sqrtf(1.0f + trace);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[1][2] - m[2][1]);
|
||||
dest[1] = rinv * (m[2][0] - m[0][2]);
|
||||
dest[2] = rinv * (m[0][1] - m[1][0]);
|
||||
dest[3] = r * 0.5f;
|
||||
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
|
||||
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = r * 0.5f;
|
||||
dest[1] = rinv * (m[0][1] + m[1][0]);
|
||||
dest[2] = rinv * (m[0][2] + m[2][0]);
|
||||
dest[3] = rinv * (m[1][2] - m[2][1]);
|
||||
} else if (m[1][1] >= m[2][2]) {
|
||||
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[0][1] + m[1][0]);
|
||||
dest[1] = r * 0.5f;
|
||||
dest[2] = rinv * (m[1][2] + m[2][1]);
|
||||
dest[3] = rinv * (m[2][0] - m[0][2]);
|
||||
} else {
|
||||
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[0][2] + m[2][0]);
|
||||
dest[1] = rinv * (m[1][2] + m[2][1]);
|
||||
dest[2] = r * 0.5f;
|
||||
dest[3] = rinv * (m[0][1] - m[1][0]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply vector with mat4's mat3 part(rotation)
|
||||
*
|
||||
@@ -568,5 +618,4 @@ glm_mat4_swap_row(mat4 mat, int row1, int row2) {
|
||||
mat[3][row2] = tmp[3];
|
||||
}
|
||||
|
||||
#else
|
||||
#endif /* cglm_mat_h */
|
||||
|
||||
38
include/cglm/plane.h
Normal file
38
include/cglm/plane.h
Normal file
@@ -0,0 +1,38 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_plane_h
|
||||
#define cglm_plane_h
|
||||
|
||||
#include "common.h"
|
||||
#include "mat4.h"
|
||||
#include "vec4.h"
|
||||
#include "vec3.h"
|
||||
|
||||
/*
|
||||
Plane equation: Ax + By + Cz + D = 0;
|
||||
|
||||
It stored in vec4 as [A, B, C, D]. (A, B, C) is normal and D is distance
|
||||
*/
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE void glm_plane_normalize(vec4 plane);
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @brief normalizes a plane
|
||||
*
|
||||
* @param[in, out] plane pnale to normalize
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_plane_normalize(vec4 plane) {
|
||||
glm_vec4_scale(plane, 1.0f / glm_vec_norm(plane), plane);
|
||||
}
|
||||
|
||||
#endif /* cglm_plane_h */
|
||||
117
include/cglm/project.h
Normal file
117
include/cglm/project.h
Normal file
@@ -0,0 +1,117 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_project_h
|
||||
#define cglm_project_h
|
||||
|
||||
#include "mat4.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
|
||||
/*!
|
||||
* @brief maps the specified viewport coordinates into specified space [1]
|
||||
* the matrix should contain projection matrix.
|
||||
*
|
||||
* if you don't have ( and don't want to have ) an inverse matrix then use
|
||||
* glm_unproject version. You may use existing inverse of matrix in somewhere
|
||||
* else, this is why glm_unprojecti exists to save save inversion cost
|
||||
*
|
||||
* [1] space:
|
||||
* 1- if m = invProj: View Space
|
||||
* 2- if m = invViewProj: World Space
|
||||
* 3- if m = invMVP: Object Space
|
||||
*
|
||||
* You probably want to map the coordinates into object space
|
||||
* so use invMVP as m
|
||||
*
|
||||
* Computing viewProj:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* glm_mat4_mul(viewProj, model, MVP);
|
||||
* glm_mat4_inv(viewProj, invMVP);
|
||||
*
|
||||
* @param[in] pos point/position in viewport coordinates
|
||||
* @param[in] invMat matrix (see brief)
|
||||
* @param[in] vp viewport as [x, y, width, height]
|
||||
* @param[out] dest unprojected coordinates
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
|
||||
vec4 v;
|
||||
|
||||
v[0] = 2.0f * (pos[0] - vp[0]) / vp[2] - 1.0f;
|
||||
v[1] = 2.0f * (pos[1] - vp[1]) / vp[3] - 1.0f;
|
||||
v[2] = 2.0f * pos[2] - 1.0f;
|
||||
v[3] = 1.0f;
|
||||
|
||||
glm_mat4_mulv(invMat, v, v);
|
||||
glm_vec4_scale(v, 1.0f / v[3], v);
|
||||
glm_vec3(v, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief maps the specified viewport coordinates into specified space [1]
|
||||
* the matrix should contain projection matrix.
|
||||
*
|
||||
* this is same as glm_unprojecti except this function get inverse matrix for
|
||||
* you.
|
||||
*
|
||||
* [1] space:
|
||||
* 1- if m = proj: View Space
|
||||
* 2- if m = viewProj: World Space
|
||||
* 3- if m = MVP: Object Space
|
||||
*
|
||||
* You probably want to map the coordinates into object space
|
||||
* so use MVP as m
|
||||
*
|
||||
* Computing viewProj and MVP:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* glm_mat4_mul(viewProj, model, MVP);
|
||||
*
|
||||
* @param[in] pos point/position in viewport coordinates
|
||||
* @param[in] m matrix (see brief)
|
||||
* @param[in] vp viewport as [x, y, width, height]
|
||||
* @param[out] dest unprojected coordinates
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
|
||||
mat4 inv;
|
||||
glm_mat4_inv(m, inv);
|
||||
glm_unprojecti(pos, inv, vp, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief map object coordinates to window coordinates
|
||||
*
|
||||
* Computing MVP:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* glm_mat4_mul(viewProj, model, MVP);
|
||||
*
|
||||
* @param[in] pos object coordinates
|
||||
* @param[in] m MVP matrix
|
||||
* @param[in] vp viewport as [x, y, width, height]
|
||||
* @param[out] dest projected coordinates
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_project(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
|
||||
vec4 pos4, vone = GLM_VEC4_ONE_INIT;
|
||||
|
||||
glm_vec4(pos, 1.0f, pos4);
|
||||
|
||||
glm_mat4_mulv(m, pos4, pos4);
|
||||
glm_vec4_scale(pos4, 1.0f / pos4[3], pos4); /* pos = pos / pos.w */
|
||||
glm_vec4_add(pos4, vone, pos4);
|
||||
glm_vec4_scale(pos4, 0.5f, pos4);
|
||||
|
||||
dest[0] = pos4[0] * vp[2] + vp[0];
|
||||
dest[1] = pos4[1] * vp[3] + vp[1];
|
||||
dest[2] = pos4[2];
|
||||
}
|
||||
|
||||
#endif /* cglm_project_h */
|
||||
@@ -11,15 +11,41 @@
|
||||
GLM_QUAT_IDENTITY
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE void glm_quat_identity(versor q);
|
||||
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
|
||||
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 v);
|
||||
CGLM_INLINE void glm_quat_identity(versor q);
|
||||
CGLM_INLINE void glm_quat_init(versor q, float x, float y, float z, float w);
|
||||
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
|
||||
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_quat_copy(versor q, versor dest);
|
||||
CGLM_INLINE float glm_quat_norm(versor q);
|
||||
CGLM_INLINE void glm_quat_normalize(versor q);
|
||||
CGLM_INLINE float glm_quat_dot(versor q, versor r);
|
||||
CGLM_INLINE void glm_quat_mulv(versor q1, versor q2, versor dest);
|
||||
CGLM_INLINE void glm_quat_mat4(versor q, mat4 dest);
|
||||
CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest);
|
||||
CGLM_INLINE void glm_quat_normalize(versor q);
|
||||
CGLM_INLINE void glm_quat_normalize_to(versor q, versor dest);
|
||||
CGLM_INLINE float glm_quat_dot(versor q1, versor q2);
|
||||
CGLM_INLINE void glm_quat_conjugate(versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_inv(versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_add(versor p, versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_sub(versor p, versor q, versor dest);
|
||||
CGLM_INLINE float glm_quat_real(versor q);
|
||||
CGLM_INLINE void glm_quat_imag(versor q, vec3 dest);
|
||||
CGLM_INLINE void glm_quat_imagn(versor q, vec3 dest);
|
||||
CGLM_INLINE float glm_quat_imaglen(versor q);
|
||||
CGLM_INLINE float glm_quat_angle(versor q);
|
||||
CGLM_INLINE void glm_quat_axis(versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_mul(versor p, versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_mat4(versor q, mat4 dest);
|
||||
CGLM_INLINE void glm_quat_mat4t(versor q, mat4 dest);
|
||||
CGLM_INLINE void glm_quat_mat3(versor q, mat3 dest);
|
||||
CGLM_INLINE void glm_quat_mat3t(versor q, mat3 dest);
|
||||
CGLM_INLINE void glm_quat_lerp(versor from, versor to, float t, versor dest);
|
||||
CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest);
|
||||
CGLM_INLINE void glm_quat_look(vec3 eye, versor ori, mat4 dest);
|
||||
CGLM_INLINE void glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
|
||||
CGLM_INLINE void glm_quat_forp(vec3 from,
|
||||
vec3 to,
|
||||
vec3 fwd,
|
||||
vec3 up,
|
||||
versor dest);
|
||||
CGLM_INLINE void glm_quat_rotatev(versor q, vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_quat_rotate(mat4 m, versor q, mat4 dest);
|
||||
*/
|
||||
|
||||
#ifndef cglm_quat_h
|
||||
@@ -27,14 +53,39 @@
|
||||
|
||||
#include "common.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
#include "mat3.h"
|
||||
|
||||
#ifdef CGLM_SSE_FP
|
||||
# include "simd/sse2/quat.h"
|
||||
#endif
|
||||
|
||||
#define GLM_QUAT_IDENTITY_INIT {1.0f, 0.0f, 0.0f, 0.0f}
|
||||
#define GLM_QUAT_IDENTITY (versor){1.0f, 0.0f, 0.0f, 0.0f}
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_mulv(mat4 m, vec4 v, vec4 dest);
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest);
|
||||
|
||||
/*
|
||||
* IMPORTANT:
|
||||
* ----------------------------------------------------------------------------
|
||||
* cglm stores quat as [x, y, z, w] since v0.3.6
|
||||
*
|
||||
* it was [w, x, y, z] before v0.3.6 it has been changed to [x, y, z, w]
|
||||
* with v0.3.6 version.
|
||||
* ----------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#define GLM_QUAT_IDENTITY_INIT {0.0f, 0.0f, 0.0f, 1.0f}
|
||||
#define GLM_QUAT_IDENTITY ((versor)GLM_QUAT_IDENTITY_INIT)
|
||||
|
||||
/*!
|
||||
* @brief makes given quat to identity
|
||||
*
|
||||
* @param[in, out] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_identity(versor q) {
|
||||
@@ -42,95 +93,332 @@ glm_quat_identity(versor q) {
|
||||
glm_vec4_copy(v, q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inits quaterion with raw values
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] x x
|
||||
* @param[in] y y
|
||||
* @param[in] z z
|
||||
* @param[in] w w (real part)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat(versor q,
|
||||
float angle,
|
||||
float x,
|
||||
float y,
|
||||
float z) {
|
||||
glm_quat_init(versor q, float x, float y, float z, float w) {
|
||||
q[0] = x;
|
||||
q[1] = y;
|
||||
q[2] = z;
|
||||
q[3] = w;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion with axis vector
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quatv(versor q, float angle, vec3 axis) {
|
||||
vec3 k;
|
||||
float a, c, s;
|
||||
|
||||
a = angle * 0.5f;
|
||||
c = cosf(a);
|
||||
s = sinf(a);
|
||||
|
||||
q[0] = c;
|
||||
q[1] = s * x;
|
||||
q[2] = s * y;
|
||||
q[3] = s * z;
|
||||
glm_normalize_to(axis, k);
|
||||
|
||||
q[0] = s * k[0];
|
||||
q[1] = s * k[1];
|
||||
q[2] = s * k[2];
|
||||
q[3] = c;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion with individual axis components
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] x axis.x
|
||||
* @param[in] y axis.y
|
||||
* @param[in] z axis.z
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quatv(versor q,
|
||||
float angle,
|
||||
vec3 v) {
|
||||
float a, c, s;
|
||||
|
||||
a = angle * 0.5f;
|
||||
c = cosf(a);
|
||||
s = sinf(a);
|
||||
|
||||
q[0] = c;
|
||||
q[1] = s * v[0];
|
||||
q[2] = s * v[1];
|
||||
q[3] = s * v[2];
|
||||
glm_quat(versor q, float angle, float x, float y, float z) {
|
||||
vec3 axis = {x, y, z};
|
||||
glm_quatv(q, angle, axis);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy quaternion to another one
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_copy(versor q, versor dest) {
|
||||
glm_vec4_copy(q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns norm (magnitude) of quaternion
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_norm(versor q) {
|
||||
return glm_vec4_norm(q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize quaternion and store result in dest
|
||||
*
|
||||
* @param[in] q quaternion to normalze
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_normalize_to(versor q, versor dest) {
|
||||
#if defined( __SSE2__ ) || defined( __SSE2__ )
|
||||
__m128 xdot, x0;
|
||||
float dot;
|
||||
|
||||
x0 = _mm_load_ps(q);
|
||||
xdot = glm_simd_dot(x0, x0);
|
||||
dot = _mm_cvtss_f32(xdot);
|
||||
|
||||
if (dot <= 0.0f) {
|
||||
glm_quat_identity(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
_mm_store_ps(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
|
||||
#else
|
||||
float dot;
|
||||
|
||||
dot = glm_vec4_norm2(q);
|
||||
|
||||
if (dot <= 0.0f) {
|
||||
glm_quat_identity(q);
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec4_scale(q, 1.0f / sqrtf(dot), dest);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize quaternion
|
||||
*
|
||||
* @param[in, out] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_normalize(versor q) {
|
||||
float sum;
|
||||
|
||||
sum = q[0] * q[0] + q[1] * q[1]
|
||||
+ q[2] * q[2] + q[3] * q[3];
|
||||
|
||||
if (fabs(1.0f - sum) < 0.0001f)
|
||||
return;
|
||||
|
||||
glm_vec4_scale(q, 1.0f / sqrtf(sum), q);
|
||||
glm_quat_normalize_to(q, q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief dot product of two quaternion
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_dot(versor q, versor r) {
|
||||
return glm_vec4_dot(q, r);
|
||||
glm_quat_dot(versor p, versor q) {
|
||||
return glm_vec4_dot(p, q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief conjugate of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest conjugate
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mulv(versor q1, versor q2, versor dest) {
|
||||
dest[0] = q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2] - q2[3] * q1[3];
|
||||
dest[1] = q2[0] * q1[1] + q2[1] * q1[0] - q2[2] * q1[3] + q2[3] * q1[2];
|
||||
dest[2] = q2[0] * q1[2] + q2[1] * q1[3] + q2[2] * q1[0] - q2[3] * q1[1];
|
||||
dest[3] = q2[0] * q1[3] - q2[1] * q1[2] + q2[2] * q1[1] + q2[3] * q1[0];
|
||||
|
||||
glm_quat_normalize(dest);
|
||||
glm_quat_conjugate(versor q, versor dest) {
|
||||
glm_vec4_flipsign_to(q, dest);
|
||||
dest[3] = -dest[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inverse of non-zero quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest inverse quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_inv(versor q, versor dest) {
|
||||
versor conj;
|
||||
glm_quat_conjugate(q, conj);
|
||||
glm_vec4_scale(conj, 1.0f / glm_vec4_norm2(q), dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add (componentwise) two quaternions and store result in dest
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_add(versor p, versor q, versor dest) {
|
||||
glm_vec4_add(p, q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract (componentwise) two quaternions and store result in dest
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_sub(versor p, versor q, versor dest) {
|
||||
glm_vec4_sub(p, q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns real part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_real(versor q) {
|
||||
return q[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns imaginary part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest imag
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_imag(versor q, vec3 dest) {
|
||||
dest[0] = q[0];
|
||||
dest[1] = q[1];
|
||||
dest[2] = q[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns normalized imaginary part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_imagn(versor q, vec3 dest) {
|
||||
glm_normalize_to(q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns length of imaginary part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_imaglen(versor q) {
|
||||
return glm_vec_norm(q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns angle of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_angle(versor q) {
|
||||
/*
|
||||
sin(theta / 2) = length(x*x + y*y + z*z)
|
||||
cos(theta / 2) = w
|
||||
theta = 2 * atan(sin(theta / 2) / cos(theta / 2))
|
||||
*/
|
||||
return 2.0f * atan2f(glm_quat_imaglen(q), glm_quat_real(q));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief axis of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest axis of quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_axis(versor q, versor dest) {
|
||||
glm_quat_imagn(q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiplies two quaternion and stores result in dest
|
||||
* this is also called Hamilton Product
|
||||
*
|
||||
* According to WikiPedia:
|
||||
* The product of two rotation quaternions [clarification needed] will be
|
||||
* equivalent to the rotation q followed by the rotation p
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mul(versor p, versor q, versor dest) {
|
||||
/*
|
||||
+ (a1 b2 + b1 a2 + c1 d2 − d1 c2)i
|
||||
+ (a1 c2 − b1 d2 + c1 a2 + d1 b2)j
|
||||
+ (a1 d2 + b1 c2 − c1 b2 + d1 a2)k
|
||||
a1 a2 − b1 b2 − c1 c2 − d1 d2
|
||||
*/
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_quat_mul_sse2(p, q, dest);
|
||||
#else
|
||||
dest[0] = p[3] * q[0] + p[0] * q[3] + p[1] * q[2] - p[2] * q[1];
|
||||
dest[1] = p[3] * q[1] - p[0] * q[2] + p[1] * q[3] + p[2] * q[0];
|
||||
dest[2] = p[3] * q[2] + p[0] * q[1] - p[1] * q[0] + p[2] * q[3];
|
||||
dest[3] = p[3] * q[3] - p[0] * q[0] - p[1] * q[1] - p[2] * q[2];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat4
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mat4(versor q, mat4 dest) {
|
||||
float w, x, y, z;
|
||||
float xx, yy, zz;
|
||||
float xy, yz, xz;
|
||||
float wx, wy, wz;
|
||||
float w, x, y, z,
|
||||
xx, yy, zz,
|
||||
xy, yz, xz,
|
||||
wx, wy, wz, norm, s;
|
||||
|
||||
w = q[0];
|
||||
x = q[1];
|
||||
y = q[2];
|
||||
z = q[3];
|
||||
norm = glm_quat_norm(q);
|
||||
s = norm > 0.0f ? 2.0f / norm : 0.0f;
|
||||
|
||||
xx = 2.0f * x * x; xy = 2.0f * x * y; wx = 2.0f * w * x;
|
||||
yy = 2.0f * y * y; yz = 2.0f * y * z; wy = 2.0f * w * y;
|
||||
zz = 2.0f * z * z; xz = 2.0f * x * z; wz = 2.0f * w * z;
|
||||
x = q[0];
|
||||
y = q[1];
|
||||
z = q[2];
|
||||
w = q[3];
|
||||
|
||||
xx = s * x * x; xy = s * x * y; wx = s * w * x;
|
||||
yy = s * y * y; yz = s * y * z; wy = s * w * y;
|
||||
zz = s * z * z; xz = s * x * z; wz = s * w * z;
|
||||
|
||||
dest[0][0] = 1.0f - yy - zz;
|
||||
dest[1][1] = 1.0f - xx - zz;
|
||||
@@ -144,8 +432,8 @@ glm_quat_mat4(versor q, mat4 dest) {
|
||||
dest[2][1] = yz - wx;
|
||||
dest[0][2] = xz - wy;
|
||||
|
||||
dest[1][3] = 0.0f;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
@@ -153,60 +441,303 @@ glm_quat_mat4(versor q, mat4 dest) {
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat4 (transposed)
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest result matrix as transposed
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_slerp(versor q,
|
||||
versor r,
|
||||
float t,
|
||||
versor dest) {
|
||||
/* https://en.wikipedia.org/wiki/Slerp */
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_quat_slerp_sse2(q, r, t, dest);
|
||||
#else
|
||||
float cosTheta, sinTheta, angle, a, b, c;
|
||||
glm_quat_mat4t(versor q, mat4 dest) {
|
||||
float w, x, y, z,
|
||||
xx, yy, zz,
|
||||
xy, yz, xz,
|
||||
wx, wy, wz, norm, s;
|
||||
|
||||
cosTheta = glm_quat_dot(q, r);
|
||||
if (cosTheta < 0.0f) {
|
||||
q[0] *= -1.0f;
|
||||
q[1] *= -1.0f;
|
||||
q[2] *= -1.0f;
|
||||
q[3] *= -1.0f;
|
||||
norm = glm_quat_norm(q);
|
||||
s = norm > 0.0f ? 2.0f / norm : 0.0f;
|
||||
|
||||
cosTheta = -cosTheta;
|
||||
}
|
||||
x = q[0];
|
||||
y = q[1];
|
||||
z = q[2];
|
||||
w = q[3];
|
||||
|
||||
if (fabs(cosTheta) >= 1.0f) {
|
||||
dest[0] = q[0];
|
||||
dest[1] = q[1];
|
||||
dest[2] = q[2];
|
||||
dest[3] = q[3];
|
||||
xx = s * x * x; xy = s * x * y; wx = s * w * x;
|
||||
yy = s * y * y; yz = s * y * z; wy = s * w * y;
|
||||
zz = s * z * z; xz = s * x * z; wz = s * w * z;
|
||||
|
||||
dest[0][0] = 1.0f - yy - zz;
|
||||
dest[1][1] = 1.0f - xx - zz;
|
||||
dest[2][2] = 1.0f - xx - yy;
|
||||
|
||||
dest[1][0] = xy + wz;
|
||||
dest[2][1] = yz + wx;
|
||||
dest[0][2] = xz + wy;
|
||||
|
||||
dest[0][1] = xy - wz;
|
||||
dest[1][2] = yz - wx;
|
||||
dest[2][0] = xz - wy;
|
||||
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat3
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mat3(versor q, mat3 dest) {
|
||||
float w, x, y, z,
|
||||
xx, yy, zz,
|
||||
xy, yz, xz,
|
||||
wx, wy, wz, norm, s;
|
||||
|
||||
norm = glm_quat_norm(q);
|
||||
s = norm > 0.0f ? 2.0f / norm : 0.0f;
|
||||
|
||||
x = q[0];
|
||||
y = q[1];
|
||||
z = q[2];
|
||||
w = q[3];
|
||||
|
||||
xx = s * x * x; xy = s * x * y; wx = s * w * x;
|
||||
yy = s * y * y; yz = s * y * z; wy = s * w * y;
|
||||
zz = s * z * z; xz = s * x * z; wz = s * w * z;
|
||||
|
||||
dest[0][0] = 1.0f - yy - zz;
|
||||
dest[1][1] = 1.0f - xx - zz;
|
||||
dest[2][2] = 1.0f - xx - yy;
|
||||
|
||||
dest[0][1] = xy + wz;
|
||||
dest[1][2] = yz + wx;
|
||||
dest[2][0] = xz + wy;
|
||||
|
||||
dest[1][0] = xy - wz;
|
||||
dest[2][1] = yz - wx;
|
||||
dest[0][2] = xz - wy;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat3 (transposed)
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mat3t(versor q, mat3 dest) {
|
||||
float w, x, y, z,
|
||||
xx, yy, zz,
|
||||
xy, yz, xz,
|
||||
wx, wy, wz, norm, s;
|
||||
|
||||
norm = glm_quat_norm(q);
|
||||
s = norm > 0.0f ? 2.0f / norm : 0.0f;
|
||||
|
||||
x = q[0];
|
||||
y = q[1];
|
||||
z = q[2];
|
||||
w = q[3];
|
||||
|
||||
xx = s * x * x; xy = s * x * y; wx = s * w * x;
|
||||
yy = s * y * y; yz = s * y * z; wy = s * w * y;
|
||||
zz = s * z * z; xz = s * x * z; wz = s * w * z;
|
||||
|
||||
dest[0][0] = 1.0f - yy - zz;
|
||||
dest[1][1] = 1.0f - xx - zz;
|
||||
dest[2][2] = 1.0f - xx - yy;
|
||||
|
||||
dest[1][0] = xy + wz;
|
||||
dest[2][1] = yz + wx;
|
||||
dest[0][2] = xz + wy;
|
||||
|
||||
dest[0][1] = xy - wz;
|
||||
dest[1][2] = yz - wx;
|
||||
dest[2][0] = xz - wy;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief interpolates between two quaternions
|
||||
* using linear interpolation (LERP)
|
||||
*
|
||||
* @param[in] from from
|
||||
* @param[in] to to
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_lerp(versor from, versor to, float t, versor dest) {
|
||||
glm_vec4_lerp(from, to, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief interpolates between two quaternions
|
||||
* using spherical linear interpolation (SLERP)
|
||||
*
|
||||
* @param[in] from from
|
||||
* @param[in] to to
|
||||
* @param[in] t amout
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_slerp(versor from, versor to, float t, versor dest) {
|
||||
vec4 q1, q2;
|
||||
float cosTheta, sinTheta, angle;
|
||||
|
||||
cosTheta = glm_quat_dot(from, to);
|
||||
glm_quat_copy(from, q1);
|
||||
|
||||
if (fabsf(cosTheta) >= 1.0f) {
|
||||
glm_quat_copy(q1, dest);
|
||||
return;
|
||||
}
|
||||
|
||||
sinTheta = sqrt(1.0f - cosTheta * cosTheta);
|
||||
if (cosTheta < 0.0f) {
|
||||
glm_vec4_flipsign(q1);
|
||||
cosTheta = -cosTheta;
|
||||
}
|
||||
|
||||
c = 1.0f - t;
|
||||
sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
|
||||
|
||||
/* LERP */
|
||||
/* TODO: FLT_EPSILON vs 0.001? */
|
||||
if (sinTheta < 0.001f) {
|
||||
dest[0] = c * q[0] + t * r[0];
|
||||
dest[1] = c * q[1] + t * r[1];
|
||||
dest[2] = c * q[2] + t * r[2];
|
||||
dest[3] = c * q[3] + t * r[3];
|
||||
/* LERP to avoid zero division */
|
||||
if (fabsf(sinTheta) < 0.001f) {
|
||||
glm_quat_lerp(from, to, t, dest);
|
||||
return;
|
||||
}
|
||||
|
||||
/* SLERP */
|
||||
angle = acosf(cosTheta);
|
||||
a = sinf(c * angle);
|
||||
b = sinf(t * angle);
|
||||
glm_vec4_scale(q1, sinf((1.0f - t) * angle), q1);
|
||||
glm_vec4_scale(to, sinf(t * angle), q2);
|
||||
|
||||
dest[0] = (q[0] * a + r[0] * b) / sinTheta;
|
||||
dest[1] = (q[1] * a + r[1] * b) / sinTheta;
|
||||
dest[2] = (q[2] * a + r[2] * b) / sinTheta;
|
||||
dest[3] = (q[3] * a + r[3] * b) / sinTheta;
|
||||
#endif
|
||||
glm_vec4_add(q1, q2, q1);
|
||||
glm_vec4_scale(q1, 1.0f / sinTheta, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates view matrix using quaternion as camera orientation
|
||||
*
|
||||
* @param[in] eye eye
|
||||
* @param[in] ori orientation in world space as quaternion
|
||||
* @param[out] dest view matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_look(vec3 eye, versor ori, mat4 dest) {
|
||||
vec4 t;
|
||||
|
||||
/* orientation */
|
||||
glm_quat_mat4t(ori, dest);
|
||||
|
||||
/* translate */
|
||||
glm_vec4(eye, 1.0f, t);
|
||||
glm_mat4_mulv(dest, t, t);
|
||||
glm_vec_flipsign_to(t, dest[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates look rotation quaternion
|
||||
*
|
||||
* @param[in] dir direction to look
|
||||
* @param[in] fwd forward vector
|
||||
* @param[in] up up vector
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest) {
|
||||
vec3 axis;
|
||||
float dot, angle;
|
||||
|
||||
dot = glm_vec_dot(dir, fwd);
|
||||
if (fabsf(dot + 1.0f) < 0.000001f) {
|
||||
glm_quat_init(dest, up[0], up[1], up[2], CGLM_PI);
|
||||
return;
|
||||
}
|
||||
|
||||
if (fabsf(dot - 1.0f) < 0.000001f) {
|
||||
glm_quat_identity(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
angle = acosf(dot);
|
||||
glm_cross(fwd, dir, axis);
|
||||
glm_normalize(axis);
|
||||
|
||||
glm_quatv(dest, angle, axis);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates look rotation quaternion using source and
|
||||
* destination positions p suffix stands for position
|
||||
*
|
||||
* @param[in] from source point
|
||||
* @param[in] to destination point
|
||||
* @param[in] fwd forward vector
|
||||
* @param[in] up up vector
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest) {
|
||||
vec3 dir;
|
||||
glm_vec_sub(to, from, dir);
|
||||
glm_quat_for(dir, fwd, up, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate vector using using quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[in] v vector to rotate
|
||||
* @param[out] dest rotated vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_rotatev(versor q, vec3 v, vec3 dest) {
|
||||
versor p;
|
||||
vec3 u, v1, v2;
|
||||
float s;
|
||||
|
||||
glm_quat_normalize_to(q, p);
|
||||
glm_quat_imag(p, u);
|
||||
s = glm_quat_real(p);
|
||||
|
||||
glm_vec_scale(u, 2.0f * glm_vec_dot(u, v), v1);
|
||||
glm_vec_scale(v, s * s - glm_vec_dot(u, u), v2);
|
||||
glm_vec_add(v1, v2, v1);
|
||||
|
||||
glm_vec_cross(u, v, v2);
|
||||
glm_vec_scale(v2, 2.0f * s, v2);
|
||||
|
||||
glm_vec_add(v1, v2, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix using quaternion
|
||||
*
|
||||
* @param[in] m existing transform matrix
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest rotated matrix/transform
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_rotate(mat4 m, versor q, mat4 dest) {
|
||||
mat4 rot;
|
||||
glm_quat_mat4(q, rot);
|
||||
glm_mat4_mul(m, rot, dest);
|
||||
}
|
||||
|
||||
#endif /* cglm_quat_h */
|
||||
|
||||
@@ -30,6 +30,16 @@
|
||||
# define _mm_shuffle2_ps(a, b, z0, y0, x0, w0, z1, y1, x1, w1) \
|
||||
_mm_shuffle1_ps(_mm_shuffle_ps(a, b, _MM_SHUFFLE(z0, y0, x0, w0)), \
|
||||
z1, y1, x1, w1)
|
||||
|
||||
CGLM_INLINE
|
||||
__m128
|
||||
glm_simd_dot(__m128 a, __m128 b) {
|
||||
__m128 x0;
|
||||
x0 = _mm_mul_ps(a, b);
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 0, 3, 2));
|
||||
return _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 0, 1));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
/* x86, x64 */
|
||||
|
||||
@@ -14,56 +14,33 @@
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_slerp_sse2(versor q,
|
||||
versor r,
|
||||
float t,
|
||||
versor dest) {
|
||||
/* https://en.wikipedia.org/wiki/Slerp */
|
||||
float cosTheta, sinTheta, angle, a, b, c;
|
||||
glm_quat_mul_sse2(versor p, versor q, versor dest) {
|
||||
/*
|
||||
+ (a1 b2 + b1 a2 + c1 d2 − d1 c2)i
|
||||
+ (a1 c2 − b1 d2 + c1 a2 + d1 b2)j
|
||||
+ (a1 d2 + b1 c2 − c1 b2 + d1 a2)k
|
||||
a1 a2 − b1 b2 − c1 c2 − d1 d2
|
||||
*/
|
||||
|
||||
__m128 xmm_q;
|
||||
__m128 xp, xq, x0, r;
|
||||
|
||||
xmm_q = _mm_load_ps(q);
|
||||
xp = _mm_load_ps(p); /* 3 2 1 0 */
|
||||
xq = _mm_load_ps(q);
|
||||
|
||||
cosTheta = glm_vec4_dot(q, r);
|
||||
if (cosTheta < 0.0f) {
|
||||
_mm_store_ps(q,
|
||||
_mm_xor_ps(xmm_q,
|
||||
_mm_set1_ps(-0.f))) ;
|
||||
r = _mm_mul_ps(_mm_shuffle1_ps1(xp, 3), xq);
|
||||
|
||||
cosTheta = -cosTheta;
|
||||
}
|
||||
x0 = _mm_xor_ps(_mm_shuffle1_ps1(xp, 0), _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
|
||||
r = _mm_add_ps(r, _mm_mul_ps(x0, _mm_shuffle1_ps(xq, 0, 1, 2, 3)));
|
||||
|
||||
if (cosTheta >= 1.0f) {
|
||||
_mm_store_ps(dest, xmm_q);
|
||||
return;
|
||||
}
|
||||
x0 = _mm_xor_ps(_mm_shuffle1_ps1(xp, 1), _mm_set_ps(-0.f, -0.f, 0.f, 0.f));
|
||||
r = _mm_add_ps(r, _mm_mul_ps(x0, _mm_shuffle1_ps(xq, 1, 0, 3, 2)));
|
||||
|
||||
sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
|
||||
x0 = _mm_xor_ps(_mm_shuffle1_ps1(xp, 2), _mm_set_ps(-0.f, 0.f, 0.f, -0.f));
|
||||
r = _mm_add_ps(r, _mm_mul_ps(x0, _mm_shuffle1_ps(xq, 2, 3, 0, 1)));
|
||||
|
||||
c = 1.0f - t;
|
||||
|
||||
/* LERP */
|
||||
if (sinTheta < 0.001f) {
|
||||
_mm_store_ps(dest, _mm_add_ps(_mm_mul_ps(_mm_set1_ps(c),
|
||||
xmm_q),
|
||||
_mm_mul_ps(_mm_set1_ps(t),
|
||||
_mm_load_ps(r))));
|
||||
return;
|
||||
}
|
||||
|
||||
/* SLERP */
|
||||
angle = acosf(cosTheta);
|
||||
a = sinf(c * angle);
|
||||
b = sinf(t * angle);
|
||||
|
||||
_mm_store_ps(dest,
|
||||
_mm_div_ps(_mm_add_ps(_mm_mul_ps(_mm_set1_ps(a),
|
||||
xmm_q),
|
||||
_mm_mul_ps(_mm_set1_ps(b),
|
||||
_mm_load_ps(r))),
|
||||
_mm_set1_ps(sinTheta)));
|
||||
_mm_store_ps(dest, r);
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
#endif /* cglm_quat_simd_h */
|
||||
|
||||
@@ -14,6 +14,7 @@
|
||||
# define CGLM_ALIGN(X) __attribute((aligned(X)))
|
||||
#endif
|
||||
|
||||
typedef float vec2[2];
|
||||
typedef float vec3[3];
|
||||
typedef int ivec3[3];
|
||||
typedef CGLM_ALIGN(16) float vec4[4];
|
||||
|
||||
@@ -21,7 +21,9 @@
|
||||
#include "common.h"
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit integer as +1 or -1
|
||||
* @brief get sign of 32 bit integer as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero input
|
||||
*
|
||||
* @param val integer value
|
||||
*/
|
||||
@@ -31,34 +33,129 @@ glm_sign(int val) {
|
||||
return ((val >> 31) - (-val >> 31));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit float as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero/NaN input
|
||||
*
|
||||
* @param val float value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_signf(float val) {
|
||||
return (float)((val > 0.0f) - (val < 0.0f));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert degree to radians
|
||||
*
|
||||
* @param[in] deg angle in degrees
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_rad(float deg) {
|
||||
return deg * CGLM_PI / 180.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert radians to degree
|
||||
*
|
||||
* @param[in] rad angle in radians
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_deg(float rad) {
|
||||
return rad * 180.0f / CGLM_PI;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert exsisting degree to radians. this will override degrees value
|
||||
*
|
||||
* @param[in, out] deg pointer to angle in degrees
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_make_rad(float *deg) {
|
||||
*deg = *deg * CGLM_PI / 180.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert exsisting radians to degree. this will override radians value
|
||||
*
|
||||
* @param[in, out] rad pointer to angle in radians
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_make_deg(float *rad) {
|
||||
*rad = *rad * 180.0f / CGLM_PI;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiplies given parameter with itself = x * x or powf(x, 2)
|
||||
*
|
||||
* @param[in] x x
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_pow2(float x) {
|
||||
|
||||
return x * x;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief find minimum of given two values
|
||||
*
|
||||
* @param[in] a number 1
|
||||
* @param[in] b number 2
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_min(float a, float b) {
|
||||
if (a < b)
|
||||
return a;
|
||||
return b;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief find maximum of given two values
|
||||
*
|
||||
* @param[in] a number 1
|
||||
* @param[in] b number 2
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_max(float a, float b) {
|
||||
if (a > b)
|
||||
return a;
|
||||
return b;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief clamp a number between min and max
|
||||
*
|
||||
* @param[in] val value to clamp
|
||||
* @param[in] minVal minimum value
|
||||
* @param[in] maxVal maximum value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_clamp(float val, float minVal, float maxVal) {
|
||||
return glm_min(glm_max(val, minVal), maxVal);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief linear interpolation between two number
|
||||
*
|
||||
* formula: from + s * (to - from)
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_lerp(float from, float to, float t) {
|
||||
return from + glm_clamp(t, 0.0f, 1.0f) * (to - from);
|
||||
}
|
||||
|
||||
#endif /* cglm_util_h */
|
||||
|
||||
@@ -14,7 +14,7 @@
|
||||
CGLM_INLINE void glm_vec_mulv(vec3 a, vec3 b, vec3 d);
|
||||
CGLM_INLINE void glm_vec_broadcast(float val, vec3 d);
|
||||
CGLM_INLINE bool glm_vec_eq(vec3 v, float val);
|
||||
CGLM_INLINE bool glm_vec_eq_eps(vec4 v, float val);
|
||||
CGLM_INLINE bool glm_vec_eq_eps(vec3 v, float val);
|
||||
CGLM_INLINE bool glm_vec_eq_all(vec3 v);
|
||||
CGLM_INLINE bool glm_vec_eqv(vec3 v1, vec3 v2);
|
||||
CGLM_INLINE bool glm_vec_eqv_eps(vec3 v1, vec3 v2);
|
||||
@@ -26,6 +26,7 @@
|
||||
#define cglm_vec3_ext_h
|
||||
|
||||
#include "common.h"
|
||||
#include "util.h"
|
||||
#include <stdbool.h>
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
@@ -33,9 +34,9 @@
|
||||
/*!
|
||||
* @brief multiplies individual items, just for convenient like SIMD
|
||||
*
|
||||
* @param a vec1
|
||||
* @param b vec2
|
||||
* @param d vec3 = (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2])
|
||||
* @param[in] a vec1
|
||||
* @param[in] b vec2
|
||||
* @param[out] d vec3 = (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
@@ -48,8 +49,8 @@ glm_vec_mulv(vec3 a, vec3 b, vec3 d) {
|
||||
/*!
|
||||
* @brief fill a vector with specified value
|
||||
*
|
||||
* @param val value
|
||||
* @param d dest
|
||||
* @param[in] val value
|
||||
* @param[out] d dest
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
@@ -60,8 +61,8 @@ glm_vec_broadcast(float val, vec3 d) {
|
||||
/*!
|
||||
* @brief check if vector is equal to value (without epsilon)
|
||||
*
|
||||
* @param v vector
|
||||
* @param val value
|
||||
* @param[in] v vector
|
||||
* @param[in] val value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
@@ -72,12 +73,12 @@ glm_vec_eq(vec3 v, float val) {
|
||||
/*!
|
||||
* @brief check if vector is equal to value (with epsilon)
|
||||
*
|
||||
* @param v vector
|
||||
* @param val value
|
||||
* @param[in] v vector
|
||||
* @param[in] val value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_eq_eps(vec4 v, float val) {
|
||||
glm_vec_eq_eps(vec3 v, float val) {
|
||||
return fabsf(v[0] - val) <= FLT_EPSILON
|
||||
&& fabsf(v[1] - val) <= FLT_EPSILON
|
||||
&& fabsf(v[2] - val) <= FLT_EPSILON;
|
||||
@@ -86,7 +87,7 @@ glm_vec_eq_eps(vec4 v, float val) {
|
||||
/*!
|
||||
* @brief check if vectors members are equal (without epsilon)
|
||||
*
|
||||
* @param v vector
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
@@ -97,8 +98,8 @@ glm_vec_eq_all(vec3 v) {
|
||||
/*!
|
||||
* @brief check if vector is equal to another (without epsilon)
|
||||
*
|
||||
* @param v1 vector
|
||||
* @param v2 vector
|
||||
* @param[in] v1 vector
|
||||
* @param[in] v2 vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
@@ -111,8 +112,8 @@ glm_vec_eqv(vec3 v1, vec3 v2) {
|
||||
/*!
|
||||
* @brief check if vector is equal to another (with epsilon)
|
||||
*
|
||||
* @param v1 vector
|
||||
* @param v2 vector
|
||||
* @param[in] v1 vector
|
||||
* @param[in] v2 vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
@@ -125,7 +126,7 @@ glm_vec_eqv_eps(vec3 v1, vec3 v2) {
|
||||
/*!
|
||||
* @brief max value of vector
|
||||
*
|
||||
* @param v vector
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
@@ -144,7 +145,7 @@ glm_vec_max(vec3 v) {
|
||||
/*!
|
||||
* @brief min value of vector
|
||||
*
|
||||
* @param v vector
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
@@ -160,4 +161,69 @@ glm_vec_min(vec3 v) {
|
||||
return min;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are NaN (not a number)
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_isnan(vec3 v) {
|
||||
return isnan(v[0]) || isnan(v[1]) || isnan(v[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are INFINITY
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_isinf(vec3 v) {
|
||||
return isinf(v[0]) || isinf(v[1]) || isinf(v[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are valid number
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_isvalid(vec3 v) {
|
||||
return !glm_vec_isnan(v) && !glm_vec_isinf(v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit float as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero/NaN input
|
||||
*
|
||||
* @param v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_sign(vec3 v, vec3 dest) {
|
||||
dest[0] = glm_signf(v[0]);
|
||||
dest[1] = glm_signf(v[1]);
|
||||
dest[2] = glm_signf(v[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief square root of each vector item
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_sqrt(vec3 v, vec3 dest) {
|
||||
dest[0] = sqrtf(v[0]);
|
||||
dest[1] = sqrtf(v[1]);
|
||||
dest[2] = sqrtf(v[2]);
|
||||
}
|
||||
|
||||
#endif /* cglm_vec3_ext_h */
|
||||
|
||||
@@ -14,12 +14,15 @@
|
||||
Macros:
|
||||
glm_vec_dup(v, dest)
|
||||
GLM_VEC3_ONE_INIT
|
||||
GLM_VEC3_ZERO_INIT
|
||||
GLM_VEC3_ONE
|
||||
GLM_VEC3_ZERO
|
||||
GLM_YUP
|
||||
GLM_ZUP
|
||||
GLM_XUP
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE void glm_vec3(vec4 v4, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_copy(vec3 a, vec3 dest);
|
||||
CGLM_INLINE float glm_vec_dot(vec3 a, vec3 b);
|
||||
CGLM_INLINE void glm_vec_cross(vec3 a, vec3 b, vec3 d);
|
||||
@@ -42,6 +45,14 @@
|
||||
CGLM_INLINE void glm_vec_center(vec3 v1, vec3 v2, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_minv(vec3 v1, vec3 v2, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_ortho(vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_clamp(vec3 v, float minVal, float maxVal);
|
||||
|
||||
Convenient:
|
||||
CGLM_INLINE void glm_cross(vec3 a, vec3 b, vec3 d);
|
||||
CGLM_INLINE float glm_dot(vec3 a, vec3 b);
|
||||
CGLM_INLINE void glm_normalize(vec3 v);
|
||||
CGLM_INLINE void glm_normalize_to(vec3 v, vec3 dest);
|
||||
*/
|
||||
|
||||
#ifndef cglm_vec3_h
|
||||
@@ -54,12 +65,29 @@
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glm_vec_dup(v, dest) glm_vec_copy(v, dest)
|
||||
|
||||
#define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
|
||||
#define GLM_VEC3_ONE (vec3)GLM_VEC3_ONE_INIT
|
||||
#define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
|
||||
#define GLM_VEC3_ZERO_INIT {0.0f, 0.0f, 0.0f}
|
||||
|
||||
#define GLM_YUP (vec3){0.0f, 1.0f, 0.0f}
|
||||
#define GLM_ZUP (vec3){0.0f, 0.0f, 1.0f}
|
||||
#define GLM_XUP (vec3){1.0f, 0.0f, 0.0f}
|
||||
#define GLM_VEC3_ONE ((vec3)GLM_VEC3_ONE_INIT)
|
||||
#define GLM_VEC3_ZERO ((vec3)GLM_VEC3_ZERO_INIT)
|
||||
|
||||
#define GLM_YUP ((vec3){0.0f, 1.0f, 0.0f})
|
||||
#define GLM_ZUP ((vec3){0.0f, 0.0f, 1.0f})
|
||||
#define GLM_XUP ((vec3){1.0f, 0.0f, 0.0f})
|
||||
|
||||
/*!
|
||||
* @brief init vec3 using vec4
|
||||
*
|
||||
* @param[in] v4 vector4
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3(vec4 v4, vec3 dest) {
|
||||
dest[0] = v4[0];
|
||||
dest[1] = v4[1];
|
||||
dest[2] = v4[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy all members of [a] to [dest]
|
||||
@@ -108,8 +136,8 @@ glm_vec_cross(vec3 a, vec3 b, vec3 d) {
|
||||
/*!
|
||||
* @brief norm * norm (magnitude) of vec
|
||||
*
|
||||
* we can use this func instead of calling norm * norm, because it would call
|
||||
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
|
||||
* we can use this func instead of calling norm * norm, because it would call
|
||||
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
|
||||
* not good name for this func
|
||||
*
|
||||
* @param[in] v vector
|
||||
@@ -119,7 +147,7 @@ glm_vec_cross(vec3 a, vec3 b, vec3 d) {
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec_norm2(vec3 v) {
|
||||
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
|
||||
return glm_vec_dot(v, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -214,6 +242,20 @@ glm_vec_flipsign(vec3 v) {
|
||||
v[2] = -v[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief flip sign of all vec3 members and store result in dest
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[out] dest result vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_flipsign_to(vec3 v, vec3 dest) {
|
||||
dest[0] = -v[0];
|
||||
dest[1] = -v[1];
|
||||
dest[2] = -v[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector as inverse/opposite of itself
|
||||
*
|
||||
@@ -282,24 +324,21 @@ glm_vec_normalize_to(vec3 vec, vec3 dest) {
|
||||
/*!
|
||||
* @brief angle betwen two vector
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
*
|
||||
* @return angle as radians
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec_angle(vec3 v1, vec3 v2) {
|
||||
float norm;
|
||||
|
||||
|
||||
/* maybe compiler generate approximation instruction (rcp) */
|
||||
norm = 1.0f / (glm_vec_norm(v1) * glm_vec_norm(v2));
|
||||
return acosf(glm_vec_dot(v1, v2) * norm);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quatv(versor q,
|
||||
float angle,
|
||||
vec3 v);
|
||||
|
||||
/*!
|
||||
* @brief rotate vec3 around axis by angle using Rodrigues' rotation formula
|
||||
*
|
||||
@@ -310,31 +349,26 @@ glm_quatv(versor q,
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_rotate(vec3 v, float angle, vec3 axis) {
|
||||
versor q;
|
||||
vec3 v1, v2, v3;
|
||||
vec3 v1, v2, k;
|
||||
float c, s;
|
||||
|
||||
c = cosf(angle);
|
||||
s = sinf(angle);
|
||||
|
||||
glm_vec_normalize_to(axis, k);
|
||||
|
||||
/* Right Hand, Rodrigues' rotation formula:
|
||||
v = v*cos(t) + (kxv)sin(t) + k*(k.v)(1 - cos(t))
|
||||
*/
|
||||
|
||||
/* quaternion */
|
||||
glm_quatv(q, angle, v);
|
||||
|
||||
glm_vec_scale(v, c, v1);
|
||||
|
||||
glm_vec_cross(axis, v, v2);
|
||||
glm_vec_cross(k, v, v2);
|
||||
glm_vec_scale(v2, s, v2);
|
||||
|
||||
glm_vec_scale(axis,
|
||||
glm_vec_dot(axis, v) * (1.0f - c),
|
||||
v3);
|
||||
|
||||
glm_vec_add(v1, v2, v1);
|
||||
glm_vec_add(v1, v3, v);
|
||||
|
||||
glm_vec_scale(k, glm_vec_dot(k, v) * (1.0f - c), v2);
|
||||
glm_vec_add(v1, v2, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -400,8 +434,8 @@ CGLM_INLINE
|
||||
float
|
||||
glm_vec_distance(vec3 v1, vec3 v2) {
|
||||
return sqrtf(glm_pow2(v2[0] - v1[0])
|
||||
+ glm_pow2(v2[1] - v1[1])
|
||||
+ glm_pow2(v2[2] - v1[2]));
|
||||
+ glm_pow2(v2[1] - v1[1])
|
||||
+ glm_pow2(v2[2] - v1[2]));
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -414,20 +448,9 @@ glm_vec_distance(vec3 v1, vec3 v2) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest) {
|
||||
if (v1[0] > v2[0])
|
||||
dest[0] = v1[0];
|
||||
else
|
||||
dest[0] = v2[0];
|
||||
|
||||
if (v1[1] > v2[1])
|
||||
dest[1] = v1[1];
|
||||
else
|
||||
dest[1] = v2[1];
|
||||
|
||||
if (v1[2] > v2[2])
|
||||
dest[2] = v1[2];
|
||||
else
|
||||
dest[2] = v2[2];
|
||||
dest[0] = glm_max(v1[0], v2[0]);
|
||||
dest[1] = glm_max(v1[1], v2[1]);
|
||||
dest[2] = glm_max(v1[2], v2[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -440,20 +463,118 @@ glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_minv(vec3 v1, vec3 v2, vec3 dest) {
|
||||
if (v1[0] < v2[0])
|
||||
dest[0] = v1[0];
|
||||
else
|
||||
dest[0] = v2[0];
|
||||
dest[0] = glm_min(v1[0], v2[0]);
|
||||
dest[1] = glm_min(v1[1], v2[1]);
|
||||
dest[2] = glm_min(v1[2], v2[2]);
|
||||
}
|
||||
|
||||
if (v1[1] < v2[1])
|
||||
dest[1] = v1[1];
|
||||
else
|
||||
dest[1] = v2[1];
|
||||
/*!
|
||||
* @brief possible orthogonal/perpendicular vector
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[out] dest orthogonal/perpendicular vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_ortho(vec3 v, vec3 dest) {
|
||||
dest[0] = v[1] - v[2];
|
||||
dest[1] = v[2] - v[0];
|
||||
dest[2] = v[0] - v[1];
|
||||
}
|
||||
|
||||
if (v1[2] < v2[2])
|
||||
dest[2] = v1[2];
|
||||
else
|
||||
dest[2] = v2[2];
|
||||
/*!
|
||||
* @brief clamp vector's individual members between min and max values
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
* @param[in] minVal minimum value
|
||||
* @param[in] maxVal maximum value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_clamp(vec3 v, float minVal, float maxVal) {
|
||||
v[0] = glm_clamp(v[0], minVal, maxVal);
|
||||
v[1] = glm_clamp(v[1], minVal, maxVal);
|
||||
v[2] = glm_clamp(v[2], minVal, maxVal);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief linear interpolation between two vector
|
||||
*
|
||||
* formula: from + s * (to - from)
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_lerp(vec3 from, vec3 to, float t, vec3 dest) {
|
||||
vec3 s, v;
|
||||
|
||||
/* from + s * (to - from) */
|
||||
glm_vec_broadcast(glm_clamp(t, 0.0f, 1.0f), s);
|
||||
glm_vec_sub(to, from, v);
|
||||
glm_vec_mulv(s, v, v);
|
||||
glm_vec_add(from, v, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief vec3 cross product
|
||||
*
|
||||
* this is just convenient wrapper
|
||||
*
|
||||
* @param[in] a source 1
|
||||
* @param[in] b source 2
|
||||
* @param[out] d destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_cross(vec3 a, vec3 b, vec3 d) {
|
||||
glm_vec_cross(a, b, d);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief vec3 dot product
|
||||
*
|
||||
* this is just convenient wrapper
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
*
|
||||
* @return dot product
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_dot(vec3 a, vec3 b) {
|
||||
return glm_vec_dot(a, b);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize vec3 and store result in same vec
|
||||
*
|
||||
* this is just convenient wrapper
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_normalize(vec3 v) {
|
||||
glm_vec_normalize(v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize vec3 to dest
|
||||
*
|
||||
* this is just convenient wrapper
|
||||
*
|
||||
* @param[in] v source
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_normalize_to(vec3 v, vec3 dest) {
|
||||
glm_vec_normalize_to(v, dest);
|
||||
}
|
||||
|
||||
#endif /* cglm_vec3_h */
|
||||
|
||||
@@ -17,7 +17,7 @@
|
||||
CGLM_INLINE bool glm_vec4_eq_eps(vec4 v, float val);
|
||||
CGLM_INLINE bool glm_vec4_eq_all(vec4 v);
|
||||
CGLM_INLINE bool glm_vec4_eqv(vec4 v1, vec4 v2);
|
||||
CGLM_INLINE bool glm_vec4_eqv_eps(vec3 v1, vec3 v2);
|
||||
CGLM_INLINE bool glm_vec4_eqv_eps(vec4 v1, vec4 v2);
|
||||
CGLM_INLINE float glm_vec4_max(vec4 v);
|
||||
CGLM_INLINE float glm_vec4_min(vec4 v);
|
||||
*/
|
||||
@@ -133,7 +133,7 @@ glm_vec4_eqv(vec4 v1, vec4 v2) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_eqv_eps(vec3 v1, vec3 v2) {
|
||||
glm_vec4_eqv_eps(vec4 v1, vec4 v2) {
|
||||
return fabsf(v1[0] - v2[0]) <= FLT_EPSILON
|
||||
&& fabsf(v1[1] - v2[1]) <= FLT_EPSILON
|
||||
&& fabsf(v1[2] - v2[2]) <= FLT_EPSILON
|
||||
@@ -174,5 +174,88 @@ glm_vec4_min(vec4 v) {
|
||||
return min;
|
||||
}
|
||||
|
||||
#endif /* cglm_vec4_ext_h */
|
||||
/*!
|
||||
* @brief check if one of items is NaN (not a number)
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_isnan(vec4 v) {
|
||||
return isnan(v[0]) || isnan(v[1]) || isnan(v[2]) || isnan(v[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if one of items is INFINITY
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_isinf(vec4 v) {
|
||||
return isinf(v[0]) || isinf(v[1]) || isinf(v[2]) || isinf(v[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are valid number
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_isvalid(vec4 v) {
|
||||
return !glm_vec4_isnan(v) && !glm_vec4_isinf(v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit float as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero/NaN input
|
||||
*
|
||||
* @param v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_sign(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE2__ ) || defined( __SSE2__ )
|
||||
__m128 x0, x1, x2, x3, x4;
|
||||
|
||||
x0 = _mm_load_ps(v);
|
||||
x1 = _mm_set_ps(0.0f, 0.0f, 1.0f, -1.0f);
|
||||
x2 = _mm_shuffle1_ps1(x1, 2);
|
||||
|
||||
x3 = _mm_and_ps(_mm_cmpgt_ps(x0, x2), _mm_shuffle1_ps1(x1, 1));
|
||||
x4 = _mm_and_ps(_mm_cmplt_ps(x0, x2), _mm_shuffle1_ps1(x1, 0));
|
||||
|
||||
_mm_store_ps(dest, _mm_or_ps(x3, x4));
|
||||
#else
|
||||
dest[0] = glm_signf(v[0]);
|
||||
dest[1] = glm_signf(v[1]);
|
||||
dest[2] = glm_signf(v[2]);
|
||||
dest[3] = glm_signf(v[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief square root of each vector item
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_sqrt(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest, _mm_sqrt_ps(_mm_load_ps(v)));
|
||||
#else
|
||||
dest[0] = sqrtf(v[0]);
|
||||
dest[1] = sqrtf(v[1]);
|
||||
dest[2] = sqrtf(v[2]);
|
||||
dest[3] = sqrtf(v[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* cglm_vec4_ext_h */
|
||||
|
||||
@@ -16,10 +16,13 @@
|
||||
glm_vec4_dup(v, dest)
|
||||
GLM_VEC4_ONE_INIT
|
||||
GLM_VEC4_BLACK_INIT
|
||||
GLM_VEC4_ZERO_INIT
|
||||
GLM_VEC4_ONE
|
||||
GLM_VEC4_BLACK
|
||||
|
||||
GLM_VEC4_ZERO
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE void glm_vec4(vec3 v3, float last, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_copy3(vec4 a, vec3 dest);
|
||||
CGLM_INLINE void glm_vec4_copy(vec4 v, vec4 dest);
|
||||
CGLM_INLINE float glm_vec4_dot(vec4 a, vec4 b);
|
||||
@@ -37,6 +40,7 @@
|
||||
CGLM_INLINE float glm_vec4_distance(vec4 v1, vec4 v2);
|
||||
CGLM_INLINE void glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_clamp(vec4 v, float minVal, float maxVal);
|
||||
*/
|
||||
|
||||
#ifndef cglm_vec4_h
|
||||
@@ -52,9 +56,27 @@
|
||||
|
||||
#define GLM_VEC4_ONE_INIT {1.0f, 1.0f, 1.0f, 1.0f}
|
||||
#define GLM_VEC4_BLACK_INIT {0.0f, 0.0f, 0.0f, 1.0f}
|
||||
#define GLM_VEC4_ZERO_INIT {0.0f, 0.0f, 0.0f, 0.0f}
|
||||
|
||||
#define GLM_VEC4_ONE (vec4)GLM_VEC4_ONE_INIT
|
||||
#define GLM_VEC4_BLACK (vec4)GLM_VEC4_BLACK_INIT
|
||||
#define GLM_VEC4_ONE ((vec4)GLM_VEC4_ONE_INIT)
|
||||
#define GLM_VEC4_BLACK ((vec4)GLM_VEC4_BLACK_INIT)
|
||||
#define GLM_VEC4_ZERO ((vec4)GLM_VEC4_ZERO_INIT)
|
||||
|
||||
/*!
|
||||
* @brief init vec4 using vec3
|
||||
*
|
||||
* @param[in] v3 vector3
|
||||
* @param[in] last last item
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4(vec3 v3, float last, vec4 dest) {
|
||||
dest[0] = v3[0];
|
||||
dest[1] = v3[1];
|
||||
dest[2] = v3[2];
|
||||
dest[3] = last;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy first 3 members of [a] to [dest]
|
||||
@@ -100,7 +122,14 @@ glm_vec4_copy(vec4 v, vec4 dest) {
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec4_dot(vec4 a, vec4 b) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
__m128 x0;
|
||||
x0 = _mm_mul_ps(_mm_load_ps(a), _mm_load_ps(b));
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 0, 3, 2));
|
||||
return _mm_cvtss_f32(_mm_add_ss(x0, _mm_shuffle1_ps(x0, 0, 1, 0, 1)));
|
||||
#else
|
||||
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -117,7 +146,7 @@ glm_vec4_dot(vec4 a, vec4 b) {
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec4_norm2(vec4 v) {
|
||||
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + v[3] * v[3];
|
||||
return glm_vec4_dot(v, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -239,6 +268,26 @@ glm_vec4_flipsign(vec4 v) {
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief flip sign of all vec4 members and store result in dest
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[out] dest vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_flipsign_to(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest, _mm_xor_ps(_mm_load_ps(v),
|
||||
_mm_set1_ps(-0.0f)));
|
||||
#else
|
||||
dest[0] = -v[0];
|
||||
dest[1] = -v[1];
|
||||
dest[2] = -v[2];
|
||||
dest[3] = -v[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector as inverse/opposite of itself
|
||||
*
|
||||
@@ -315,9 +364,9 @@ CGLM_INLINE
|
||||
float
|
||||
glm_vec4_distance(vec4 v1, vec4 v2) {
|
||||
return sqrtf(glm_pow2(v2[0] - v1[0])
|
||||
+ glm_pow2(v2[1] - v1[1])
|
||||
+ glm_pow2(v2[2] - v1[2])
|
||||
+ glm_pow2(v2[3] - v1[3]));
|
||||
+ glm_pow2(v2[1] - v1[1])
|
||||
+ glm_pow2(v2[2] - v1[2])
|
||||
+ glm_pow2(v2[3] - v1[3]));
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -330,25 +379,10 @@ glm_vec4_distance(vec4 v1, vec4 v2) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest) {
|
||||
if (v1[0] > v2[0])
|
||||
dest[0] = v1[0];
|
||||
else
|
||||
dest[0] = v2[0];
|
||||
|
||||
if (v1[1] > v2[1])
|
||||
dest[1] = v1[1];
|
||||
else
|
||||
dest[1] = v2[1];
|
||||
|
||||
if (v1[2] > v2[2])
|
||||
dest[2] = v1[2];
|
||||
else
|
||||
dest[2] = v2[2];
|
||||
|
||||
if (v1[3] > v2[3])
|
||||
dest[3] = v1[3];
|
||||
else
|
||||
dest[3] = v2[3];
|
||||
dest[0] = glm_max(v1[0], v2[0]);
|
||||
dest[1] = glm_max(v1[1], v2[1]);
|
||||
dest[2] = glm_max(v1[2], v2[2]);
|
||||
dest[3] = glm_max(v1[3], v2[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -361,25 +395,48 @@ glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest) {
|
||||
if (v1[0] < v2[0])
|
||||
dest[0] = v1[0];
|
||||
else
|
||||
dest[0] = v2[0];
|
||||
dest[0] = glm_min(v1[0], v2[0]);
|
||||
dest[1] = glm_min(v1[1], v2[1]);
|
||||
dest[2] = glm_min(v1[2], v2[2]);
|
||||
dest[3] = glm_min(v1[3], v2[3]);
|
||||
}
|
||||
|
||||
if (v1[1] < v2[1])
|
||||
dest[1] = v1[1];
|
||||
else
|
||||
dest[1] = v2[1];
|
||||
/*!
|
||||
* @brief clamp vector's individual members between min and max values
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
* @param[in] minVal minimum value
|
||||
* @param[in] maxVal maximum value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_clamp(vec4 v, float minVal, float maxVal) {
|
||||
v[0] = glm_clamp(v[0], minVal, maxVal);
|
||||
v[1] = glm_clamp(v[1], minVal, maxVal);
|
||||
v[2] = glm_clamp(v[2], minVal, maxVal);
|
||||
v[3] = glm_clamp(v[3], minVal, maxVal);
|
||||
}
|
||||
|
||||
if (v1[2] < v2[2])
|
||||
dest[2] = v1[2];
|
||||
else
|
||||
dest[2] = v2[2];
|
||||
/*!
|
||||
* @brief linear interpolation between two vector
|
||||
*
|
||||
* formula: from + s * (to - from)
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest) {
|
||||
vec4 s, v;
|
||||
|
||||
if (v1[3] < v2[3])
|
||||
dest[3] = v1[3];
|
||||
else
|
||||
dest[3] = v2[3];
|
||||
/* from + s * (to - from) */
|
||||
glm_vec4_broadcast(glm_clamp(t, 0.0f, 1.0f), s);
|
||||
glm_vec4_sub(to, from, v);
|
||||
glm_vec4_mulv(s, v, v);
|
||||
glm_vec4_add(from, v, dest);
|
||||
}
|
||||
|
||||
#endif /* cglm_vec4_h */
|
||||
|
||||
@@ -9,7 +9,7 @@
|
||||
#define cglm_version_h
|
||||
|
||||
#define CGLM_VERSION_MAJOR 0
|
||||
#define CGLM_VERSION_MINOR 3
|
||||
#define CGLM_VERSION_PATCH 3
|
||||
#define CGLM_VERSION_MINOR 4
|
||||
#define CGLM_VERSION_PATCH 0
|
||||
|
||||
#endif /* cglm_version_h */
|
||||
|
||||
27
makefile.am
27
makefile.am
@@ -13,7 +13,7 @@ AM_CFLAGS = -Wall \
|
||||
-O3 \
|
||||
-Wstrict-aliasing=2 \
|
||||
-fstrict-aliasing \
|
||||
-Wpedantic
|
||||
-pedantic
|
||||
|
||||
lib_LTLIBRARIES = libcglm.la
|
||||
libcglm_la_LDFLAGS = -no-undefined -version-info 0:1:0
|
||||
@@ -50,7 +50,11 @@ cglm_HEADERS = include/cglm/version.h \
|
||||
include/cglm/euler.h \
|
||||
include/cglm/util.h \
|
||||
include/cglm/quat.h \
|
||||
include/cglm/affine-mat.h
|
||||
include/cglm/affine-mat.h \
|
||||
include/cglm/plane.h \
|
||||
include/cglm/frustum.h \
|
||||
include/cglm/box.h \
|
||||
include/cglm/color.h
|
||||
|
||||
cglm_calldir=$(includedir)/cglm/call
|
||||
cglm_call_HEADERS = include/cglm/call/mat4.h \
|
||||
@@ -61,7 +65,10 @@ cglm_call_HEADERS = include/cglm/call/mat4.h \
|
||||
include/cglm/call/io.h \
|
||||
include/cglm/call/cam.h \
|
||||
include/cglm/call/quat.h \
|
||||
include/cglm/call/euler.h
|
||||
include/cglm/call/euler.h \
|
||||
include/cglm/call/plane.h \
|
||||
include/cglm/call/frustum.h \
|
||||
include/cglm/call/box.h
|
||||
|
||||
cglm_simddir=$(includedir)/cglm/simd
|
||||
cglm_simd_HEADERS = include/cglm/simd/intrin.h
|
||||
@@ -88,12 +95,22 @@ libcglm_la_SOURCES=\
|
||||
src/vec3.c \
|
||||
src/vec4.c \
|
||||
src/mat3.c \
|
||||
src/mat4.c
|
||||
src/mat4.c \
|
||||
src/plane.c \
|
||||
src/frustum.c \
|
||||
src/box.c \
|
||||
src/project.c
|
||||
|
||||
test_tests_SOURCES=\
|
||||
test/src/test_common.c \
|
||||
test/src/test_main.c \
|
||||
test/src/test_mat4.c
|
||||
test/src/test_mat4.c \
|
||||
test/src/test_cam.c \
|
||||
test/src/test_project.c \
|
||||
test/src/test_clamp.c \
|
||||
test/src/test_euler.c \
|
||||
test/src/test_quat.c \
|
||||
test/src/test_vec4.c
|
||||
|
||||
all-local:
|
||||
sh ./post-build.sh
|
||||
|
||||
36
src/box.c
Normal file
36
src/box.c
Normal file
@@ -0,0 +1,36 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]) {
|
||||
glm_aabb_transform(box, m, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2]) {
|
||||
glm_aabb_merge(box1, box2, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2]) {
|
||||
glm_aabb_crop(box, cropBox, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_crop_until(vec3 box[2],
|
||||
vec3 cropBox[2],
|
||||
vec3 clampBox[2],
|
||||
vec3 dest[2]) {
|
||||
glm_aabb_crop_until(box, cropBox, clampBox, dest);
|
||||
}
|
||||
12
src/cam.c
12
src/cam.c
@@ -66,3 +66,15 @@ glmc_lookat(vec3 eye,
|
||||
mat4 dest) {
|
||||
glm_lookat(eye, center, up, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
|
||||
glm_look(eye, dir, up, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
|
||||
glm_look_anyup(eye, dir, dest);
|
||||
}
|
||||
|
||||
@@ -20,6 +20,12 @@ glmc_euler(vec3 angles, mat4 dest) {
|
||||
glm_euler(angles, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xyz(vec3 angles, mat4 dest) {
|
||||
glm_euler_xyz(angles, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zyx(vec3 angles, mat4 dest) {
|
||||
|
||||
42
src/frustum.c
Normal file
42
src/frustum.c
Normal file
@@ -0,0 +1,42 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_planes(mat4 m, vec4 dest[6]) {
|
||||
glm_frustum_planes(m, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_corners(mat4 invMat, vec4 dest[8]) {
|
||||
glm_frustum_corners(invMat, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_center(vec4 corners[8], vec4 dest) {
|
||||
glm_frustum_center(corners, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]) {
|
||||
glm_frustum_box(corners, m, box);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_corners_at(vec4 corners[8],
|
||||
float splitDist,
|
||||
float farDist,
|
||||
vec4 planeCorners[4]) {
|
||||
glm_frustum_corners_at(corners, splitDist, farDist, planeCorners);
|
||||
}
|
||||
@@ -52,7 +52,7 @@ glmc_mat4_mul(mat4 m1, mat4 m2, mat4 dest) {
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest) {
|
||||
glmc_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest) {
|
||||
glm_mat4_mulN(matrices, len, dest);
|
||||
}
|
||||
|
||||
@@ -62,6 +62,12 @@ glmc_mat4_mulv(mat4 m, vec4 v, vec4 dest) {
|
||||
glm_mat4_mulv(m, v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_quat(mat4 m, versor dest) {
|
||||
glm_mat4_quat(m, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_transpose_to(mat4 m, mat4 dest) {
|
||||
|
||||
15
src/plane.c
Normal file
15
src/plane.c
Normal file
@@ -0,0 +1,15 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_plane_normalize(vec4 plane) {
|
||||
glm_plane_normalize(plane);
|
||||
}
|
||||
27
src/project.c
Normal file
27
src/project.c
Normal file
@@ -0,0 +1,27 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
|
||||
glm_unprojecti(pos, invMat, vp, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
|
||||
glm_unproject(pos, m, vp, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_project(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
|
||||
glm_project(pos, m, vp, dest);
|
||||
}
|
||||
172
src/quat.c
172
src/quat.c
@@ -8,6 +8,7 @@
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_identity(versor q) {
|
||||
@@ -16,20 +17,26 @@ glmc_quat_identity(versor q) {
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat(versor q,
|
||||
float angle,
|
||||
float x,
|
||||
float y,
|
||||
float z) {
|
||||
glmc_quat_init(versor q, float x, float y, float z, float w) {
|
||||
glm_quat_init(q, x, y, z, w);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat(versor q, float angle, float x, float y, float z) {
|
||||
glm_quat(q, angle, x, y, z);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quatv(versor q,
|
||||
float angle,
|
||||
vec3 v) {
|
||||
glm_quatv(q, angle, v);
|
||||
glmc_quatv(versor q, float angle, vec3 axis) {
|
||||
glm_quatv(q, angle, axis);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_copy(versor q, versor dest) {
|
||||
glm_quat_copy(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
@@ -40,20 +47,86 @@ glmc_quat_norm(versor q) {
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_normalize(versor q) {
|
||||
glm_quat_normalize(q);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_dot(versor q, versor r) {
|
||||
return glm_quat_dot(q, r);
|
||||
glmc_quat_normalize_to(versor q, versor dest) {
|
||||
glm_quat_normalize_to(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mulv(versor q1, versor q2, versor dest) {
|
||||
glm_quat_mulv(q1, q2, dest);
|
||||
glmc_quat_normalize(versor q) {
|
||||
glm_quat_norm(q);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_dot(versor p, versor q) {
|
||||
return glm_quat_dot(p, q);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_conjugate(versor q, versor dest) {
|
||||
glm_quat_conjugate(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_inv(versor q, versor dest) {
|
||||
glm_quat_inv(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_add(versor p, versor q, versor dest) {
|
||||
glm_quat_add(p, q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_sub(versor p, versor q, versor dest) {
|
||||
glm_quat_sub(p, q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_real(versor q) {
|
||||
return glm_quat_real(q);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_imag(versor q, vec3 dest) {
|
||||
glm_quat_imag(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_imagn(versor q, vec3 dest) {
|
||||
glm_quat_imagn(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_imaglen(versor q) {
|
||||
return glm_quat_imaglen(q);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_angle(versor q) {
|
||||
return glm_quat_angle(q);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_axis(versor q, versor dest) {
|
||||
glm_quat_axis(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mul(versor p, versor q, versor dest) {
|
||||
glm_quat_mul(p, q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
@@ -64,9 +137,60 @@ glmc_quat_mat4(versor q, mat4 dest) {
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_slerp(versor q,
|
||||
versor r,
|
||||
float t,
|
||||
versor dest) {
|
||||
glm_quat_slerp(q, r, t, dest);
|
||||
glmc_quat_mat4t(versor q, mat4 dest) {
|
||||
glm_quat_mat4t(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mat3(versor q, mat3 dest) {
|
||||
glm_quat_mat3(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mat3t(versor q, mat3 dest) {
|
||||
glm_quat_mat3t(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_lerp(versor from, versor to, float t, versor dest) {
|
||||
glm_quat_lerp(from, to, t, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_slerp(versor from, versor to, float t, versor dest) {
|
||||
glm_quat_slerp(from, to, t, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_look(vec3 eye, versor ori, mat4 dest) {
|
||||
glm_quat_look(eye, ori, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest) {
|
||||
glm_quat_for(dir, fwd, up, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest) {
|
||||
glm_quat_forp(from, to, fwd, up, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotatev(versor q, vec3 v, vec3 dest) {
|
||||
glm_quat_rotatev(q, v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotate(mat4 m, versor q, mat4 dest) {
|
||||
glm_quat_rotate(m, q, dest);
|
||||
}
|
||||
|
||||
116
src/vec3.c
116
src/vec3.c
@@ -8,6 +8,12 @@
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3(vec4 v4, vec3 dest) {
|
||||
glm_vec3(v4, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_copy(vec3 a, vec3 dest) {
|
||||
@@ -80,6 +86,12 @@ glmc_vec_flipsign(vec3 v) {
|
||||
glm_vec_flipsign(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_flipsign_to(vec3 v, vec3 dest) {
|
||||
glm_vec_flipsign_to(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_inv(vec3 v) {
|
||||
@@ -139,3 +151,107 @@ void
|
||||
glmc_vec_minv(vec3 v1, vec3 v2, vec3 dest) {
|
||||
glm_vec_maxv(v1, v2, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_clamp(vec3 v, float minVal, float maxVal) {
|
||||
glm_vec_clamp(v, minVal, maxVal);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_ortho(vec3 v, vec3 dest) {
|
||||
glm_vec_ortho(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_lerp(vec3 from, vec3 to, float t, vec3 dest) {
|
||||
glm_vec_lerp(from, to, t, dest);
|
||||
}
|
||||
|
||||
/* ext */
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_mulv(vec3 a, vec3 b, vec3 d) {
|
||||
glm_vec_mulv(a, b, d);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_broadcast(float val, vec3 d) {
|
||||
glm_vec_broadcast(val, d);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_eq(vec3 v, float val) {
|
||||
return glm_vec_eq(v, val);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_eq_eps(vec3 v, float val) {
|
||||
return glm_vec_eq_eps(v, val);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_eq_all(vec3 v) {
|
||||
return glm_vec_eq_all(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_eqv(vec3 v1, vec3 v2) {
|
||||
return glm_vec_eqv(v1, v2);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_eqv_eps(vec3 v1, vec3 v2) {
|
||||
return glm_vec_eqv_eps(v1, v2);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_max(vec3 v) {
|
||||
return glm_vec_max(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_min(vec3 v) {
|
||||
return glm_vec_min(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_isnan(vec3 v) {
|
||||
return glm_vec_isnan(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_isinf(vec3 v) {
|
||||
return glm_vec_isinf(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec_isvalid(vec3 v) {
|
||||
return glm_vec_isvalid(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_sign(vec3 v, vec3 dest) {
|
||||
glm_vec_sign(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_sqrt(vec3 v, vec3 dest) {
|
||||
glm_vec_sqrt(v, dest);
|
||||
}
|
||||
|
||||
110
src/vec4.c
110
src/vec4.c
@@ -8,6 +8,12 @@
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4(vec3 v3, float last, vec4 dest) {
|
||||
glm_vec4(v3, last, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_copy3(vec4 a, vec3 dest) {
|
||||
@@ -80,6 +86,12 @@ glmc_vec4_flipsign(vec4 v) {
|
||||
glm_vec4_flipsign(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_flipsign_to(vec4 v, vec4 dest) {
|
||||
glm_vec4_flipsign_to(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_inv(vec4 v) {
|
||||
@@ -109,3 +121,101 @@ void
|
||||
glmc_vec4_minv(vec4 v1, vec4 v2, vec4 dest) {
|
||||
glm_vec4_maxv(v1, v2, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_clamp(vec4 v, float minVal, float maxVal) {
|
||||
glm_vec4_clamp(v, minVal, maxVal);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest) {
|
||||
glm_vec4_lerp(from, to, t, dest);
|
||||
}
|
||||
|
||||
/* ext */
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_mulv(vec4 a, vec4 b, vec4 d) {
|
||||
glm_vec4_mulv(a, b, d);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_broadcast(float val, vec4 d) {
|
||||
glm_vec4_broadcast(val, d);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq(vec4 v, float val) {
|
||||
return glm_vec4_eq(v, val);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq_eps(vec4 v, float val) {
|
||||
return glm_vec4_eq_eps(v, val);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq_all(vec4 v) {
|
||||
return glm_vec4_eq_all(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eqv(vec4 v1, vec4 v2) {
|
||||
return glm_vec4_eqv(v1, v2);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eqv_eps(vec4 v1, vec4 v2) {
|
||||
return glm_vec4_eqv_eps(v1, v2);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_max(vec4 v) {
|
||||
return glm_vec4_max(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_min(vec4 v) {
|
||||
return glm_vec4_min(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isnan(vec4 v) {
|
||||
return glm_vec4_isnan(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isinf(vec4 v) {
|
||||
return glm_vec4_isinf(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isvalid(vec4 v) {
|
||||
return glm_vec4_isvalid(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sign(vec4 v, vec4 dest) {
|
||||
glm_vec4_sign(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sqrt(vec4 v, vec4 dest) {
|
||||
glm_vec4_sqrt(v, dest);
|
||||
}
|
||||
|
||||
54
test/src/test_cam.c
Normal file
54
test/src/test_cam.c
Normal file
@@ -0,0 +1,54 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "test_common.h"
|
||||
|
||||
void
|
||||
test_camera_lookat(void **state) {
|
||||
mat4 view1, view2;
|
||||
vec3 center,
|
||||
eye = {0.024f, 14.6f, 67.04f},
|
||||
dir = {0.0f, 0.0f, -1.0f},
|
||||
up = {0.0f, 1.0f, 0.0f}
|
||||
;
|
||||
|
||||
glm_vec_add(eye, dir, center);
|
||||
glm_lookat(eye, center, up, view1);
|
||||
|
||||
glm_look(eye, dir, up, view2);
|
||||
|
||||
test_assert_mat4_eq(view1, view2);
|
||||
}
|
||||
|
||||
void
|
||||
test_camera_decomp(void **state) {
|
||||
mat4 proj, proj2;
|
||||
vec4 sizes;
|
||||
float aspect, fovy, nearVal, farVal;
|
||||
|
||||
aspect = 0.782f;
|
||||
fovy = glm_rad(49.984f);
|
||||
nearVal = 0.1f;
|
||||
farVal = 100.0f;
|
||||
|
||||
glm_perspective(fovy, aspect, nearVal, farVal, proj);
|
||||
assert_true(fabsf(aspect - glm_persp_aspect(proj)) < FLT_EPSILON);
|
||||
assert_true(fabsf(fovy - glm_persp_fovy(proj)) < FLT_EPSILON);
|
||||
assert_true(fabsf(49.984f - glm_deg(glm_persp_fovy(proj))) < FLT_EPSILON);
|
||||
|
||||
glm_persp_sizes(proj, fovy, sizes);
|
||||
|
||||
glm_frustum(-sizes[0] * 0.5,
|
||||
sizes[0] * 0.5,
|
||||
-sizes[1] * 0.5,
|
||||
sizes[1] * 0.5,
|
||||
nearVal,
|
||||
farVal,
|
||||
proj2);
|
||||
|
||||
test_assert_mat4_eq(proj, proj2);
|
||||
}
|
||||
30
test/src/test_clamp.c
Normal file
30
test/src/test_clamp.c
Normal file
@@ -0,0 +1,30 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "test_common.h"
|
||||
|
||||
void
|
||||
test_clamp(void **state) {
|
||||
vec3 v3 = {15.07, 0.4, 17.3};
|
||||
vec4 v4 = {5.07, 2.3, 1.3, 1.4};
|
||||
|
||||
assert_true(glm_clamp(1.6f, 0.0f, 1.0f) == 1.0f);
|
||||
assert_true(glm_clamp(-1.6f, 0.0f, 1.0f) == 0.0f);
|
||||
assert_true(glm_clamp(0.6f, 0.0f, 1.0f) == 0.6f);
|
||||
|
||||
glm_vec_clamp(v3, 0.0, 1.0);
|
||||
glm_vec4_clamp(v4, 1.5, 3.0);
|
||||
|
||||
assert_true(v3[0] == 1.0f);
|
||||
assert_true(v3[1] == 0.4f);
|
||||
assert_true(v3[2] == 1.0f);
|
||||
|
||||
assert_true(v4[0] == 3.0f);
|
||||
assert_true(v4[1] == 2.3f);
|
||||
assert_true(v4[2] == 1.5f);
|
||||
assert_true(v4[3] == 1.5f);
|
||||
}
|
||||
@@ -27,6 +27,39 @@ test_rand_mat4(mat4 dest) {
|
||||
/* glm_scale(dest, (vec3){drand48(), drand48(), drand48()}); */
|
||||
}
|
||||
|
||||
void
|
||||
test_rand_vec3(vec3 dest) {
|
||||
srand((unsigned int)time(NULL));
|
||||
|
||||
dest[0] = drand48();
|
||||
dest[1] = drand48();
|
||||
dest[2] = drand48();
|
||||
}
|
||||
|
||||
void
|
||||
test_rand_vec4(vec4 dest) {
|
||||
srand((unsigned int)time(NULL));
|
||||
|
||||
dest[0] = drand48();
|
||||
dest[1] = drand48();
|
||||
dest[2] = drand48();
|
||||
dest[3] = drand48();
|
||||
}
|
||||
|
||||
float
|
||||
test_rand_angle(void) {
|
||||
srand((unsigned int)time(NULL));
|
||||
return drand48();
|
||||
}
|
||||
|
||||
void
|
||||
test_rand_quat(versor q) {
|
||||
srand((unsigned int)time(NULL));
|
||||
|
||||
glm_quat(q, drand48(), drand48(), drand48(), drand48());
|
||||
glm_quat_normalize(q);
|
||||
}
|
||||
|
||||
void
|
||||
test_assert_mat4_eq(mat4 m1, mat4 m2) {
|
||||
int i, j, k;
|
||||
@@ -50,3 +83,27 @@ test_assert_mat4_eq2(mat4 m1, mat4 m2, float eps) {
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void
|
||||
test_assert_vec3_eq(vec3 v1, vec3 v2) {
|
||||
assert_true(fabsf(v1[0] - v2[0]) <= 0.000009); /* rounding errors */
|
||||
assert_true(fabsf(v1[1] - v2[1]) <= 0.000009);
|
||||
assert_true(fabsf(v1[2] - v2[2]) <= 0.000009);
|
||||
}
|
||||
|
||||
void
|
||||
test_assert_quat_eq_abs(versor v1, versor v2) {
|
||||
assert_true(fabsf(fabsf(v1[0]) - fabsf(v2[0])) <= 0.0009); /* rounding errors */
|
||||
assert_true(fabsf(fabsf(v1[1]) - fabsf(v2[1])) <= 0.0009);
|
||||
assert_true(fabsf(fabsf(v1[2]) - fabsf(v2[2])) <= 0.0009);
|
||||
assert_true(fabsf(fabsf(v1[3]) - fabsf(v2[3])) <= 0.0009);
|
||||
}
|
||||
|
||||
void
|
||||
test_assert_quat_eq(versor v1, versor v2) {
|
||||
assert_true(fabsf(v1[0] - v2[0]) <= 0.000009); /* rounding errors */
|
||||
assert_true(fabsf(v1[1] - v2[1]) <= 0.000009);
|
||||
assert_true(fabsf(v1[2] - v2[2]) <= 0.000009);
|
||||
assert_true(fabsf(v1[3] - v2[3]) <= 0.000009);
|
||||
}
|
||||
|
||||
|
||||
@@ -31,4 +31,25 @@ test_assert_mat4_eq(mat4 m1, mat4 m2);
|
||||
void
|
||||
test_assert_mat4_eq2(mat4 m1, mat4 m2, float eps);
|
||||
|
||||
void
|
||||
test_assert_vec3_eq(vec3 v1, vec3 v2);
|
||||
|
||||
void
|
||||
test_assert_quat_eq(versor v1, versor v2);
|
||||
|
||||
void
|
||||
test_assert_quat_eq_abs(versor v1, versor v2);
|
||||
|
||||
void
|
||||
test_rand_vec3(vec3 dest);
|
||||
|
||||
void
|
||||
test_rand_vec4(vec4 dest) ;
|
||||
|
||||
float
|
||||
test_rand_angle(void);
|
||||
|
||||
void
|
||||
test_rand_quat(versor q);
|
||||
|
||||
#endif /* test_common_h */
|
||||
|
||||
44
test/src/test_euler.c
Normal file
44
test/src/test_euler.c
Normal file
@@ -0,0 +1,44 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "test_common.h"
|
||||
|
||||
void
|
||||
test_euler(void **state) {
|
||||
mat4 rot1, rot2;
|
||||
vec3 inAngles, outAngles;
|
||||
|
||||
inAngles[0] = glm_rad(-45.0f); /* X angle */
|
||||
inAngles[1] = glm_rad(88.0f); /* Y angle */
|
||||
inAngles[2] = glm_rad(18.0f); /* Z angle */
|
||||
|
||||
glm_euler_xyz(inAngles, rot1);
|
||||
|
||||
/* extract angles */
|
||||
glmc_euler_angles(rot1, outAngles);
|
||||
|
||||
/* angles must be equal in that range */
|
||||
test_assert_vec3_eq(inAngles, outAngles);
|
||||
|
||||
/* matrices must be equal */
|
||||
glmc_euler_xyz(outAngles, rot2);
|
||||
test_assert_mat4_eq(rot1, rot2);
|
||||
|
||||
/* change range */
|
||||
inAngles[0] = glm_rad(-145.0f); /* X angle */
|
||||
inAngles[1] = glm_rad(818.0f); /* Y angle */
|
||||
inAngles[2] = glm_rad(181.0f); /* Z angle */
|
||||
|
||||
glm_euler_xyz(inAngles, rot1);
|
||||
glmc_euler_angles(rot1, outAngles);
|
||||
|
||||
/* angles may not be equal but matrices MUST! */
|
||||
|
||||
/* matrices must be equal */
|
||||
glmc_euler_xyz(outAngles, rot2);
|
||||
test_assert_mat4_eq(rot1, rot2);
|
||||
}
|
||||
@@ -11,9 +11,26 @@ main(int argc, const char * argv[]) {
|
||||
const struct CMUnitTest tests[] = {
|
||||
/* mat4 */
|
||||
cmocka_unit_test(test_mat4),
|
||||
|
||||
/* camera */
|
||||
cmocka_unit_test(test_camera_lookat),
|
||||
cmocka_unit_test(test_camera_decomp),
|
||||
|
||||
/* project */
|
||||
cmocka_unit_test(test_project),
|
||||
|
||||
/* vector */
|
||||
cmocka_unit_test(test_clamp),
|
||||
|
||||
/* euler */
|
||||
cmocka_unit_test(test_euler),
|
||||
|
||||
/* quaternion */
|
||||
cmocka_unit_test(test_quat),
|
||||
|
||||
/* vec4 */
|
||||
cmocka_unit_test(test_vec4)
|
||||
};
|
||||
|
||||
return cmocka_run_group_tests(tests,
|
||||
NULL,
|
||||
NULL);
|
||||
return cmocka_run_group_tests(tests, NULL, NULL);
|
||||
}
|
||||
|
||||
31
test/src/test_project.c
Normal file
31
test/src/test_project.c
Normal file
@@ -0,0 +1,31 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "test_common.h"
|
||||
|
||||
void
|
||||
test_project(void **state) {
|
||||
mat4 model, view, proj, mvp;
|
||||
vec4 viewport = {0.0f, 0.0f, 800.0f, 600.0f};
|
||||
vec3 pos = {13.0f, 45.0f, 0.74f};
|
||||
vec3 projected, unprojected;
|
||||
|
||||
glm_translate_make(model, (vec3){0.0f, 0.0f, -10.0f});
|
||||
glm_lookat((vec3){0.0f, 0.0f, 0.0f}, pos, GLM_YUP, view);
|
||||
|
||||
glm_perspective_default(0.5f, proj);
|
||||
glm_mat4_mulN((mat4 *[]){&proj, &view, &model}, 3, mvp);
|
||||
|
||||
glmc_project(pos, mvp, viewport, projected);
|
||||
glmc_unproject(projected, mvp, viewport, unprojected);
|
||||
|
||||
/* unprojected of projected vector must be same as original one */
|
||||
/* we used 0.01 because of projection floating point errors */
|
||||
assert_true(fabsf(pos[0] - unprojected[0]) < 0.01);
|
||||
assert_true(fabsf(pos[1] - unprojected[1]) < 0.01);
|
||||
assert_true(fabsf(pos[2] - unprojected[2]) < 0.01);
|
||||
}
|
||||
199
test/src/test_quat.c
Normal file
199
test/src/test_quat.c
Normal file
@@ -0,0 +1,199 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "test_common.h"
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
test_quat_mul_raw(versor p, versor q, versor dest) {
|
||||
dest[0] = p[3] * q[0] + p[0] * q[3] + p[1] * q[2] - p[2] * q[1];
|
||||
dest[1] = p[3] * q[1] - p[0] * q[2] + p[1] * q[3] + p[2] * q[0];
|
||||
dest[2] = p[3] * q[2] + p[0] * q[1] - p[1] * q[0] + p[2] * q[3];
|
||||
dest[3] = p[3] * q[3] - p[0] * q[0] - p[1] * q[1] - p[2] * q[2];
|
||||
}
|
||||
|
||||
void
|
||||
test_quat(void **state) {
|
||||
mat4 inRot, outRot, view1, view2, rot1, rot2;
|
||||
versor inQuat, outQuat, q3, q4, q5;
|
||||
vec3 eye, axis, imag, v1, v2;
|
||||
int i;
|
||||
|
||||
/* 0. test identiy quat */
|
||||
glm_quat_identity(q4);
|
||||
assert_true(glm_quat_real(q4) == cosf(glm_rad(0.0f) * 0.5f));
|
||||
glm_quat_mat4(q4, rot1);
|
||||
test_assert_mat4_eq2(rot1, GLM_MAT4_IDENTITY, 0.000009);
|
||||
|
||||
/* 1. test quat to mat and mat to quat */
|
||||
for (i = 0; i < 1000; i++) {
|
||||
test_rand_quat(inQuat);
|
||||
|
||||
glmc_quat_mat4(inQuat, inRot);
|
||||
glmc_mat4_quat(inRot, outQuat);
|
||||
glmc_quat_mat4(outQuat, outRot);
|
||||
|
||||
/* 2. test first quat and generated one equality */
|
||||
test_assert_quat_eq_abs(inQuat, outQuat);
|
||||
|
||||
/* 3. test first rot and second rotation */
|
||||
test_assert_mat4_eq2(inRot, outRot, 0.000009); /* almost equal */
|
||||
|
||||
/* 4. test SSE mul and raw mul */
|
||||
test_quat_mul_raw(inQuat, outQuat, q3);
|
||||
glm_quat_mul_sse2(inQuat, outQuat, q4);
|
||||
test_assert_quat_eq(q3, q4);
|
||||
}
|
||||
|
||||
/* 5. test lookat */
|
||||
test_rand_vec3(eye);
|
||||
glm_quatv(q3, glm_rad(-90.0f), GLM_YUP);
|
||||
|
||||
/* now X axis must be forward axis, Z must be right axis */
|
||||
glm_look(eye, GLM_XUP, GLM_YUP, view1);
|
||||
|
||||
/* create view matrix with quaternion */
|
||||
glm_quat_look(eye, q3, view2);
|
||||
|
||||
test_assert_mat4_eq2(view1, view2, 0.000009);
|
||||
|
||||
/* 6. test quaternion rotation matrix result */
|
||||
test_rand_quat(q3);
|
||||
glm_quat_mat4(q3, rot1);
|
||||
|
||||
/* 6.1 test axis and angle of quat */
|
||||
glm_quat_axis(q3, axis);
|
||||
glm_rotate_make(rot2, glm_quat_angle(q3), axis);
|
||||
|
||||
test_assert_mat4_eq2(rot1, rot2, 0.000009);
|
||||
|
||||
/* 7. test quaternion multiplication (hamilton product),
|
||||
final rotation = first rotation + second = quat1 * quat2
|
||||
*/
|
||||
test_rand_quat(q3);
|
||||
test_rand_quat(q4);
|
||||
|
||||
glm_quat_mul(q3, q4, q5);
|
||||
|
||||
glm_quat_axis(q3, axis);
|
||||
glm_rotate_make(rot1, glm_quat_angle(q3), axis);
|
||||
|
||||
glm_quat_axis(q4, axis);
|
||||
glm_rotate(rot1, glm_quat_angle(q4), axis);
|
||||
|
||||
/* rot2 is combine of two rotation now test with quaternion result */
|
||||
glm_quat_mat4(q5, rot2);
|
||||
|
||||
/* result must be same (almost) */
|
||||
test_assert_mat4_eq2(rot1, rot2, 0.000009);
|
||||
|
||||
/* 8. test quaternion for look rotation */
|
||||
|
||||
/* 8.1 same direction */
|
||||
/* look at from 0, 0, 1 to zero, direction = 0, 0, -1 */
|
||||
glm_quat_for((vec3){0, 0, -1}, (vec3){0, 0, -1}, GLM_YUP, q3);
|
||||
|
||||
/* result must be identity */
|
||||
glm_quat_identity(q4);
|
||||
test_assert_quat_eq(q3, q4);
|
||||
|
||||
/* look at from 0, 0, 1 to zero, direction = 0, 0, -1 */
|
||||
glm_quat_forp(GLM_ZUP, GLM_VEC3_ZERO, (vec3){0, 0, -1}, GLM_YUP, q3);
|
||||
|
||||
/* result must be identity */
|
||||
glm_quat_identity(q4);
|
||||
test_assert_quat_eq(q3, q4);
|
||||
|
||||
/* 8.2 perpendicular */
|
||||
glm_quat_for(GLM_XUP, (vec3){0, 0, -1}, GLM_YUP, q3);
|
||||
|
||||
/* result must be -90 */
|
||||
glm_quatv(q4, glm_rad(-90.0f), GLM_YUP);
|
||||
test_assert_quat_eq(q3, q4);
|
||||
|
||||
/* 9. test imag, real */
|
||||
|
||||
/* 9.1 real */
|
||||
assert_true(glm_quat_real(q4) == cosf(glm_rad(-90.0f) * 0.5f));
|
||||
|
||||
/* 9.1 imag */
|
||||
glm_quat_imag(q4, imag);
|
||||
|
||||
/* axis = Y_UP * sinf(angle * 0.5), YUP = 0, 1, 0 */
|
||||
axis[0] = 0.0f;
|
||||
axis[1] = sinf(glm_rad(-90.0f) * 0.5f) * 1.0f;
|
||||
axis[2] = 0.0f;
|
||||
|
||||
assert_true(glm_vec_eqv_eps(imag, axis));
|
||||
|
||||
/* 9.2 axis */
|
||||
glm_quat_axis(q4, axis);
|
||||
imag[0] = 0.0f;
|
||||
imag[1] = -1.0f;
|
||||
imag[2] = 0.0f;
|
||||
|
||||
test_assert_vec3_eq(imag, axis);
|
||||
|
||||
/* 10. test rotate vector using quat */
|
||||
/* (0,0,-1) around (1,0,0) must give (0,1,0) */
|
||||
v1[0] = 0.0f; v1[1] = 0.0f; v1[2] = -1.0f;
|
||||
v2[0] = 0.0f; v2[1] = 0.0f; v2[2] = -1.0f;
|
||||
|
||||
glm_vec_rotate(v1, glm_rad(90.0f), (vec3){1.0f, 0.0f, 0.0f});
|
||||
glm_quatv(q3, glm_rad(90.0f), (vec3){1.0f, 0.0f, 0.0f});
|
||||
|
||||
glm_vec4_scale(q3, 1.5, q3);
|
||||
glm_quat_rotatev(q3, v2, v2);
|
||||
|
||||
/* result must be : (0,1,0) */
|
||||
assert_true(fabsf(v1[0]) <= 0.00009f
|
||||
&& fabsf(v1[1] - 1.0f) <= 0.00009f
|
||||
&& fabsf(v1[2]) <= 0.00009f);
|
||||
|
||||
test_assert_vec3_eq(v1, v2);
|
||||
|
||||
/* 11. test rotate transform */
|
||||
glm_translate_make(rot1, (vec3){-10.0, 45.0f, 8.0f});
|
||||
glm_rotate(rot1, glm_rad(-90), GLM_ZUP);
|
||||
|
||||
glm_quatv(q3, glm_rad(-90.0f), GLM_ZUP);
|
||||
glm_translate_make(rot2, (vec3){-10.0, 45.0f, 8.0f});
|
||||
glm_quat_rotate(rot2, q3, rot2);
|
||||
|
||||
/* result must be same (almost) */
|
||||
test_assert_mat4_eq2(rot1, rot2, 0.000009);
|
||||
|
||||
glm_rotate_make(rot1, glm_rad(-90), GLM_ZUP);
|
||||
glm_translate(rot1, (vec3){-10.0, 45.0f, 8.0f});
|
||||
|
||||
glm_quatv(q3, glm_rad(-90.0f), GLM_ZUP);
|
||||
glm_mat4_identity(rot2);
|
||||
glm_quat_rotate(rot2, q3, rot2);
|
||||
glm_translate(rot2, (vec3){-10.0, 45.0f, 8.0f});
|
||||
|
||||
/* result must be same (almost) */
|
||||
test_assert_mat4_eq2(rot1, rot2, 0.000009);
|
||||
|
||||
/* reverse */
|
||||
glm_rotate_make(rot1, glm_rad(-90), GLM_ZUP);
|
||||
glm_quatv(q3, glm_rad(90.0f), GLM_ZUP);
|
||||
glm_quat_rotate(rot1, q3, rot1);
|
||||
|
||||
/* result must be identity */
|
||||
test_assert_mat4_eq2(rot1, GLM_MAT4_IDENTITY, 0.000009);
|
||||
|
||||
test_rand_quat(q3);
|
||||
|
||||
/* 12. inverse of quat, multiplication must be IDENTITY */
|
||||
glm_quat_inv(q3, q4);
|
||||
glm_quat_mul(q3, q4, q5);
|
||||
|
||||
glm_quat_identity(q3);
|
||||
test_assert_quat_eq(q3, q5);
|
||||
|
||||
/* TODO: add tests for slerp, lerp */
|
||||
}
|
||||
@@ -9,4 +9,26 @@
|
||||
/* mat4 */
|
||||
void test_mat4(void **state);
|
||||
|
||||
/* camera */
|
||||
void
|
||||
test_camera_lookat(void **state);
|
||||
|
||||
void
|
||||
test_camera_decomp(void **state);
|
||||
|
||||
void
|
||||
test_project(void **state);
|
||||
|
||||
void
|
||||
test_clamp(void **state);
|
||||
|
||||
void
|
||||
test_euler(void **state);
|
||||
|
||||
void
|
||||
test_quat(void **state);
|
||||
|
||||
void
|
||||
test_vec4(void **state);
|
||||
|
||||
#endif /* test_tests_h */
|
||||
|
||||
30
test/src/test_vec4.c
Normal file
30
test/src/test_vec4.c
Normal file
@@ -0,0 +1,30 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "test_common.h"
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
test_vec4_dot(vec4 a, vec4 b) {
|
||||
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
|
||||
}
|
||||
|
||||
void
|
||||
test_vec4(void **state) {
|
||||
vec4 v;
|
||||
int i;
|
||||
float d1, d2;
|
||||
|
||||
/* test SSE/SIMD dot product */
|
||||
for (i = 0; i < 100; i++) {
|
||||
test_rand_vec4(v);
|
||||
d1 = glm_vec4_dot(v, v);
|
||||
d2 = test_vec4_dot(v, v);
|
||||
|
||||
assert_true(fabsf(d1 - d2) <= 0.000009);
|
||||
}
|
||||
}
|
||||
@@ -20,12 +20,16 @@
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClCompile Include="..\src\affine.c" />
|
||||
<ClCompile Include="..\src\box.c" />
|
||||
<ClCompile Include="..\src\cam.c" />
|
||||
<ClCompile Include="..\src\dllmain.c" />
|
||||
<ClCompile Include="..\src\euler.c" />
|
||||
<ClCompile Include="..\src\frustum.c" />
|
||||
<ClCompile Include="..\src\io.c" />
|
||||
<ClCompile Include="..\src\mat3.c" />
|
||||
<ClCompile Include="..\src\mat4.c" />
|
||||
<ClCompile Include="..\src\plane.c" />
|
||||
<ClCompile Include="..\src\project.c" />
|
||||
<ClCompile Include="..\src\quat.c" />
|
||||
<ClCompile Include="..\src\vec3.c" />
|
||||
<ClCompile Include="..\src\vec4.c" />
|
||||
@@ -33,23 +37,32 @@
|
||||
<ItemGroup>
|
||||
<ClInclude Include="..\include\cglm\affine-mat.h" />
|
||||
<ClInclude Include="..\include\cglm\affine.h" />
|
||||
<ClInclude Include="..\include\cglm\box.h" />
|
||||
<ClInclude Include="..\include\cglm\call.h" />
|
||||
<ClInclude Include="..\include\cglm\call\affine.h" />
|
||||
<ClInclude Include="..\include\cglm\call\box.h" />
|
||||
<ClInclude Include="..\include\cglm\call\cam.h" />
|
||||
<ClInclude Include="..\include\cglm\call\euler.h" />
|
||||
<ClInclude Include="..\include\cglm\call\frustum.h" />
|
||||
<ClInclude Include="..\include\cglm\call\io.h" />
|
||||
<ClInclude Include="..\include\cglm\call\mat3.h" />
|
||||
<ClInclude Include="..\include\cglm\call\mat4.h" />
|
||||
<ClInclude Include="..\include\cglm\call\plane.h" />
|
||||
<ClInclude Include="..\include\cglm\call\project.h" />
|
||||
<ClInclude Include="..\include\cglm\call\quat.h" />
|
||||
<ClInclude Include="..\include\cglm\call\vec3.h" />
|
||||
<ClInclude Include="..\include\cglm\call\vec4.h" />
|
||||
<ClInclude Include="..\include\cglm\cam.h" />
|
||||
<ClInclude Include="..\include\cglm\cglm.h" />
|
||||
<ClInclude Include="..\include\cglm\color.h" />
|
||||
<ClInclude Include="..\include\cglm\common.h" />
|
||||
<ClInclude Include="..\include\cglm\euler.h" />
|
||||
<ClInclude Include="..\include\cglm\frustum.h" />
|
||||
<ClInclude Include="..\include\cglm\io.h" />
|
||||
<ClInclude Include="..\include\cglm\mat3.h" />
|
||||
<ClInclude Include="..\include\cglm\mat4.h" />
|
||||
<ClInclude Include="..\include\cglm\plane.h" />
|
||||
<ClInclude Include="..\include\cglm\project.h" />
|
||||
<ClInclude Include="..\include\cglm\quat.h" />
|
||||
<ClInclude Include="..\include\cglm\simd\avx\affine.h" />
|
||||
<ClInclude Include="..\include\cglm\simd\avx\mat4.h" />
|
||||
@@ -73,7 +86,7 @@
|
||||
<ProjectGuid>{CA8BCAF9-CD25-4133-8F62-3D1449B5D2FC}</ProjectGuid>
|
||||
<Keyword>Win32Proj</Keyword>
|
||||
<RootNamespace>cglm</RootNamespace>
|
||||
<WindowsTargetPlatformVersion>10.0.14393.0</WindowsTargetPlatformVersion>
|
||||
<WindowsTargetPlatformVersion>10.0.16299.0</WindowsTargetPlatformVersion>
|
||||
</PropertyGroup>
|
||||
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
|
||||
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
|
||||
|
||||
@@ -66,6 +66,18 @@
|
||||
<ClCompile Include="..\src\vec4.c">
|
||||
<Filter>src</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="..\src\frustum.c">
|
||||
<Filter>src</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="..\src\plane.c">
|
||||
<Filter>src</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="..\src\box.c">
|
||||
<Filter>src</Filter>
|
||||
</ClCompile>
|
||||
<ClCompile Include="..\src\project.c">
|
||||
<Filter>src</Filter>
|
||||
</ClCompile>
|
||||
</ItemGroup>
|
||||
<ItemGroup>
|
||||
<ClInclude Include="..\src\config.h">
|
||||
@@ -176,5 +188,32 @@
|
||||
<ClInclude Include="..\include\cglm\version.h">
|
||||
<Filter>include\cglm</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\include\cglm\call\frustum.h">
|
||||
<Filter>include\cglm\call</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\include\cglm\call\plane.h">
|
||||
<Filter>include\cglm\call</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\include\cglm\frustum.h">
|
||||
<Filter>include\cglm</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\include\cglm\plane.h">
|
||||
<Filter>include\cglm</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\include\cglm\call\box.h">
|
||||
<Filter>include\cglm\call</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\include\cglm\box.h">
|
||||
<Filter>include\cglm</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\include\cglm\color.h">
|
||||
<Filter>include\cglm</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\include\cglm\project.h">
|
||||
<Filter>include\cglm</Filter>
|
||||
</ClInclude>
|
||||
<ClInclude Include="..\include\cglm\call\project.h">
|
||||
<Filter>include\cglm\call</Filter>
|
||||
</ClInclude>
|
||||
</ItemGroup>
|
||||
</Project>
|
||||
Reference in New Issue
Block a user