mirror of
https://github.com/recp/cglm.git
synced 2026-02-17 03:39:05 +00:00
Compare commits
296 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
01b93b0409 | ||
|
|
07e60bd098 | ||
|
|
e3d3cd8ab8 | ||
|
|
d17c99215d | ||
|
|
dc6eb492c1 | ||
|
|
7219b02d23 | ||
|
|
21834b4ffb | ||
|
|
2ef9c23a6c | ||
|
|
92605f845a | ||
|
|
b23d65bef5 | ||
|
|
2f632c6311 | ||
|
|
b47d148b81 | ||
|
|
a5bc2f710e | ||
|
|
6d6954b208 | ||
|
|
4e08b7e335 | ||
|
|
aee381d869 | ||
|
|
b4bf8f3537 | ||
|
|
0b8c63a90e | ||
|
|
ef6134263e | ||
|
|
9af61d2101 | ||
|
|
463099350a | ||
|
|
89f64f0794 | ||
|
|
d794f17e51 | ||
|
|
a7cdbcec2b | ||
|
|
20a2312351 | ||
|
|
9aebdc76b3 | ||
|
|
e9b51fc07a | ||
|
|
abfa355b84 | ||
|
|
08479f38ce | ||
|
|
dadae4b773 | ||
|
|
20360f2296 | ||
|
|
aa2b0f2631 | ||
|
|
280ac72fd8 | ||
|
|
7405d5e1d0 | ||
|
|
eefafefbae | ||
|
|
b9021978cb | ||
|
|
3fd12032e6 | ||
|
|
59ee8c1fd2 | ||
|
|
b00f2b9ccc | ||
|
|
d3c50147cb | ||
|
|
98da3daf82 | ||
|
|
2e1790ccf9 | ||
|
|
cc5f533fc9 | ||
|
|
2d63d7e0cd | ||
|
|
3738499927 | ||
|
|
1d527dc2f0 | ||
|
|
43c4d05d4a | ||
|
|
c5f5032fcc | ||
|
|
5d605ce372 | ||
|
|
c216c0cb7e | ||
|
|
eb8e0df6df | ||
|
|
1775bf7458 | ||
|
|
3adeac06f8 | ||
|
|
669777eb37 | ||
|
|
02f6c67393 | ||
|
|
564324f5d2 | ||
|
|
93e6c3c102 | ||
|
|
857265b892 | ||
|
|
fc14cedf89 | ||
|
|
7a80178357 | ||
|
|
720b617ee0 | ||
|
|
3dc9070909 | ||
|
|
6b2b4b4f12 | ||
|
|
c8fc460ba1 | ||
|
|
5b3aabc103 | ||
|
|
af812e86eb | ||
|
|
059bdfdd4b | ||
|
|
ef0653640f | ||
|
|
e5d61b3433 | ||
|
|
73c073cf32 | ||
|
|
1362bef50f | ||
|
|
7d783eeace | ||
|
|
e12e79b1a5 | ||
|
|
6cd3d52dc5 | ||
|
|
fb2cac9816 | ||
|
|
4e63325f55 | ||
|
|
96c3e604ff | ||
|
|
077e304fc5 | ||
|
|
599524dacf | ||
|
|
da5ad69863 | ||
|
|
9fc2ead8ef | ||
|
|
48d33c16cb | ||
|
|
464bd917d0 | ||
|
|
c6d07bb6eb | ||
|
|
94b286f1f9 | ||
|
|
f774925e8a | ||
|
|
0e49e95161 | ||
|
|
b277357800 | ||
|
|
835cec2ccb | ||
|
|
5dbbd0826d | ||
|
|
56f0bb0928 | ||
|
|
568001d26a | ||
|
|
252bf925fc | ||
|
|
0f339c5c03 | ||
|
|
a9d56f2dae | ||
|
|
dd60496ffc | ||
|
|
7c0e9e99c6 | ||
|
|
064209c917 | ||
|
|
94d6036c38 | ||
|
|
6c01eff056 | ||
|
|
ada69a7c43 | ||
|
|
cef97fca3e | ||
|
|
498a33fac5 | ||
|
|
3c7a729729 | ||
|
|
a6a37995e9 | ||
|
|
6202179c23 | ||
|
|
22b699174c | ||
|
|
016c0a71a6 | ||
|
|
e28cf1d3f6 | ||
|
|
63966ee5c0 | ||
|
|
a723ecdb7e | ||
|
|
065f93ab3c | ||
|
|
4dbcd28fdb | ||
|
|
be0e3fc9f2 | ||
|
|
d648f5772d | ||
|
|
f163fcd043 | ||
|
|
27ab6a7dd0 | ||
|
|
33e951fe2e | ||
|
|
c63c6c90ac | ||
|
|
a2792178db | ||
|
|
cefd5fb53d | ||
|
|
821c79572f | ||
|
|
f0a27d0ce2 | ||
|
|
007ae62e06 | ||
|
|
826ddf0f5b | ||
|
|
b09b5f260b | ||
|
|
59aacee968 | ||
|
|
429aff087f | ||
|
|
ca9f61dd74 | ||
|
|
d6395d4fb8 | ||
|
|
7f7007574b | ||
|
|
13345f06c1 | ||
|
|
725fac75d0 | ||
|
|
c05f58a169 | ||
|
|
d841f8809d | ||
|
|
af5a2627b4 | ||
|
|
25fc3d0284 | ||
|
|
c489955b00 | ||
|
|
79f8b1ebf8 | ||
|
|
0eb37da8bb | ||
|
|
44728c536b | ||
|
|
c8ed8acbed | ||
|
|
2d77123999 | ||
|
|
462067cfdc | ||
|
|
9ae8da3e0a | ||
|
|
0e63c245d4 | ||
|
|
de55850136 | ||
|
|
51278b26b4 | ||
|
|
fdea13507b | ||
|
|
80d255e6d9 | ||
|
|
d447876c70 | ||
|
|
b1fa7ff597 | ||
|
|
010dcc9837 | ||
|
|
5dec68823c | ||
|
|
4c79fee5d3 | ||
|
|
18ef0d7af1 | ||
|
|
9466182c10 | ||
|
|
f0a51b35ad | ||
|
|
290bcf134c | ||
|
|
416e2f4452 | ||
|
|
1fb82a1922 | ||
|
|
591c881376 | ||
|
|
6f69da361b | ||
|
|
93a08fce17 | ||
|
|
cc1d3b53ea | ||
|
|
b21df8fc37 | ||
|
|
76e9f74020 | ||
|
|
d79e58486d | ||
|
|
3dc93c56e8 | ||
|
|
7615f785ac | ||
|
|
f0daaca58b | ||
|
|
381b2fdcc0 | ||
|
|
e4e0fa623c | ||
|
|
932f638d5a | ||
|
|
81bda7439d | ||
|
|
b27603c268 | ||
|
|
12c5307447 | ||
|
|
257c57d41f | ||
|
|
f5140ea005 | ||
|
|
619ecdc5a4 | ||
|
|
9b8748acc4 | ||
|
|
ae06c51746 | ||
|
|
11430559b4 | ||
|
|
58f0043417 | ||
|
|
cfd3600107 | ||
|
|
967fb1afad | ||
|
|
7411ac36c1 | ||
|
|
238609f2c0 | ||
|
|
ea0a10ade9 | ||
|
|
429fdfd5c5 | ||
|
|
024412f00e | ||
|
|
e8615ea14c | ||
|
|
be81d73895 | ||
|
|
b16f0ded85 | ||
|
|
63acfd681e | ||
|
|
eb527e39b4 | ||
|
|
9f389ab8ec | ||
|
|
3399595dc2 | ||
|
|
2513d46102 | ||
|
|
c298f4a4d7 | ||
|
|
84cdbd5072 | ||
|
|
74f9865884 | ||
|
|
dbd1e334ea | ||
|
|
acda316c12 | ||
|
|
86efe64b8e | ||
|
|
b0991342a6 | ||
|
|
984916d520 | ||
|
|
54c44ff224 | ||
|
|
db4761b437 | ||
|
|
ca504f7058 | ||
|
|
5a7b9caf16 | ||
|
|
43b3df992d | ||
|
|
26110f83d1 | ||
|
|
d1f3feeb6e | ||
|
|
4298211795 | ||
|
|
c244b68e73 | ||
|
|
205d13aa93 | ||
|
|
45f13217c3 | ||
|
|
21ec45b2af | ||
|
|
71b48b530e | ||
|
|
48b7b30e42 | ||
|
|
86055097e1 | ||
|
|
08be94a89b | ||
|
|
91b2a989e2 | ||
|
|
780179ff0d | ||
|
|
c148eacdc2 | ||
|
|
fadde1e26a | ||
|
|
29996d0bdd | ||
|
|
cfab79e546 | ||
|
|
da2f3aaafd | ||
|
|
0e964a1a62 | ||
|
|
1fd0a74478 | ||
|
|
b3a39aa13c | ||
|
|
b737bb2dde | ||
|
|
a610626693 | ||
|
|
425bf87c1f | ||
|
|
23698b7e48 | ||
|
|
be3f117374 | ||
|
|
77e62163ea | ||
|
|
96f773417a | ||
|
|
02ab66a8b3 | ||
|
|
fc424631a4 | ||
|
|
6d5734fe7e | ||
|
|
d95bf60b02 | ||
|
|
891148cbe3 | ||
|
|
4ce2e86d9f | ||
|
|
8a16f358a3 | ||
|
|
43d0837303 | ||
|
|
c1c659489a | ||
|
|
681a74b39c | ||
|
|
5ccf80cd0e | ||
|
|
3882b72f7f | ||
|
|
55d1e240a2 | ||
|
|
e4727e6c88 | ||
|
|
9649a0285f | ||
|
|
0f9f4748d7 | ||
|
|
a832d58d9f | ||
|
|
8b2c74b0cc | ||
|
|
da8bbc6536 | ||
|
|
4a7cd2eb26 | ||
|
|
565ee2d6eb | ||
|
|
c58db651a6 | ||
|
|
ee78459340 | ||
|
|
37f6bb8725 | ||
|
|
703c74b6ca | ||
|
|
42d8f58960 | ||
|
|
74201aaef9 | ||
|
|
c6b0d96e71 | ||
|
|
8bcd6bd077 | ||
|
|
6dcd919130 | ||
|
|
944d285e14 | ||
|
|
a56da8cc4a | ||
|
|
40458be41b | ||
|
|
b6dc5029dd | ||
|
|
2349bbff31 | ||
|
|
b76f78948b | ||
|
|
2b7994778d | ||
|
|
4e6ab470c2 | ||
|
|
50c23ce1c0 | ||
|
|
61ac032751 | ||
|
|
9ee79a8b13 | ||
|
|
efe6729891 | ||
|
|
42743e3b82 | ||
|
|
b3c3e3a034 | ||
|
|
642cc8d603 | ||
|
|
d53f95314d | ||
|
|
797c4581ee | ||
|
|
6534f4a6c7 | ||
|
|
3e4f52b3af | ||
|
|
eaf45e489d | ||
|
|
2d0a3ad828 | ||
|
|
400fc6cbee | ||
|
|
634e1170a3 | ||
|
|
99669a21a4 | ||
|
|
d14627ac52 | ||
|
|
c98340d9d2 |
9
.gitignore
vendored
9
.gitignore
vendored
@@ -60,3 +60,12 @@ cglm_test_iosTests/*
|
||||
docs/build/*
|
||||
win/cglm_test_*
|
||||
* copy.*
|
||||
*.o
|
||||
*.obj
|
||||
*codeanalysis.*.xml
|
||||
*codeanalysis.xml
|
||||
*.lib
|
||||
*.tlog
|
||||
win/x64
|
||||
win/x85
|
||||
win/Debug
|
||||
|
||||
@@ -49,7 +49,7 @@ script:
|
||||
|
||||
after_success:
|
||||
- if [[ "$CC" == "gcc" && "$CODE_COVERAGE" == "ON" ]]; then
|
||||
pip install --user cpp-coveralls
|
||||
pip install --user cpp-coveralls &&
|
||||
coveralls
|
||||
--build-root .
|
||||
--exclude lib
|
||||
|
||||
54
CREDITS
Normal file
54
CREDITS
Normal file
@@ -0,0 +1,54 @@
|
||||
This library [initially] used some [piece of] implementations
|
||||
(may include codes) from these open source projects/resources:
|
||||
|
||||
1. Initial Affine Transforms
|
||||
The original glm repo (g-truc), url: https://github.com/g-truc/glm
|
||||
|
||||
LICENSE[S]:
|
||||
The Happy Bunny License (Modified MIT License)
|
||||
The MIT License
|
||||
Copyright (c) 2005 - 2016 G-Truc Creation
|
||||
|
||||
FULL LICENSE: https://github.com/g-truc/glm/blob/master/copying.txt
|
||||
|
||||
2. Initial Quaternions
|
||||
Anton's OpenGL 4 Tutorials book source code:
|
||||
|
||||
LICENSE:
|
||||
OpenGL 4 Example Code.
|
||||
Accompanies written series "Anton's OpenGL 4 Tutorials"
|
||||
Email: anton at antongerdelan dot net
|
||||
First version 27 Jan 2014
|
||||
Copyright Dr Anton Gerdelan, Trinity College Dublin, Ireland.
|
||||
|
||||
3. Euler Angles
|
||||
David Eberly
|
||||
Geometric Tools, LLC http://www.geometrictools.com/
|
||||
Copyright (c) 1998-2016. All Rights Reserved.
|
||||
|
||||
Computing Euler angles from a rotation matrix (euler.pdf)
|
||||
Gregory G. Slabaugh
|
||||
|
||||
4. Extracting Planes
|
||||
Fast Extraction of Viewing Frustum Planes from the World-View-Projection Matrix
|
||||
Authors:
|
||||
Gil Gribb (ggribb@ravensoft.com)
|
||||
Klaus Hartmann (k_hartmann@osnabrueck.netsurf.de)
|
||||
|
||||
5. Transform AABB
|
||||
Transform Axis Aligned Bounding Boxes:
|
||||
http://dev.theomader.com/transform-bounding-boxes/
|
||||
https://github.com/erich666/GraphicsGems/blob/master/gems/TransBox.c
|
||||
|
||||
6. Cull frustum
|
||||
http://www.txutxi.com/?p=584
|
||||
http://old.cescg.org/CESCG-2002/DSykoraJJelinek/
|
||||
|
||||
7. Quaternions
|
||||
Initial mat4_quat is borrowed from Apple's simd library
|
||||
|
||||
8. Vector Rotation using Quaternion
|
||||
https://gamedev.stackexchange.com/questions/28395/rotating-vector3-by-a-quaternion
|
||||
|
||||
9. Sphere AABB intersect
|
||||
https://github.com/erich666/GraphicsGems/blob/master/gems/BoxSphere.c
|
||||
33
LICENSE
33
LICENSE
@@ -19,36 +19,3 @@ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||
SOFTWARE.
|
||||
|
||||
-
|
||||
|
||||
This library [initially] used some [piece of] implementations
|
||||
(may include codes) from these open source projects/resources:
|
||||
|
||||
1. Affine Transforms
|
||||
The original glm repo (g-truc), url: https://github.com/g-truc/glm
|
||||
|
||||
LICENSE[S]:
|
||||
The Happy Bunny License (Modified MIT License)
|
||||
The MIT License
|
||||
Copyright (c) 2005 - 2016 G-Truc Creation
|
||||
|
||||
FULL LICENSE: https://github.com/g-truc/glm/blob/master/copying.txt
|
||||
|
||||
2. Quaternions
|
||||
Anton's OpenGL 4 Tutorials book source code:
|
||||
|
||||
LICENSE:
|
||||
OpenGL 4 Example Code.
|
||||
Accompanies written series "Anton's OpenGL 4 Tutorials"
|
||||
Email: anton at antongerdelan dot net
|
||||
First version 27 Jan 2014
|
||||
Copyright Dr Anton Gerdelan, Trinity College Dublin, Ireland.
|
||||
|
||||
3. Euler Angles
|
||||
David Eberly
|
||||
Geometric Tools, LLC http://www.geometrictools.com/
|
||||
Copyright (c) 1998-2016. All Rights Reserved.
|
||||
|
||||
Computing Euler angles from a rotation matrix (euler.pdf)
|
||||
Gregory G. Slabaugh
|
||||
|
||||
158
README.md
158
README.md
@@ -1,26 +1,56 @@
|
||||
# 🎥 OpenGL Mathematics (glm) for `C`
|
||||
[](https://travis-ci.org/recp/cglm)
|
||||
[](https://ci.appveyor.com/project/recp/cglm/branch/master)
|
||||
[](https://ci.appveyor.com/project/recp/cglm/branch/master)
|
||||
[](http://cglm.readthedocs.io/en/latest/?badge=latest)
|
||||
[](https://coveralls.io/github/recp/cglm?branch=master)
|
||||
[](https://www.codacy.com/app/recp/cglm?utm_source=github.com&utm_medium=referral&utm_content=recp/cglm&utm_campaign=Badge_Grade)
|
||||
[](#backers)
|
||||
[](#sponsors)
|
||||
|
||||
The original glm library is for C++ only (templates, namespaces, classes...), this library targeted to C99 but currently you can use it for C89 safely by language extensions e.g `__register`
|
||||
The original glm library is for C++ only (templates, namespaces, classes...), this library targeted to C99 but currently you can use it for C89 safely by language extensions e.g `__restrict`
|
||||
|
||||
#### Documentation
|
||||
|
||||
Almost all functions (inline versions) and parameters are documented inside related headers. <br />
|
||||
Complete documentation is in progress: http://cglm.readthedocs.io
|
||||
Complete documentation: http://cglm.readthedocs.io
|
||||
|
||||
#### Note for previous versions:
|
||||
|
||||
- _dup (duplicate) is changed to _copy. For instance `glm_vec_dup -> glm_vec_copy`
|
||||
- _dup (duplicate) is changed to _copy. For instance `glm_vec_dup -> glm_vec3_copy`
|
||||
- OpenGL related functions are dropped to make this lib platform/third-party independent
|
||||
- make sure you have latest version and feel free to report bugs, troubles
|
||||
- **[bugfix]** euler angles was implemented in reverse order (extrinsic) it was fixed, now they are intrinsic. Make sure that
|
||||
you have the latest version
|
||||
- **[major change]** by starting v0.4.0, quaternions are stored as [x, y, z, w], it was [w, x, y, z] in v0.3.5 and earlier versions
|
||||
- **[api rename]** by starting v0.4.5, **glm_simd** functions are renamed to **glmm_**
|
||||
- **[new option]** by starting v0.4.5, you can disable alignment requirement, check options in docs.
|
||||
- **[major change]** by starting v0.5.0, vec3 functions use **glm_vec3_** namespace, it was **glm_vec_** until v0.5.0
|
||||
- **[major change]** by starting v0.5.1, built-in alignment is removed from **vec3** and **mat3** types
|
||||
|
||||
#### Note for C++ developers:
|
||||
If you don't aware about original GLM library yet, you may also want to look at:
|
||||
https://github.com/g-truc/glm
|
||||
|
||||
#### Note for new comers (Important):
|
||||
- `vec4` and `mat4` variables must be aligned. (There will be unaligned versions later)
|
||||
- **in** and **[in, out]** parameters must be initialized (please). But **[out]** parameters not, initializing out param is also redundant
|
||||
- All functions are inline if you don't want to use pre-compiled versions with glmc_ prefix, you can ignore build process. Just incliude headers.
|
||||
- if your debugger takes you to cglm headers then make sure you are not trying to copy vec4 to vec3 or alig issues...
|
||||
- Welcome!
|
||||
|
||||
#### Note for experienced developers:
|
||||
- Since I'm testing this library in my projects, sometimes bugs occurs; finding that bug[s] and making improvements would be more easy with multiple developer/contributor and their projects or knowledge. Consider to make some tests if you suspect something is wrong and any feedbacks, contributions and bug reports are always welcome.
|
||||
|
||||
#### Allocations?
|
||||
`cglm` doesn't alloc any memory on heap. So it doesn't provide any allocator. You should alloc memory for **out** parameters too if you pass pointer of memory location. Don't forget that **vec4** (also quat/**versor**) and **mat4** must be aligned (16-bytes), because *cglm* uses SIMD instructions to optimize most operations if available.
|
||||
|
||||
#### Returning vector or matrix... ?
|
||||
Since almost all types are arrays and **C** doesn't allow returning arrays, so **cglm** doesn't support this feature. In the future *cglm* may use **struct** for some types for this purpose.
|
||||
|
||||
#### Other APIs like Vulkan, Metal, Dx?
|
||||
Currently *cglm* uses default clip space configuration (-1, 1) for camera functions (perspective, extract corners...), in the future other clip space configurations will be supported
|
||||
|
||||
<hr/>
|
||||
|
||||
<table>
|
||||
<tbody>
|
||||
@@ -50,6 +80,10 @@ https://github.com/g-truc/glm
|
||||
- euler angles / yaw-pitch-roll to matrix
|
||||
- extract euler angles
|
||||
- inline or pre-compiled function call
|
||||
- frustum (extract view frustum planes, corners...)
|
||||
- bounding box (AABB in Frustum (culling), crop, merge...)
|
||||
- project, unproject
|
||||
- and other...
|
||||
|
||||
<hr />
|
||||
|
||||
@@ -91,20 +125,19 @@ glm_mul(T, R, modelMat);
|
||||
glm_inv_tr(modelMat);
|
||||
```
|
||||
|
||||
## License
|
||||
MIT. check the LICENSE file
|
||||
|
||||
## Build
|
||||
|
||||
### Unix (Autotools)
|
||||
|
||||
```text
|
||||
$ sh ./build-deps.sh # run only once (dependencies)
|
||||
```bash
|
||||
$ sh ./build-deps.sh # run only once (dependencies) [Optional].
|
||||
$ # You can pass this step if you don't want to run `make check` for tests.
|
||||
$ # cglm uses cmocka for tests and it may reqiure cmake for building it
|
||||
$
|
||||
$ sh autogen.sh
|
||||
$ ./configure
|
||||
$ make
|
||||
$ make install
|
||||
$ make check # [Optional] (if you run `sh ./build-deps.sh`)
|
||||
$ [sudo] make install
|
||||
```
|
||||
|
||||
@@ -122,22 +155,31 @@ if `msbuild` won't work (because of multi version VS) then try to build with `de
|
||||
$ devenv cglm.sln /Build Release
|
||||
```
|
||||
|
||||
### Building Docs
|
||||
First you need install Sphinx: http://www.sphinx-doc.org/en/master/usage/installation.html
|
||||
then:
|
||||
```bash
|
||||
$ cd docs
|
||||
$ sphinx-build source build
|
||||
```
|
||||
it will compile docs into build folder, you can run index.html inside that function.
|
||||
|
||||
## How to use
|
||||
If you want to use inline versions of funcstions then; include main header
|
||||
```C
|
||||
#include <cglm/cglm.h>
|
||||
```
|
||||
the haeder will include all headers. Then call func you want e.g. rotate vector by axis:
|
||||
the header will include all headers. Then call func you want e.g. rotate vector by axis:
|
||||
```C
|
||||
glm_vec_rotate(v1, glm_rad(45), (vec3){1.0f, 0.0f, 0.0f});
|
||||
glm_vec3_rotate(v1, glm_rad(45), (vec3){1.0f, 0.0f, 0.0f});
|
||||
```
|
||||
some functions are overloaded :) e.g you can normalize vector:
|
||||
```C
|
||||
glm_vec_normalize(vec);
|
||||
glm_vec3_normalize(vec);
|
||||
```
|
||||
this will normalize vec and store normalized vector into `vec` but if you will store normalized vector into another vector do this:
|
||||
```C
|
||||
glm_vec_normalize_to(vec, result);
|
||||
glm_vec3_normalize_to(vec, result);
|
||||
```
|
||||
like this function you may see `_to` postfix, this functions store results to another variables and save temp memory
|
||||
|
||||
@@ -146,12 +188,60 @@ to call pre-compiled versions include header with `c` postfix, c means call. Pre
|
||||
```C
|
||||
#include <cglm/call.h>
|
||||
```
|
||||
this header will include all heaers with c postfix. You need to call functions with c posfix:
|
||||
this header will include all headers with c postfix. You need to call functions with c posfix:
|
||||
```C
|
||||
glmc_vec_normalize(vec);
|
||||
glmc_vec3_normalize(vec);
|
||||
```
|
||||
|
||||
Function usage and parameters are documented inside related headers.
|
||||
Function usage and parameters are documented inside related headers. You may see same parameter passed twice in some examples like this:
|
||||
```C
|
||||
glm_mat4_mul(m1, m2, m1);
|
||||
|
||||
/* or */
|
||||
glm_mat4_mul(m1, m1, m1);
|
||||
```
|
||||
the first two parameter are **[in]** and the last one is **[out]** parameter. After multiplied *m1* and *m2* the result is stored in *m1*. This is why we send *m1* twice. You may store result in different matrix, this just an example.
|
||||
|
||||
### Example: Computing MVP matrix
|
||||
|
||||
#### Option 1
|
||||
```C
|
||||
mat4 proj, view, model, mvp;
|
||||
|
||||
/* init proj, view and model ... */
|
||||
|
||||
glm_mat4_mul(proj, view, viewProj);
|
||||
glm_mat4_mul(viewProj, model, mvp);
|
||||
```
|
||||
|
||||
#### Option 2
|
||||
```C
|
||||
mat4 proj, view, model, mvp;
|
||||
|
||||
/* init proj, view and model ... */
|
||||
|
||||
glm_mat4_mulN((mat4 *[]){&proj, &view, &model}, 3, mvp);
|
||||
```
|
||||
|
||||
## How to send matrix to OpenGL
|
||||
|
||||
mat4 is array of vec4 and vec4 is array of floats. `glUniformMatrix4fv` functions accecpts `float*` as `value` (last param), so you can cast mat4 to float* or you can pass first column of matrix as beginning of memory of matrix:
|
||||
|
||||
Option 1: Send first column
|
||||
```C
|
||||
glUniformMatrix4fv(location, 1, GL_FALSE, matrix[0]);
|
||||
|
||||
/* array of matrices */
|
||||
glUniformMatrix4fv(location, 1, GL_FALSE, matrix[0][0]);
|
||||
```
|
||||
|
||||
Option 2: Cast matrix to pointer type (also valid for multiple dimensional arrays)
|
||||
```C
|
||||
glUniformMatrix4fv(location, 1, GL_FALSE, (float *)matrix);
|
||||
```
|
||||
|
||||
You can pass same way to another APIs e.g. Vulkan, DX...
|
||||
|
||||
## Notes
|
||||
|
||||
- This library uses float types only, does not support Integers, Double... yet
|
||||
@@ -162,5 +252,37 @@ Function usage and parameters are documented inside related headers.
|
||||
- [ ] Unit tests for comparing cglm with glm results
|
||||
- [x] Add version info
|
||||
- [ ] Unaligned operations (e.g. `glm_umat4_mul`)
|
||||
- [ ] Extra documentation
|
||||
- [x] Extra documentation
|
||||
- [ ] ARM Neon Arch (In Progress)
|
||||
|
||||
|
||||
## Contributors
|
||||
|
||||
This project exists thanks to all the people who contribute. [[Contribute](CONTRIBUTING.md)].
|
||||
<a href="graphs/contributors"><img src="https://opencollective.com/cglm/contributors.svg?width=890&button=false" /></a>
|
||||
|
||||
|
||||
## Backers
|
||||
|
||||
Thank you to all our backers! 🙏 [[Become a backer](https://opencollective.com/cglm#backer)]
|
||||
|
||||
<a href="https://opencollective.com/cglm#backers" target="_blank"><img src="https://opencollective.com/cglm/backers.svg?width=890"></a>
|
||||
|
||||
|
||||
## Sponsors
|
||||
|
||||
Support this project by becoming a sponsor. Your logo will show up here with a link to your website. [[Become a sponsor](https://opencollective.com/cglm#sponsor)]
|
||||
|
||||
<a href="https://opencollective.com/cglm/sponsor/0/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/0/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/1/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/1/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/2/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/2/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/3/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/3/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/4/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/4/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/5/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/5/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/6/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/6/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/7/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/7/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/8/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/8/avatar.svg"></a>
|
||||
<a href="https://opencollective.com/cglm/sponsor/9/website" target="_blank"><img src="https://opencollective.com/cglm/sponsor/9/avatar.svg"></a>
|
||||
|
||||
## License
|
||||
MIT. check the LICENSE file
|
||||
|
||||
17
autogen.sh
17
autogen.sh
@@ -8,17 +8,14 @@
|
||||
|
||||
cd $(dirname "$0")
|
||||
|
||||
if [ "$(uname)" = "Darwin" ]; then
|
||||
libtoolBin=$(which glibtoolize)
|
||||
libtoolBinDir=$(dirname "${libtoolBin}")
|
||||
|
||||
if [ ! -f "${libtoolBinDir}/libtoolize" ]; then
|
||||
ln -s $libtoolBin "${libtoolBinDir}/libtoolize"
|
||||
fi
|
||||
fi
|
||||
|
||||
autoheader
|
||||
libtoolize
|
||||
|
||||
if [ "$(uname)" = "Darwin" ]; then
|
||||
glibtoolize
|
||||
else
|
||||
libtoolize
|
||||
fi
|
||||
|
||||
aclocal -I m4
|
||||
autoconf
|
||||
automake --add-missing --copy
|
||||
|
||||
@@ -9,21 +9,14 @@
|
||||
# check if deps are pulled
|
||||
git submodule update --init --recursive
|
||||
|
||||
# fix glibtoolize
|
||||
|
||||
cd $(dirname "$0")
|
||||
|
||||
if [ "$(uname)" = "Darwin" ]; then
|
||||
libtoolBin=$(which glibtoolize)
|
||||
libtoolBinDir=$(dirname "${libtoolBin}")
|
||||
ln -s $libtoolBin "${libtoolBinDir}/libtoolize"
|
||||
fi
|
||||
|
||||
# general deps: gcc make autoconf automake libtool cmake
|
||||
|
||||
# test - cmocka
|
||||
cd ./test/lib/cmocka
|
||||
mkdir build
|
||||
rm -rf build
|
||||
mkdir -p build
|
||||
cd build
|
||||
cmake -DCMAKE_INSTALL_PREFIX=/usr -DCMAKE_BUILD_TYPE=Debug ..
|
||||
make -j8
|
||||
|
||||
28
cglm.podspec
Normal file
28
cglm.podspec
Normal file
@@ -0,0 +1,28 @@
|
||||
Pod::Spec.new do |s|
|
||||
|
||||
# Description
|
||||
s.name = "cglm"
|
||||
s.version = "0.4.6"
|
||||
s.summary = "📽 Optimized OpenGL/Graphics Math (glm) for C"
|
||||
s.description = <<-DESC
|
||||
cglm is math library for graphics programming for C. It is similar to original glm but it is written for C instead of C++ (you can use here too). See the documentation or README for all features.
|
||||
DESC
|
||||
|
||||
s.documentation_url = "http://cglm.readthedocs.io"
|
||||
|
||||
# Home
|
||||
s.homepage = "https://github.com/recp/cglm"
|
||||
s.license = { :type => "MIT", :file => "LICENSE" }
|
||||
s.author = { "Recep Aslantas" => "recp@acm.org" }
|
||||
|
||||
# Sources
|
||||
s.source = { :git => "https://github.com/recp/cglm.git", :tag => "v#{s.version}" }
|
||||
s.source_files = "src", "include/cglm/**/*.h"
|
||||
s.public_header_files = "include", "include/cglm/**/*.h"
|
||||
s.exclude_files = "src/win/*", "src/dllmain.c", "src/**/*.h"
|
||||
s.preserve_paths = "include", "src"
|
||||
s.header_mappings_dir = "include"
|
||||
|
||||
# Linking
|
||||
s.library = "m"
|
||||
end
|
||||
@@ -7,7 +7,7 @@
|
||||
#*****************************************************************************
|
||||
|
||||
AC_PREREQ([2.69])
|
||||
AC_INIT([cglm], [0.2.1], [info@recp.me])
|
||||
AC_INIT([cglm], [0.5.2], [info@recp.me])
|
||||
AM_INIT_AUTOMAKE([-Wall -Werror foreign subdir-objects])
|
||||
|
||||
AC_CONFIG_MACRO_DIR([m4])
|
||||
|
||||
99
docs/source/affine-mat.rst
Normal file
99
docs/source/affine-mat.rst
Normal file
@@ -0,0 +1,99 @@
|
||||
.. default-domain:: C
|
||||
|
||||
affine transform matrix (specialized functions)
|
||||
================================================================================
|
||||
|
||||
Header: cglm/affine-mat.h
|
||||
|
||||
We mostly use glm_mat4_* for 4x4 general and transform matrices. **cglm**
|
||||
provides optimized version of some functions. Because affine transform matrix is
|
||||
a known format, for instance all last item of first three columns is zero.
|
||||
|
||||
You should be careful when using these functions. For instance :c:func:`glm_mul`
|
||||
assumes matrix will be this format:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
R R R X
|
||||
R R R Y
|
||||
R R R Z
|
||||
0 0 0 W
|
||||
|
||||
if you override zero values here then use :c:func:`glm_mat4_mul` version.
|
||||
You cannot use :c:func:`glm_mul` anymore.
|
||||
|
||||
Same is also true for :c:func:`glm_inv_tr` if you only have rotation and
|
||||
translation then it will work as expected, otherwise you cannot use that.
|
||||
|
||||
In the future it may accept scale factors too but currectly it does not.
|
||||
|
||||
Table of contents (click func go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_mul`
|
||||
#. :c:func:`glm_mul_rot`
|
||||
#. :c:func:`glm_inv_tr`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_mul(mat4 m1, mat4 m2, mat4 dest)
|
||||
|
||||
| this is similar to glm_mat4_mul but specialized to affine transform
|
||||
|
||||
Matrix format should be:
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
R R R X
|
||||
R R R Y
|
||||
R R R Z
|
||||
0 0 0 W
|
||||
|
||||
this reduces some multiplications. It should be faster than mat4_mul.
|
||||
if you are not sure about matrix format then DON'T use this! use mat4_mul
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m1** affine matrix 1
|
||||
| *[in]* **m2** affine matrix 2
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_mul_rot(mat4 m1, mat4 m2, mat4 dest)
|
||||
|
||||
| this is similar to glm_mat4_mul but specialized to rotation matrix
|
||||
|
||||
Right Matrix format should be (left is free):
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
R R R 0
|
||||
R R R 0
|
||||
R R R 0
|
||||
0 0 0 1
|
||||
|
||||
this reduces some multiplications. It should be faster than mat4_mul.
|
||||
if you are not sure about matrix format then DON'T use this! use mat4_mul
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m1** affine matrix 1
|
||||
| *[in]* **m2** affine matrix 2
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_inv_tr(mat4 mat)
|
||||
|
||||
| inverse orthonormal rotation + translation matrix (ridig-body)
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
X = | R T | X' = | R' -R'T |
|
||||
| 0 1 | | 0 1 |
|
||||
|
||||
use this if you only have rotation + translation, this should work faster
|
||||
than :c:func:`glm_mat4_inv`
|
||||
|
||||
Don't use this if your matrix includes other things e.g. scale, shear...
|
||||
|
||||
Parameters:
|
||||
| *[in,out]* **mat** affine matrix
|
||||
343
docs/source/affine.rst
Normal file
343
docs/source/affine.rst
Normal file
@@ -0,0 +1,343 @@
|
||||
.. default-domain:: C
|
||||
|
||||
affine transforms
|
||||
================================================================================
|
||||
|
||||
Header: cglm/affine.h
|
||||
|
||||
Initialize Transform Matrices
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
Functions with **_make** prefix expect you don't have a matrix and they create
|
||||
a matrix for you. You don't need to pass identity matrix.
|
||||
|
||||
But other functions expect you have a matrix and you want to transform them. If
|
||||
you didn't have any existing matrix you have to initialize matrix to identity
|
||||
before sending to transfrom functions.
|
||||
|
||||
There are also functions to decompose transform matrix. These functions can't
|
||||
decompose matrix after projected.
|
||||
|
||||
Rotation Center
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Rotating functions uses origin as rotation center (pivot/anchor point),
|
||||
since scale factors are stored in rotation matrix, same may also true for scalling.
|
||||
cglm provides some functions for rotating around at given point e.g.
|
||||
**glm_rotate_at**, **glm_quat_rotate_at**. Use them or follow next section for algorihm ("Rotate or Scale around specific Point (Pivot Point / Anchor Point)").
|
||||
|
||||
Rotate or Scale around specific Point (Anchor Point)
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
If you want to rotate model around arbibtrary point follow these steps:
|
||||
|
||||
1. Move model from pivot point to origin: **translate(-pivot.x, -pivot.y, -pivot.z)**
|
||||
2. Apply rotation (or scaling maybe)
|
||||
3. Move model back from origin to pivot (reverse of step-1): **translate(pivot.x, pivot.y, pivot.z)**
|
||||
|
||||
**glm_rotate_at**, **glm_quat_rotate_at** and their helper functions works that way.
|
||||
|
||||
The implementation would be:
|
||||
|
||||
.. code-block:: c
|
||||
:linenos:
|
||||
|
||||
glm_translate(m, pivot);
|
||||
glm_rotate(m, angle, axis);
|
||||
glm_translate(m, pivotInv); /* pivotInv = -pivot */
|
||||
|
||||
Transforms Order
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
It is important to understand this part especially if you call transform
|
||||
functions multiple times
|
||||
|
||||
`glm_translate`, `glm_rotate`, `glm_scale` and `glm_quat_rotate` and their
|
||||
helpers functions works like this (cglm may provide reverse order too as alternative in the future):
|
||||
|
||||
.. code-block:: c
|
||||
:linenos:
|
||||
|
||||
TransformMatrix = TransformMatrix * TraslateMatrix; // glm_translate()
|
||||
TransformMatrix = TransformMatrix * RotateMatrix; // glm_rotate(), glm_quat_rotate()
|
||||
TransformMatrix = TransformMatrix * ScaleMatrix; // glm_scale()
|
||||
|
||||
As you can see it is multipled as right matrix. For instance what will happen if you call `glm_translate` twice?
|
||||
|
||||
.. code-block:: c
|
||||
:linenos:
|
||||
|
||||
glm_translate(transform, translate1); /* transform = transform * translate1 */
|
||||
glm_translate(transform, translate2); /* transform = transform * translate2 */
|
||||
glm_rotate(transform, angle, axis) /* transform = transform * rotation */
|
||||
|
||||
Now lets try to understand this:
|
||||
|
||||
1. You call translate using `translate1` and you expect it will be first transform
|
||||
because you call it first, do you?
|
||||
|
||||
Result will be **`transform = transform * translate1`**
|
||||
|
||||
2. Then you call translate using `translate2` and you expect it will be second transform?
|
||||
|
||||
Result will be **`transform = transform * translate2`**. Now lets expand transform,
|
||||
it was `transform * translate1` before second call.
|
||||
|
||||
Now it is **`transform = transform * translate1 * translate2`**, now do you understand what I say?
|
||||
|
||||
3. After last call transform will be:
|
||||
|
||||
**`transform = transform * translate1 * translate2 * rotation`**
|
||||
|
||||
The order will be; **rotation will be applied first**, then **translate2** then **translate1**
|
||||
|
||||
It is all about matrix multiplication order. It is similar to MVP matrix:
|
||||
`MVP = Projection * View * Model`, model will be applied first, then view then projection.
|
||||
|
||||
**Confused?**
|
||||
|
||||
In the end the last function call applied first in shaders.
|
||||
|
||||
As alternative way, you can create transform matrices individually then combine manually,
|
||||
but don't forget that `glm_translate`, `glm_rotate`, `glm_scale`... are optimized and should be faster (an smaller assembly output) than manual multiplication
|
||||
|
||||
.. code-block:: c
|
||||
:linenos:
|
||||
|
||||
mat4 transform1, transform2, transform3, finalTransform;
|
||||
|
||||
glm_translate_make(transform1, translate1);
|
||||
glm_translate_make(transform2, translate2);
|
||||
glm_rotate_make(transform3, angle, axis);
|
||||
|
||||
/* first apply transform1, then transform2, thentransform3 */
|
||||
glm_mat4_mulN((mat4 *[]){&transform3, &transform2, &transform1}, 3, finalTransform);
|
||||
|
||||
/* if you don't want to use mulN, same as above */
|
||||
glm_mat4_mul(transform3, transform2, finalTransform);
|
||||
glm_mat4_mul(finalTransform, transform1, finalTransform);
|
||||
|
||||
Now transform1 will be applied first, then transform2 then transform3
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_translate_to`
|
||||
#. :c:func:`glm_translate`
|
||||
#. :c:func:`glm_translate_x`
|
||||
#. :c:func:`glm_translate_y`
|
||||
#. :c:func:`glm_translate_z`
|
||||
#. :c:func:`glm_translate_make`
|
||||
#. :c:func:`glm_scale_to`
|
||||
#. :c:func:`glm_scale_make`
|
||||
#. :c:func:`glm_scale`
|
||||
#. :c:func:`glm_scale_uni`
|
||||
#. :c:func:`glm_rotate_x`
|
||||
#. :c:func:`glm_rotate_y`
|
||||
#. :c:func:`glm_rotate_z`
|
||||
#. :c:func:`glm_rotate_make`
|
||||
#. :c:func:`glm_rotate`
|
||||
#. :c:func:`glm_rotate_at`
|
||||
#. :c:func:`glm_rotate_atm`
|
||||
#. :c:func:`glm_decompose_scalev`
|
||||
#. :c:func:`glm_uniscaled`
|
||||
#. :c:func:`glm_decompose_rs`
|
||||
#. :c:func:`glm_decompose`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_translate_to(mat4 m, vec3 v, mat4 dest)
|
||||
|
||||
translate existing transform matrix by *v* vector and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transfrom
|
||||
| *[in]* **v** translate vector [x, y, z]
|
||||
| *[out]* **dest** translated matrix
|
||||
|
||||
.. c:function:: void glm_translate(mat4 m, vec3 v)
|
||||
|
||||
translate existing transform matrix by *v* vector
|
||||
and stores result in same matrix
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** translate vector [x, y, z]
|
||||
|
||||
.. c:function:: void glm_translate_x(mat4 m, float x)
|
||||
|
||||
translate existing transform matrix by x factor
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** x factor
|
||||
|
||||
.. c:function:: void glm_translate_y(mat4 m, float y)
|
||||
|
||||
translate existing transform matrix by *y* factor
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** y factor
|
||||
|
||||
.. c:function:: void glm_translate_z(mat4 m, float z)
|
||||
|
||||
translate existing transform matrix by *z* factor
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** z factor
|
||||
|
||||
.. c:function:: void glm_translate_make(mat4 m, vec3 v)
|
||||
|
||||
creates NEW translate transform matrix by *v* vector.
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** translate vector [x, y, z]
|
||||
|
||||
.. c:function:: void glm_scale_to(mat4 m, vec3 v, mat4 dest)
|
||||
|
||||
scale existing transform matrix by *v* vector and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transfrom
|
||||
| *[in]* **v** scale vector [x, y, z]
|
||||
| *[out]* **dest** scaled matrix
|
||||
|
||||
.. c:function:: void glm_scale_make(mat4 m, vec3 v)
|
||||
|
||||
creates NEW scale matrix by v vector
|
||||
|
||||
Parameters:
|
||||
| *[out]* **m** affine transfrom
|
||||
| *[in]* **v** scale vector [x, y, z]
|
||||
|
||||
.. c:function:: void glm_scale(mat4 m, vec3 v)
|
||||
|
||||
scales existing transform matrix by v vector
|
||||
and stores result in same matrix
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** scale vector [x, y, z]
|
||||
|
||||
.. c:function:: void glm_scale_uni(mat4 m, float s)
|
||||
|
||||
applies uniform scale to existing transform matrix v = [s, s, s]
|
||||
and stores result in same matrix
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **v** scale factor
|
||||
|
||||
.. c:function:: void glm_rotate_x(mat4 m, float angle, mat4 dest)
|
||||
|
||||
rotate existing transform matrix around X axis by angle
|
||||
and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transfrom
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[out]* **dest** rotated matrix
|
||||
|
||||
.. c:function:: void glm_rotate_y(mat4 m, float angle, mat4 dest)
|
||||
|
||||
rotate existing transform matrix around Y axis by angle
|
||||
and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transfrom
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[out]* **dest** rotated matrix
|
||||
|
||||
.. c:function:: void glm_rotate_z(mat4 m, float angle, mat4 dest)
|
||||
|
||||
rotate existing transform matrix around Z axis by angle
|
||||
and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transfrom
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[out]* **dest** rotated matrix
|
||||
|
||||
.. c:function:: void glm_rotate_make(mat4 m, float angle, vec3 axis)
|
||||
|
||||
creates NEW rotation matrix by angle and axis,
|
||||
axis will be normalized so you don't need to normalize it
|
||||
|
||||
Parameters:
|
||||
| *[out]* **m** affine transfrom
|
||||
| *[in]* **axis** angle (radians)
|
||||
| *[in]* **axis** axis
|
||||
|
||||
.. c:function:: void glm_rotate(mat4 m, float angle, vec3 axis)
|
||||
|
||||
rotate existing transform matrix around Z axis by angle and axis
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[in]* **axis** axis
|
||||
|
||||
.. c:function:: void glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis)
|
||||
|
||||
rotate existing transform around given axis by angle at given pivot point (rotation center)
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **pivot** pivot, anchor point, rotation center
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[in]* **axis** axis
|
||||
|
||||
.. c:function:: void glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis)
|
||||
|
||||
| creates NEW rotation matrix by angle and axis at given point
|
||||
| this creates rotation matrix, it assumes you don't have a matrix
|
||||
|
||||
| this should work faster than glm_rotate_at because it reduces one glm_translate.
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** affine transfrom
|
||||
| *[in]* **pivot** pivot, anchor point, rotation center
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[in]* **axis** axis
|
||||
|
||||
.. c:function:: void glm_decompose_scalev(mat4 m, vec3 s)
|
||||
|
||||
decompose scale vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transform
|
||||
| *[out]* **s** scale vector (Sx, Sy, Sz)
|
||||
|
||||
.. c:function:: bool glm_uniscaled(mat4 m)
|
||||
|
||||
returns true if matrix is uniform scaled.
|
||||
This is helpful for creating normal matrix.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** matrix
|
||||
|
||||
.. c:function:: void glm_decompose_rs(mat4 m, mat4 r, vec3 s)
|
||||
|
||||
decompose rotation matrix (mat4) and scale vector [Sx, Sy, Sz]
|
||||
DON'T pass projected matrix here
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transform
|
||||
| *[out]* **r** rotation matrix
|
||||
| *[out]* **s** scale matrix
|
||||
|
||||
.. c:function:: void glm_decompose(mat4 m, vec4 t, mat4 r, vec3 s)
|
||||
|
||||
decompose affine transform, TODO: extract shear factors.
|
||||
DON'T pass projected matrix here
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transfrom
|
||||
| *[out]* **t** translation vector
|
||||
| *[out]* **r** rotation matrix (mat4)
|
||||
| *[out]* **s** scaling vector [X, Y, Z]
|
||||
48
docs/source/api.rst
Normal file
48
docs/source/api.rst
Normal file
@@ -0,0 +1,48 @@
|
||||
API documentation
|
||||
================================
|
||||
|
||||
Some functions may exist twice,
|
||||
once for their namespace and once for global namespace
|
||||
to make easier to write very common functions
|
||||
|
||||
For instance, in general we use :code:`glm_vec3_dot` to get dot product
|
||||
of two **vec3**. Now we can also do this with :code:`glm_dot`,
|
||||
same for *_cross* and so on...
|
||||
|
||||
The original function stays where it is, the function in global namespace
|
||||
of same name is just an alias, so there is no call version of those functions.
|
||||
e.g there is no func like :code:`glmc_dot` because *glm_dot* is just alias for
|
||||
:code:`glm_vec3_dot`
|
||||
|
||||
By including **cglm/cglm.h** header you will include all inline version
|
||||
of functions. Since functions in this header[s] are inline you don't need to
|
||||
build or link *cglm* against your project.
|
||||
|
||||
But by including **cglm/call.h** header you will include all *non-inline*
|
||||
version of functions. You need to build *cglm* and link it.
|
||||
Follow the :doc:`build` documentation for this
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 1
|
||||
:caption: API categories:
|
||||
|
||||
affine
|
||||
affine-mat
|
||||
cam
|
||||
frustum
|
||||
box
|
||||
quat
|
||||
euler
|
||||
mat4
|
||||
mat3
|
||||
vec3
|
||||
vec3-ext
|
||||
vec4
|
||||
vec4-ext
|
||||
color
|
||||
plane
|
||||
project
|
||||
util
|
||||
io
|
||||
call
|
||||
sphere
|
||||
181
docs/source/box.rst
Normal file
181
docs/source/box.rst
Normal file
@@ -0,0 +1,181 @@
|
||||
.. default-domain:: C
|
||||
|
||||
axis aligned bounding box (AABB)
|
||||
================================================================================
|
||||
|
||||
Header: cglm/box.h
|
||||
|
||||
Some convenient functions provided for AABB.
|
||||
|
||||
**Definition of box:**
|
||||
|
||||
cglm defines box as two dimensional array of vec3.
|
||||
The first element is **min** point and the second one is **max** point.
|
||||
If you have another type e.g. struct or even another representation then you must
|
||||
convert it before and after call cglm box function.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_aabb_transform`
|
||||
#. :c:func:`glm_aabb_merge`
|
||||
#. :c:func:`glm_aabb_crop`
|
||||
#. :c:func:`glm_aabb_crop_until`
|
||||
#. :c:func:`glm_aabb_frustum`
|
||||
#. :c:func:`glm_aabb_invalidate`
|
||||
#. :c:func:`glm_aabb_isvalid`
|
||||
#. :c:func:`glm_aabb_size`
|
||||
#. :c:func:`glm_aabb_radius`
|
||||
#. :c:func:`glm_aabb_center`
|
||||
#. :c:func:`glm_aabb_aabb`
|
||||
#. :c:func:`glm_aabb_sphere`
|
||||
#. :c:func:`glm_aabb_point`
|
||||
#. :c:func:`glm_aabb_contains`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2])
|
||||
|
||||
| apply transform to Axis-Aligned Bounding Box
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
| *[in]* **m** transform matrix
|
||||
| *[out]* **dest** transformed bounding box
|
||||
|
||||
.. c:function:: void glm_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2])
|
||||
|
||||
| merges two AABB bounding box and creates new one
|
||||
|
||||
two box must be in same space, if one of box is in different space then
|
||||
you should consider to convert it's space by glm_box_space
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box1** bounding box 1
|
||||
| *[in]* **box2** bounding box 2
|
||||
| *[out]* **dest** merged bounding box
|
||||
|
||||
.. c:function:: void glm_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2])
|
||||
|
||||
| crops a bounding box with another one.
|
||||
|
||||
this could be useful for gettng a bbox which fits with view frustum and
|
||||
object bounding boxes. In this case you crop view frustum box with objects
|
||||
box
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box 1
|
||||
| *[in]* **cropBox** crop box
|
||||
| *[out]* **dest** cropped bounding box
|
||||
|
||||
.. c:function:: void glm_aabb_crop_until(vec3 box[2], vec3 cropBox[2], vec3 clampBox[2], vec3 dest[2])
|
||||
|
||||
| crops a bounding box with another one.
|
||||
|
||||
this could be useful for gettng a bbox which fits with view frustum and
|
||||
object bounding boxes. In this case you crop view frustum box with objects
|
||||
box
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
| *[in]* **cropBox** crop box
|
||||
| *[in]* **clampBox** miniumum box
|
||||
| *[out]* **dest** cropped bounding box
|
||||
|
||||
.. c:function:: bool glm_aabb_frustum(vec3 box[2], vec4 planes[6])
|
||||
|
||||
| check if AABB intersects with frustum planes
|
||||
|
||||
this could be useful for frustum culling using AABB.
|
||||
|
||||
OPTIMIZATION HINT:
|
||||
if planes order is similar to LEFT, RIGHT, BOTTOM, TOP, NEAR, FAR
|
||||
then this method should run even faster because it would only use two
|
||||
planes if object is not inside the two planes
|
||||
fortunately cglm extracts planes as this order! just pass what you got!
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
| *[out]* **planes** frustum planes
|
||||
|
||||
.. c:function:: void glm_aabb_invalidate(vec3 box[2])
|
||||
|
||||
| invalidate AABB min and max values
|
||||
|
||||
| It fills *max* values with -FLT_MAX and *min* values with +FLT_MAX
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **box** bounding box
|
||||
|
||||
.. c:function:: bool glm_aabb_isvalid(vec3 box[2])
|
||||
|
||||
| check if AABB is valid or not
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
|
||||
Returns:
|
||||
returns true if aabb is valid otherwise false
|
||||
|
||||
.. c:function:: float glm_aabb_size(vec3 box[2])
|
||||
|
||||
| distance between of min and max
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
|
||||
Returns:
|
||||
distance between min - max
|
||||
|
||||
.. c:function:: float glm_aabb_radius(vec3 box[2])
|
||||
|
||||
| radius of sphere which surrounds AABB
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
|
||||
.. c:function:: void glm_aabb_center(vec3 box[2], vec3 dest)
|
||||
|
||||
| computes center point of AABB
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
| *[out]* **dest** center of bounding box
|
||||
|
||||
.. c:function:: bool glm_aabb_aabb(vec3 box[2], vec3 other[2])
|
||||
|
||||
| check if two AABB intersects
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
| *[out]* **other** other bounding box
|
||||
|
||||
.. c:function:: bool glm_aabb_sphere(vec3 box[2], vec4 s)
|
||||
|
||||
| check if AABB intersects with sphere
|
||||
|
||||
| https://github.com/erich666/GraphicsGems/blob/master/gems/BoxSphere.c
|
||||
| Solid Box - Solid Sphere test.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** solid bounding box
|
||||
| *[out]* **s** solid sphere
|
||||
|
||||
.. c:function:: bool glm_aabb_point(vec3 box[2], vec3 point)
|
||||
|
||||
| check if point is inside of AABB
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
| *[out]* **point** point
|
||||
|
||||
.. c:function:: bool glm_aabb_contains(vec3 box[2], vec3 other[2])
|
||||
|
||||
| check if AABB contains other AABB
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** bounding box
|
||||
| *[out]* **other** other bounding box
|
||||
19
docs/source/call.rst
Normal file
19
docs/source/call.rst
Normal file
@@ -0,0 +1,19 @@
|
||||
.. default-domain:: C
|
||||
|
||||
precompiled functions (call)
|
||||
================================================================================
|
||||
|
||||
All funcitons in **glm_** namespace are forced to **inline**.
|
||||
Most functions also have pre-compiled version.
|
||||
|
||||
Precompiled versions are in **glmc_** namespace. *c* in the namespace stands for
|
||||
"call".
|
||||
|
||||
Since precompiled functions are just wrapper for inline verisons,
|
||||
these functions are not documented individually.
|
||||
It would be duplicate documentation also it
|
||||
would be hard to sync documentation between inline and call verison for me.
|
||||
|
||||
By including **clgm/cglm.h** you include all inline verisons. To get precompiled
|
||||
versions you need to include **cglm/call.h** header it also includes all
|
||||
call versions plus *clgm/cglm.h* (inline verisons)
|
||||
313
docs/source/cam.rst
Normal file
313
docs/source/cam.rst
Normal file
@@ -0,0 +1,313 @@
|
||||
.. default-domain:: C
|
||||
|
||||
camera
|
||||
======
|
||||
|
||||
Header: cglm/cam.h
|
||||
|
||||
There are many convenient functions for camera. For instance :c:func:`glm_look`
|
||||
is just wrapper for :c:func:`glm_lookat`. Sometimes you only have direction
|
||||
instead of target, so that makes easy to build view matrix using direction.
|
||||
There is also :c:func:`glm_look_anyup` function which can help build view matrix
|
||||
without providing UP axis. It uses :c:func:`glm_vec3_ortho` to get a UP axis and
|
||||
builds view matrix.
|
||||
|
||||
You can also *_default* versions of ortho and perspective to build projection
|
||||
fast if you don't care specific projection values.
|
||||
|
||||
*_decomp* means decompose; these function can help to decompose projection
|
||||
matrices.
|
||||
|
||||
**NOTE**: Be careful when working with high range (very small near, very large
|
||||
far) projection matrices. You may not get exact value you gave.
|
||||
**float** type cannot store very high precision so you will lose precision.
|
||||
Also your projection matrix will be inaccurate due to losing precision
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_frustum`
|
||||
#. :c:func:`glm_ortho`
|
||||
#. :c:func:`glm_ortho_aabb`
|
||||
#. :c:func:`glm_ortho_aabb_p`
|
||||
#. :c:func:`glm_ortho_aabb_pz`
|
||||
#. :c:func:`glm_ortho_default`
|
||||
#. :c:func:`glm_ortho_default_s`
|
||||
#. :c:func:`glm_perspective`
|
||||
#. :c:func:`glm_persp_move_far`
|
||||
#. :c:func:`glm_perspective_default`
|
||||
#. :c:func:`glm_perspective_resize`
|
||||
#. :c:func:`glm_lookat`
|
||||
#. :c:func:`glm_look`
|
||||
#. :c:func:`glm_look_anyup`
|
||||
#. :c:func:`glm_persp_decomp`
|
||||
#. :c:func:`glm_persp_decompv`
|
||||
#. :c:func:`glm_persp_decomp_x`
|
||||
#. :c:func:`glm_persp_decomp_y`
|
||||
#. :c:func:`glm_persp_decomp_z`
|
||||
#. :c:func:`glm_persp_decomp_far`
|
||||
#. :c:func:`glm_persp_decomp_near`
|
||||
#. :c:func:`glm_persp_fovy`
|
||||
#. :c:func:`glm_persp_aspect`
|
||||
#. :c:func:`glm_persp_sizes`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_frustum(float left, float right, float bottom, float top, float nearVal, float farVal, mat4 dest)
|
||||
|
||||
| set up perspective peprojection matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **left** viewport.left
|
||||
| *[in]* **right** viewport.right
|
||||
| *[in]* **bottom** viewport.bottom
|
||||
| *[in]* **top** viewport.top
|
||||
| *[in]* **nearVal** near clipping plane
|
||||
| *[in]* **farVal** far clipping plane
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_ortho(float left, float right, float bottom, float top, float nearVal, float farVal, mat4 dest)
|
||||
|
||||
| set up orthographic projection matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **left** viewport.left
|
||||
| *[in]* **right** viewport.right
|
||||
| *[in]* **bottom** viewport.bottom
|
||||
| *[in]* **top** viewport.top
|
||||
| *[in]* **nearVal** near clipping plane
|
||||
| *[in]* **farVal** far clipping plane
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_ortho_aabb(vec3 box[2], mat4 dest)
|
||||
|
||||
| set up orthographic projection matrix using bounding box
|
||||
| bounding box (AABB) must be in view space
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** AABB
|
||||
| *[in]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest)
|
||||
|
||||
| set up orthographic projection matrix using bounding box
|
||||
| bounding box (AABB) must be in view space
|
||||
|
||||
this version adds padding to box
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** AABB
|
||||
| *[in]* **padding** padding
|
||||
| *[out]* **d** result matrix
|
||||
|
||||
.. c:function:: void glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest)
|
||||
|
||||
| set up orthographic projection matrix using bounding box
|
||||
| bounding box (AABB) must be in view space
|
||||
|
||||
this version adds Z padding to box
|
||||
|
||||
Parameters:
|
||||
| *[in]* **box** AABB
|
||||
| *[in]* **padding** padding for near and far
|
||||
| *[out]* **d** result matrix
|
||||
|
||||
Returns:
|
||||
square of norm / magnitude
|
||||
|
||||
.. c:function:: void glm_ortho_default(float aspect, mat4 dest)
|
||||
|
||||
| set up unit orthographic projection matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **aspect** aspect ration ( width / height )
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_ortho_default_s(float aspect, float size, mat4 dest)
|
||||
|
||||
| set up orthographic projection matrix with given CUBE size
|
||||
|
||||
Parameters:
|
||||
| *[in]* **aspect** aspect ration ( width / height )
|
||||
| *[in]* **size** cube size
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_perspective(float fovy, float aspect, float nearVal, float farVal, mat4 dest)
|
||||
|
||||
| set up perspective projection matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **fovy** field of view angle
|
||||
| *[in]* **aspect** aspect ratio ( width / height )
|
||||
| *[in]* **nearVal** near clipping plane
|
||||
| *[in]* **farVal** far clipping planes
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_persp_move_far(mat4 proj, float deltaFar)
|
||||
|
||||
| extend perspective projection matrix's far distance
|
||||
|
||||
| this function does not guarantee far >= near, be aware of that!
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **proj** projection matrix to extend
|
||||
| *[in]* **deltaFar** distance from existing far (negative to shink)
|
||||
|
||||
.. c:function:: void glm_perspective_default(float aspect, mat4 dest)
|
||||
|
||||
| set up perspective projection matrix with default near/far
|
||||
and angle values
|
||||
|
||||
Parameters:
|
||||
| *[in]* **aspect** aspect aspect ratio ( width / height )
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_perspective_resize(float aspect, mat4 proj)
|
||||
|
||||
| resize perspective matrix by aspect ratio ( width / height )
|
||||
this makes very easy to resize proj matrix when window / viewport reized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **aspect** aspect ratio ( width / height )
|
||||
| *[in, out]* **proj** perspective projection matrix
|
||||
|
||||
.. c:function:: void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest)
|
||||
|
||||
| set up view matrix
|
||||
|
||||
**NOTE:** The UP vector must not be parallel to the line of sight from the eye point to the reference point.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **eye** eye vector
|
||||
| *[in]* **center** center vector
|
||||
| *[in]* **up** up vector
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest)
|
||||
|
||||
| set up view matrix
|
||||
|
||||
convenient wrapper for :c:func:`glm_lookat`: if you only have direction not
|
||||
target self then this might be useful. Because you need to get target
|
||||
from direction.
|
||||
|
||||
**NOTE:** The UP vector must not be parallel to the line of sight from the eye point to the reference point.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **eye** eye vector
|
||||
| *[in]* **center** direction vector
|
||||
| *[in]* **up** up vector
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_look_anyup(vec3 eye, vec3 dir, mat4 dest)
|
||||
|
||||
| set up view matrix
|
||||
|
||||
convenient wrapper for :c:func:`glm_look` if you only have direction
|
||||
and if you don't care what UP vector is then this might be useful
|
||||
to create view matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **eye** eye vector
|
||||
| *[in]* **center** direction vector
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_persp_decomp(mat4 proj, float *nearVal, float *farVal, float *top, float *bottom, float *left, float *right)
|
||||
|
||||
| decomposes frustum values of perspective projection.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **eye** perspective projection matrix
|
||||
| *[out]* **nearVal** near
|
||||
| *[out]* **farVal** far
|
||||
| *[out]* **top** top
|
||||
| *[out]* **bottom** bottom
|
||||
| *[out]* **left** left
|
||||
| *[out]* **right** right
|
||||
|
||||
.. c:function:: void glm_persp_decompv(mat4 proj, float dest[6])
|
||||
|
||||
| decomposes frustum values of perspective projection.
|
||||
| this makes easy to get all values at once
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[out]* **dest** array
|
||||
|
||||
.. c:function:: void glm_persp_decomp_x(mat4 proj, float *left, float *right)
|
||||
|
||||
| decomposes left and right values of perspective projection.
|
||||
| x stands for x axis (left / right axis)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[out]* **left** left
|
||||
| *[out]* **right** right
|
||||
|
||||
.. c:function:: void glm_persp_decomp_y(mat4 proj, float *top, float *bottom)
|
||||
|
||||
| decomposes top and bottom values of perspective projection.
|
||||
| y stands for y axis (top / botom axis)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[out]* **top** top
|
||||
| *[out]* **bottom** bottom
|
||||
|
||||
.. c:function:: void glm_persp_decomp_z(mat4 proj, float *nearVal, float *farVal)
|
||||
|
||||
| decomposes near and far values of perspective projection.
|
||||
| z stands for z axis (near / far axis)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[out]* **nearVal** near
|
||||
| *[out]* **farVal** far
|
||||
|
||||
.. c:function:: void glm_persp_decomp_far(mat4 proj, float * __restrict farVal)
|
||||
|
||||
| decomposes far value of perspective projection.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[out]* **farVal** far
|
||||
|
||||
.. c:function:: void glm_persp_decomp_near(mat4 proj, float * __restrict nearVal)
|
||||
|
||||
| decomposes near value of perspective projection.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[out]* **nearVal** near
|
||||
|
||||
.. c:function:: float glm_persp_fovy(mat4 proj)
|
||||
|
||||
| returns field of view angle along the Y-axis (in radians)
|
||||
|
||||
if you need to degrees, use glm_deg to convert it or use this:
|
||||
fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
|
||||
Returns:
|
||||
| fovy in radians
|
||||
|
||||
.. c:function:: float glm_persp_aspect(mat4 proj)
|
||||
|
||||
| returns aspect ratio of perspective projection
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
|
||||
.. c:function:: void glm_persp_sizes(mat4 proj, float fovy, vec4 dest)
|
||||
|
||||
| returns sizes of near and far planes of perspective projection
|
||||
|
||||
Parameters:
|
||||
| *[in]* **proj** perspective projection matrix
|
||||
| *[in]* **fovy** fovy (see brief)
|
||||
| *[out]* **dest** sizes order: [Wnear, Hnear, Wfar, Hfar]
|
||||
BIN
docs/source/cglm-intro.png
Normal file
BIN
docs/source/cglm-intro.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 72 KiB |
34
docs/source/color.rst
Normal file
34
docs/source/color.rst
Normal file
@@ -0,0 +1,34 @@
|
||||
.. default-domain:: C
|
||||
|
||||
color
|
||||
================================================================================
|
||||
|
||||
Header: cglm/color.h
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_luminance`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: float glm_luminance(vec3 rgb)
|
||||
|
||||
| averages the color channels into one value
|
||||
|
||||
This function uses formula in COLLADA 1.5 spec which is
|
||||
|
||||
.. code-block:: text
|
||||
|
||||
luminance = (color.r * 0.212671) +
|
||||
(color.g * 0.715160) +
|
||||
(color.b * 0.072169)
|
||||
|
||||
It is based on the ISO/CIE color standards (see ITU-R Recommendation BT.709-4),
|
||||
that averages the color channels into one value
|
||||
|
||||
Parameters:
|
||||
| *[in]* **rgb** RGB color
|
||||
@@ -30,7 +30,15 @@
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = []
|
||||
extensions = [
|
||||
'sphinx.ext.doctest',
|
||||
'sphinx.ext.todo',
|
||||
'sphinx.ext.coverage',
|
||||
'sphinx.ext.mathjax',
|
||||
'sphinx.ext.ifconfig',
|
||||
'sphinx.ext.viewcode',
|
||||
'sphinx.ext.githubpages'
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
@@ -54,9 +62,9 @@ author = u'Recep Aslantas'
|
||||
# built documents.
|
||||
#
|
||||
# The short X.Y version.
|
||||
version = u'0.2.1'
|
||||
version = u'0.5.2'
|
||||
# The full version, including alpha/beta/rc tags.
|
||||
release = u'0.2.1'
|
||||
release = u'0.5.2'
|
||||
|
||||
# The language for content autogenerated by Sphinx. Refer to documentation
|
||||
# for a list of supported languages.
|
||||
@@ -161,3 +169,31 @@ texinfo_documents = [
|
||||
author, 'cglm', 'One line description of project.',
|
||||
'Miscellaneous'),
|
||||
]
|
||||
|
||||
# -- Options for Epub output -------------------------------------------------
|
||||
|
||||
# Bibliographic Dublin Core info.
|
||||
epub_title = project
|
||||
epub_author = author
|
||||
epub_publisher = author
|
||||
epub_copyright = copyright
|
||||
|
||||
# The unique identifier of the text. This can be a ISBN number
|
||||
# or the project homepage.
|
||||
#
|
||||
# epub_identifier = ''
|
||||
|
||||
# A unique identification for the text.
|
||||
#
|
||||
# epub_uid = ''
|
||||
|
||||
# A list of files that should not be packed into the epub file.
|
||||
epub_exclude_files = ['search.html']
|
||||
|
||||
|
||||
# -- Extension configuration -------------------------------------------------
|
||||
|
||||
# -- Options for todo extension ----------------------------------------------
|
||||
|
||||
# If true, `todo` and `todoList` produce output, else they produce nothing.
|
||||
todo_include_todos = True
|
||||
|
||||
182
docs/source/euler.rst
Normal file
182
docs/source/euler.rst
Normal file
@@ -0,0 +1,182 @@
|
||||
.. default-domain:: C
|
||||
|
||||
euler angles
|
||||
============
|
||||
|
||||
Header: cglm/euler.h
|
||||
|
||||
You may wonder what **glm_euler_sq** type ( **_sq** stands for sequence ) and
|
||||
:c:func:`glm_euler_by_order` do.
|
||||
I used them to convert euler angles in one coordinate system to another. For
|
||||
instance if you have **Z_UP** euler angles and if you want to convert it
|
||||
to **Y_UP** axis then :c:func:`glm_euler_by_order` is your friend. For more
|
||||
information check :c:func:`glm_euler_order` documentation
|
||||
|
||||
You must pass arrays as array, if you use C compiler then you can use something
|
||||
like this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
float pitch, yaw, roll;
|
||||
mat4 rot;
|
||||
|
||||
/* pitch = ...; yaw = ...; roll = ... */
|
||||
glm_euler((vec3){pitch, yaw, roll}, rot);
|
||||
|
||||
Rotation Conveniention
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
Current *cglm*'s euler functions uses these convention:
|
||||
|
||||
* Tait–Bryan angles (x-y-z convention)
|
||||
* Intrinsic rotations (pitch, yaw and roll).
|
||||
This is reserve order of extrinsic (elevation, heading and bank) rotation
|
||||
* Right hand rule (actually all rotations in *cglm* use **RH**)
|
||||
* All angles used in *cglm* are **RADIANS** not degrees
|
||||
|
||||
|
||||
**NOTE**: The default :c:func:`glm_euler` function is the short name of
|
||||
:c:func:`glm_euler_xyz` this is why you can't see :c:func:`glm_euler_xyz`.
|
||||
When you see an euler function which doesn't have any X, Y, Z suffix then
|
||||
assume that uses **_xyz** (or instead it accept order as parameter).
|
||||
|
||||
If rotation doesn't work properly, your options:
|
||||
|
||||
1. If you use (or paste) degrees convert it to radians before calling an euler function
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
float pitch, yaw, roll;
|
||||
mat4 rot;
|
||||
|
||||
/* pitch = degrees; yaw = degrees; roll = degrees */
|
||||
glm_euler((vec3){glm_rad(pitch), glm_rad(yaw), glm_rad(roll)}, rot);
|
||||
|
||||
2. Convention mismatch. You may have extrinsic angles,
|
||||
if you do (if you must) then consider to use reverse order e.g if you have
|
||||
**xyz** extrinsic then use **zyx**
|
||||
|
||||
3. *cglm* may implemented it wrong, consider to create an issue to report it
|
||||
or pull request to fix it
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Types:
|
||||
|
||||
1. glm_euler_sq
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_euler_order`
|
||||
#. :c:func:`glm_euler_angles`
|
||||
#. :c:func:`glm_euler`
|
||||
#. :c:func:`glm_euler_xyz`
|
||||
#. :c:func:`glm_euler_zyx`
|
||||
#. :c:func:`glm_euler_zxy`
|
||||
#. :c:func:`glm_euler_xzy`
|
||||
#. :c:func:`glm_euler_yzx`
|
||||
#. :c:func:`glm_euler_yxz`
|
||||
#. :c:func:`glm_euler_by_order`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: glm_euler_sq glm_euler_order(int ord[3])
|
||||
|
||||
| packs euler angles order to glm_euler_sq enum.
|
||||
|
||||
To use :c:func:`glm_euler_by_order` function you need *glm_euler_sq*. You
|
||||
can get it with this function.
|
||||
|
||||
You can build param like this:
|
||||
|
||||
| X = 0, Y = 1, Z = 2
|
||||
|
||||
if you have ZYX order then you pass this: [2, 1, 0] = ZYX.
|
||||
if you have YXZ order then you pass this: [1, 0, 2] = YXZ
|
||||
|
||||
As you can see first item specifies which axis will be first then the
|
||||
second one specifies which one will be next an so on.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **ord** euler angles order [Angle1, Angle2, Angle2]
|
||||
|
||||
Returns:
|
||||
packed euler order
|
||||
|
||||
.. c:function:: void glm_euler_angles(mat4 m, vec3 dest)
|
||||
|
||||
| extract euler angles (in radians) using xyz order
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine transform
|
||||
| *[out]* **dest** angles vector [x, y, z]
|
||||
|
||||
.. c:function:: void glm_euler(vec3 angles, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles
|
||||
|
||||
this is alias of glm_euler_xyz function
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_xyz(vec3 angles, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_zyx(vec3 angles, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_zxy(vec3 angles, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_xzy(vec3 angles, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_yzx(vec3 angles, mat4 dest)
|
||||
|
||||
build rotation matrix from euler angles
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_yxz(vec3 angles, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **dest** rotation matrix
|
||||
|
||||
.. c:function:: void glm_euler_by_order(vec3 angles, glm_euler_sq ord, mat4 dest)
|
||||
|
||||
| build rotation matrix from euler angles with given euler order.
|
||||
|
||||
Use :c:func:`glm_euler_order` function to build *ord* parameter
|
||||
|
||||
Parameters:
|
||||
| *[in]* **angles** angles as vector [Xangle, Yangle, Zangle]
|
||||
| *[in]* **ord** euler order
|
||||
| *[in]* **dest** rotation matrix
|
||||
168
docs/source/frustum.rst
Normal file
168
docs/source/frustum.rst
Normal file
@@ -0,0 +1,168 @@
|
||||
.. default-domain:: C
|
||||
|
||||
frustum
|
||||
=============
|
||||
|
||||
Header: cglm/frustum.h
|
||||
|
||||
cglm provides convenient functions to extract frustum planes, corners...
|
||||
All extracted corners are **vec4** so you must create array of **vec4**
|
||||
not **vec3**. If you want to store them to save space you msut convert them
|
||||
yourself.
|
||||
|
||||
**vec4** is used to speed up functions need to corners. This is why frustum
|
||||
fucntions use *vec4* instead of *vec3*
|
||||
|
||||
Currenty related-functions use [-1, 1] clip space configuration to extract
|
||||
corners but you can override it by prodiving **GLM_CUSTOM_CLIPSPACE** macro.
|
||||
If you provide it then you have to all bottom macros as *vec4*
|
||||
|
||||
Current configuration:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
/* near */
|
||||
GLM_CSCOORD_LBN {-1.0f, -1.0f, -1.0f, 1.0f}
|
||||
GLM_CSCOORD_LTN {-1.0f, 1.0f, -1.0f, 1.0f}
|
||||
GLM_CSCOORD_RTN { 1.0f, 1.0f, -1.0f, 1.0f}
|
||||
GLM_CSCOORD_RBN { 1.0f, -1.0f, -1.0f, 1.0f}
|
||||
|
||||
/* far */
|
||||
GLM_CSCOORD_LBF {-1.0f, -1.0f, 1.0f, 1.0f}
|
||||
GLM_CSCOORD_LTF {-1.0f, 1.0f, 1.0f, 1.0f}
|
||||
GLM_CSCOORD_RTF { 1.0f, 1.0f, 1.0f, 1.0f}
|
||||
GLM_CSCOORD_RBF { 1.0f, -1.0f, 1.0f, 1.0f}
|
||||
|
||||
|
||||
Explain of short names:
|
||||
* **LBN**: left bottom near
|
||||
* **LTN**: left top near
|
||||
* **RTN**: right top near
|
||||
* **RBN**: right bottom near
|
||||
* **LBF**: left bottom far
|
||||
* **LTF**: left top far
|
||||
* **RTF**: right top far
|
||||
* **RBF**: right bottom far
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Macros:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
GLM_LBN 0 /* left bottom near */
|
||||
GLM_LTN 1 /* left top near */
|
||||
GLM_RTN 2 /* right top near */
|
||||
GLM_RBN 3 /* right bottom near */
|
||||
|
||||
GLM_LBF 4 /* left bottom far */
|
||||
GLM_LTF 5 /* left top far */
|
||||
GLM_RTF 6 /* right top far */
|
||||
GLM_RBF 7 /* right bottom far */
|
||||
|
||||
GLM_LEFT 0
|
||||
GLM_RIGHT 1
|
||||
GLM_BOTTOM 2
|
||||
GLM_TOP 3
|
||||
GLM_NEAR 4
|
||||
GLM_FAR 5
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_frustum_planes`
|
||||
#. :c:func:`glm_frustum_corners`
|
||||
#. :c:func:`glm_frustum_center`
|
||||
#. :c:func:`glm_frustum_box`
|
||||
#. :c:func:`glm_frustum_corners_at`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_frustum_planes(mat4 m, vec4 dest[6])
|
||||
|
||||
| extracts view frustum planes
|
||||
|
||||
planes' space:
|
||||
- if m = proj: View Space
|
||||
- if m = viewProj: World Space
|
||||
- if m = MVP: Object Space
|
||||
|
||||
You probably want to extract planes in world space so use viewProj as m
|
||||
Computing viewProj:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
glm_mat4_mul(proj, view, viewProj);
|
||||
|
||||
Exracted planes order: [left, right, bottom, top, near, far]
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** matrix
|
||||
| *[out]* **dest** exracted view frustum planes
|
||||
|
||||
.. c:function:: void glm_frustum_corners(mat4 invMat, vec4 dest[8])
|
||||
|
||||
| extracts view frustum corners using clip-space coordinates
|
||||
|
||||
corners' space:
|
||||
- if m = invViewProj: World Space
|
||||
- if m = invMVP: Object Space
|
||||
|
||||
You probably want to extract corners in world space so use **invViewProj**
|
||||
Computing invViewProj:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
glm_mat4_mul(proj, view, viewProj);
|
||||
...
|
||||
glm_mat4_inv(viewProj, invViewProj);
|
||||
|
||||
if you have a near coord at **i** index,
|
||||
you can get it's far coord by i + 4;
|
||||
follow example below to understand that
|
||||
|
||||
For instance to find center coordinates between a near and its far coord:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
for (j = 0; j < 4; j++) {
|
||||
glm_vec3_center(corners[i], corners[i + 4], centerCorners[i]);
|
||||
}
|
||||
|
||||
corners[i + 4] is far of corners[i] point.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **invMat** matrix
|
||||
| *[out]* **dest** exracted view frustum corners
|
||||
|
||||
.. c:function:: void glm_frustum_center(vec4 corners[8], vec4 dest)
|
||||
|
||||
| finds center of view frustum
|
||||
|
||||
Parameters:
|
||||
| *[in]* **corners** view frustum corners
|
||||
| *[out]* **dest** view frustum center
|
||||
|
||||
.. c:function:: void glm_frustum_box(vec4 corners[8], mat4 m, vec3 box[2])
|
||||
|
||||
| finds bounding box of frustum relative to given matrix e.g. view mat
|
||||
|
||||
Parameters:
|
||||
| *[in]* **corners** view frustum corners
|
||||
| *[in]* **m** matrix to convert existing conners
|
||||
| *[out]* **box** bounding box as array [min, max]
|
||||
|
||||
.. c:function:: void glm_frustum_corners_at(vec4 corners[8], float splitDist, float farDist, vec4 planeCorners[4])
|
||||
|
||||
| finds planes corners which is between near and far planes (parallel)
|
||||
|
||||
this will be helpful if you want to split a frustum e.g. CSM/PSSM. This will
|
||||
find planes' corners but you will need to one more plane.
|
||||
Actually you have it, it is near, far or created previously with this func ;)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **corners** frustum corners
|
||||
| *[in]* **splitDist** split distance
|
||||
| *[in]* **farDist** far distance (zFar)
|
||||
| *[out]* **planeCorners** plane corners [LB, LT, RT, RB]
|
||||
@@ -1,6 +1,9 @@
|
||||
Getting Started
|
||||
================================
|
||||
|
||||
Types:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
**cglm** uses **glm** prefix for all functions e.g. glm_lookat. You can see supported types in common header file:
|
||||
|
||||
.. code-block:: c
|
||||
@@ -18,23 +21,57 @@ Getting Started
|
||||
As you can see types don't store extra informations in favor of space.
|
||||
You can send these values e.g. matrix to OpenGL directly without casting or calling a function like *value_ptr*
|
||||
|
||||
*vec4* and *mat4* requires 16 byte aligment because vec4 and mat4 operations are
|
||||
Alignment is Required:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
**vec4** and **mat4** requires 16 byte alignment because vec4 and mat4 operations are
|
||||
vectorized by SIMD instructions (SSE/AVX).
|
||||
|
||||
**UPDATE:**
|
||||
By starting v0.4.5 cglm provides an option to disable alignment requirement, it is enabled as default
|
||||
|
||||
| Check :doc:`opt` page for more details
|
||||
|
||||
Also alignment is disabled for older msvc verisons as default. Now alignment is only required in Visual Studio 2017 version 15.6+ if CGLM_ALL_UNALIGNED macro is not defined.
|
||||
|
||||
Allocations:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
*cglm* doesn't alloc any memory on heap. So it doesn't provide any allocator.
|
||||
You must allocate memory yourself. You should alloc memory for out parameters too if you pass pointer of memory location.
|
||||
When allocating memory don't forget that **vec4** and **mat4** requires alignment.
|
||||
|
||||
**NOTE:** Unaligned vec4 and unaligned mat4 operations will be supported in the future. Check todo list.
|
||||
Because you may want to multiply a CGLM matrix with external matrix.
|
||||
There is no guarantee that non-CGLM matrix is aligned. Unaligned types will have *u* prefix e.g. **umat4**
|
||||
|
||||
Array vs Struct:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
*cglm* uses arrays for vector and matrix types. So you can't access individual
|
||||
elements like vec.x, vec.y, vec.z... You must use subscript to access vector elements
|
||||
e.g. vec[0], vec[1], vec[2].
|
||||
|
||||
Also I think it is more meaningful to access matrix elements with subscript
|
||||
e.g **matrix[2][3]** instead of **matrix._23**. Since matrix is array of vectors,
|
||||
vectors are also defined as array. This makes types homogeneous.
|
||||
|
||||
**Return arrays?**
|
||||
|
||||
Since C doesn't support return arrays, cglm also doesn't support this feature.
|
||||
|
||||
Function design:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. image:: cglm-intro.png
|
||||
:width: 492px
|
||||
:height: 297px
|
||||
:align: center
|
||||
|
||||
cglm provides a few way to call a function to do same operation.
|
||||
|
||||
* Inline - *glm_, glm_u*
|
||||
* aligned
|
||||
* unaligned (todo)
|
||||
* Pre-compiled - *glmc_, glmc_u*
|
||||
* aligned
|
||||
* unaligned (todo)
|
||||
|
||||
For instance **glm_mat4_mul** is inline (all *glm_* functions are inline), to make it non-inline (pre-compiled)
|
||||
For instance **glm_mat4_mul** is inline (all *glm_* functions are inline), to make it non-inline (pre-compiled),
|
||||
call it as **glmc_mat4_mul** from library, to use unaligned version use **glm_umat4_mul** (todo).
|
||||
|
||||
Most functions have **dest** parameter for output. For instance mat4_mul func looks like this:
|
||||
|
||||
@@ -9,7 +9,7 @@ Welcome to cglm's documentation!
|
||||
**cglm** is optimized 3D math library written in C99 (compatible with C89).
|
||||
It is similar to original **glm** library except this is mainly for **C**
|
||||
|
||||
This library stores matrices as row-major order but in the future column-major
|
||||
This library stores matrices as column-major order but in the future row-major
|
||||
is considered to be supported as optional.
|
||||
|
||||
Also currently only **float** type is supported for most operations.
|
||||
@@ -28,14 +28,20 @@ Also currently only **float** type is supported for most operations.
|
||||
* euler angles / yaw-pitch-roll to matrix
|
||||
* extract euler angles
|
||||
* inline or pre-compiled function call
|
||||
* more features (todo)
|
||||
* frustum (extract view frustum planes, corners...)
|
||||
* bounding box (AABB in Frustum (culling), crop, merge...)
|
||||
|
||||
|
||||
.. toctree::
|
||||
:maxdepth: 2
|
||||
:maxdepth: 1
|
||||
:caption: Table Of Contents:
|
||||
|
||||
build
|
||||
getting_started
|
||||
opengl
|
||||
api
|
||||
opt
|
||||
troubleshooting
|
||||
|
||||
Indices and tables
|
||||
==================
|
||||
|
||||
102
docs/source/io.rst
Normal file
102
docs/source/io.rst
Normal file
@@ -0,0 +1,102 @@
|
||||
.. default-domain:: C
|
||||
|
||||
io (input / output e.g. print)
|
||||
================================================================================
|
||||
|
||||
Header: cglm/io.h
|
||||
|
||||
There are some built-in print functions which may save your time,
|
||||
especially for debugging.
|
||||
|
||||
All functions accept **FILE** parameter which makes very flexible.
|
||||
You can even print it to file on disk.
|
||||
|
||||
In general you will want to print them to console to see results.
|
||||
You can use **stdout** and **stderr** to write results to console.
|
||||
Some programs may occupy **stdout** but you can still use **stderr**.
|
||||
Using **stderr** is suggested.
|
||||
|
||||
Example to print mat4 matrix:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat4 transform;
|
||||
/* ... */
|
||||
glm_mat4_print(transform, stderr);
|
||||
|
||||
**NOTE:** print functions use **%0.4f** precision if you need more
|
||||
(you probably will in some cases), you can change it temporary.
|
||||
cglm may provide precision parameter in the future
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_mat4_print`
|
||||
#. :c:func:`glm_mat3_print`
|
||||
#. :c:func:`glm_vec4_print`
|
||||
#. :c:func:`glm_vec3_print`
|
||||
#. :c:func:`glm_ivec3_print`
|
||||
#. :c:func:`glm_versor_print`
|
||||
#. :c:func:`glm_aabb_print`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_mat4_print(mat4 matrix, FILE * __restrict ostream)
|
||||
|
||||
| print mat4 to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **matrix** matrix
|
||||
| *[in]* **ostream** FILE to write
|
||||
|
||||
.. c:function:: void glm_mat3_print(mat3 matrix, FILE * __restrict ostream)
|
||||
|
||||
| print mat3 to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **matrix** matrix
|
||||
| *[in]* **ostream** FILE to write
|
||||
|
||||
.. c:function:: void glm_vec4_print(vec4 vec, FILE * __restrict ostream)
|
||||
|
||||
| print vec4 to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector
|
||||
| *[in]* **ostream** FILE to write
|
||||
|
||||
.. c:function:: void glm_vec3_print(vec3 vec, FILE * __restrict ostream)
|
||||
|
||||
| print vec3 to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector
|
||||
| *[in]* **ostream** FILE to write
|
||||
|
||||
.. c:function:: void glm_ivec3_print(ivec3 vec, FILE * __restrict ostream)
|
||||
|
||||
| print ivec3 to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector
|
||||
| *[in]* **ostream** FILE to write
|
||||
|
||||
.. c:function:: void glm_versor_print(versor vec, FILE * __restrict ostream)
|
||||
|
||||
| print quaternion to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** quaternion
|
||||
| *[in]* **ostream** FILE to write
|
||||
|
||||
.. c:function:: void glm_aabb_print(versor vec, const char * __restrict tag, FILE * __restrict ostream)
|
||||
|
||||
| print aabb to given stream
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** aabb (axis-aligned bounding box)
|
||||
| *[in]* **tag** tag to find it more easly in logs
|
||||
| *[in]* **ostream** FILE to write
|
||||
163
docs/source/mat3.rst
Normal file
163
docs/source/mat3.rst
Normal file
@@ -0,0 +1,163 @@
|
||||
.. default-domain:: C
|
||||
|
||||
mat3
|
||||
====
|
||||
|
||||
Header: cglm/mat3.h
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Macros:
|
||||
|
||||
1. GLM_MAT3_IDENTITY_INIT
|
||||
#. GLM_MAT3_ZERO_INIT
|
||||
#. GLM_MAT3_IDENTITY
|
||||
#. GLM_MAT3_ZERO
|
||||
#. glm_mat3_dup(mat, dest)
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_mat3_copy`
|
||||
#. :c:func:`glm_mat3_identity`
|
||||
#. :c:func:`glm_mat3_identity_array`
|
||||
#. :c:func:`glm_mat3_mul`
|
||||
#. :c:func:`glm_mat3_transpose_to`
|
||||
#. :c:func:`glm_mat3_transpose`
|
||||
#. :c:func:`glm_mat3_mulv`
|
||||
#. :c:func:`glm_mat3_quat`
|
||||
#. :c:func:`glm_mat3_scale`
|
||||
#. :c:func:`glm_mat3_det`
|
||||
#. :c:func:`glm_mat3_inv`
|
||||
#. :c:func:`glm_mat3_trace`
|
||||
#. :c:func:`glm_mat3_swap_col`
|
||||
#. :c:func:`glm_mat3_swap_row`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_mat3_copy(mat3 mat, mat3 dest)
|
||||
|
||||
copy mat3 to another one (dest).
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat3_identity(mat3 mat)
|
||||
|
||||
copy identity mat3 to mat, or makes mat to identiy
|
||||
|
||||
Parameters:
|
||||
| *[out]* **mat** matrix
|
||||
|
||||
.. c:function:: void glm_mat3_identity_array(mat3 * __restrict mat, size_t count)
|
||||
|
||||
make given matrix array's each element identity matrix
|
||||
|
||||
Parameters:
|
||||
| *[in,out]* **mat** matrix array (must be aligned (16/32) if alignment is not disabled)
|
||||
| *[in]* **count** count of matrices
|
||||
|
||||
.. c:function:: void glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest)
|
||||
|
||||
multiply m1 and m2 to dest
|
||||
m1, m2 and dest matrices can be same matrix, it is possible to write this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat3 m = GLM_MAT3_IDENTITY_INIT;
|
||||
glm_mat3_mul(m, m, m);
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m1** left matrix
|
||||
| *[in]* **m2** right matrix
|
||||
| *[out]* **dest** destination matrix
|
||||
|
||||
.. c:function:: void glm_mat3_transpose_to(mat3 m, mat3 dest)
|
||||
|
||||
transpose mat4 and store in dest
|
||||
source matrix will not be transposed unless dest is m
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat3_transpose(mat3 m)
|
||||
|
||||
tranpose mat3 and store result in same matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat3_mulv(mat3 m, vec3 v, vec3 dest)
|
||||
|
||||
multiply mat4 with vec4 (column vector) and store in dest vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** mat3 (left)
|
||||
| *[in]* **v** vec3 (right, column vector)
|
||||
| *[out]* **dest** destination (result, column vector)
|
||||
|
||||
.. c:function:: void glm_mat3_quat(mat3 m, versor dest)
|
||||
|
||||
convert mat3 to quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** rotation matrix
|
||||
| *[out]* **dest** destination quaternion
|
||||
|
||||
.. c:function:: void glm_mat3_scale(mat3 m, float s)
|
||||
|
||||
multiply matrix with scalar
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **mat** matrix
|
||||
| *[in]* **dest** scalar
|
||||
|
||||
.. c:function:: float glm_mat3_det(mat3 mat)
|
||||
|
||||
returns mat3 determinant
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** matrix
|
||||
|
||||
Returns:
|
||||
mat3 determinant
|
||||
|
||||
.. c:function:: void glm_mat3_inv(mat3 mat, mat3 dest)
|
||||
|
||||
inverse mat3 and store in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** matrix
|
||||
| *[out]* **dest** destination (inverse matrix)
|
||||
|
||||
.. c:function:: void glm_mat3_trace(mat3 m)
|
||||
|
||||
| sum of the elements on the main diagonal from upper left to the lower right
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** matrix
|
||||
|
||||
Returns:
|
||||
trace of matrix
|
||||
|
||||
.. c:function:: void glm_mat3_swap_col(mat3 mat, int col1, int col2)
|
||||
|
||||
swap two matrix columns
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **mat** matrix
|
||||
| *[in]* **col1** col1
|
||||
| *[in]* **col2** col2
|
||||
|
||||
.. c:function:: void glm_mat3_swap_row(mat3 mat, int row1, int row2)
|
||||
|
||||
swap two matrix rows
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **mat** matrix
|
||||
| *[in]* **row1** row1
|
||||
| *[in]* **row2** row2
|
||||
272
docs/source/mat4.rst
Normal file
272
docs/source/mat4.rst
Normal file
@@ -0,0 +1,272 @@
|
||||
.. default-domain:: C
|
||||
|
||||
mat4
|
||||
====
|
||||
|
||||
Header: cglm/mat4.h
|
||||
|
||||
Important: :c:func:`glm_mat4_scale` multiplies mat4 with scalar, if you need to
|
||||
apply scale transform use :c:func:`glm_scale` functions.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Macros:
|
||||
|
||||
1. GLM_MAT4_IDENTITY_INIT
|
||||
#. GLM_MAT4_ZERO_INIT
|
||||
#. GLM_MAT4_IDENTITY
|
||||
#. GLM_MAT4_ZERO
|
||||
#. glm_mat4_udup(mat, dest)
|
||||
#. glm_mat4_dup(mat, dest)
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_mat4_ucopy`
|
||||
#. :c:func:`glm_mat4_copy`
|
||||
#. :c:func:`glm_mat4_identity`
|
||||
#. :c:func:`glm_mat4_identity_array`
|
||||
#. :c:func:`glm_mat4_pick3`
|
||||
#. :c:func:`glm_mat4_pick3t`
|
||||
#. :c:func:`glm_mat4_ins3`
|
||||
#. :c:func:`glm_mat4_mul`
|
||||
#. :c:func:`glm_mat4_mulN`
|
||||
#. :c:func:`glm_mat4_mulv`
|
||||
#. :c:func:`glm_mat4_mulv3`
|
||||
#. :c:func:`glm_mat3_trace`
|
||||
#. :c:func:`glm_mat3_trace3`
|
||||
#. :c:func:`glm_mat4_quat`
|
||||
#. :c:func:`glm_mat4_transpose_to`
|
||||
#. :c:func:`glm_mat4_transpose`
|
||||
#. :c:func:`glm_mat4_scale_p`
|
||||
#. :c:func:`glm_mat4_scale`
|
||||
#. :c:func:`glm_mat4_det`
|
||||
#. :c:func:`glm_mat4_inv`
|
||||
#. :c:func:`glm_mat4_inv_fast`
|
||||
#. :c:func:`glm_mat4_swap_col`
|
||||
#. :c:func:`glm_mat4_swap_row`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_mat4_ucopy(mat4 mat, mat4 dest)
|
||||
|
||||
copy mat4 to another one (dest). u means align is not required for dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat4_copy(mat4 mat, mat4 dest)
|
||||
|
||||
copy mat4 to another one (dest).
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat4_identity(mat4 mat)
|
||||
|
||||
copy identity mat4 to mat, or makes mat to identiy
|
||||
|
||||
Parameters:
|
||||
| *[out]* **mat** matrix
|
||||
|
||||
.. c:function:: void glm_mat4_identity_array(mat4 * __restrict mat, size_t count)
|
||||
|
||||
make given matrix array's each element identity matrix
|
||||
|
||||
Parameters:
|
||||
| *[in,out]* **mat** matrix array (must be aligned (16/32) if alignment is not disabled)
|
||||
| *[in]* **count** count of matrices
|
||||
|
||||
.. c:function:: void glm_mat4_pick3(mat4 mat, mat3 dest)
|
||||
|
||||
copy upper-left of mat4 to mat3
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat4_pick3t(mat4 mat, mat4 dest)
|
||||
|
||||
copy upper-left of mat4 to mat3 (transposed)
|
||||
the postfix t stands for transpose
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat4_ins3(mat3 mat, mat4 dest)
|
||||
|
||||
copy mat3 to mat4's upper-left. this function does not fill mat4's other
|
||||
elements. To do that use glm_mat4.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest)
|
||||
|
||||
multiply m1 and m2 to dest
|
||||
m1, m2 and dest matrices can be same matrix, it is possible to write this:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat4 m = GLM_MAT4_IDENTITY_INIT;
|
||||
glm_mat4_mul(m, m, m);
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m1** left matrix
|
||||
| *[in]* **m2** right matrix
|
||||
| *[out]* **dest** destination matrix
|
||||
|
||||
.. c:function:: void glm_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest)
|
||||
|
||||
mupliply N mat4 matrices and store result in dest
|
||||
| this function lets you multiply multiple (more than two or more...)
|
||||
| matrices
|
||||
|
||||
| multiplication will be done in loop, this may reduce instructions
|
||||
| size but if **len** is too small then compiler may unroll whole loop
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat m1, m2, m3, m4, res;
|
||||
glm_mat4_mulN((mat4 *[]){&m1, &m2, &m3, &m4}, 4, res);
|
||||
|
||||
Parameters:
|
||||
| *[in]* **matrices** array of mat4
|
||||
| *[in]* **len** matrices count
|
||||
| *[out]* **dest** destination matrix
|
||||
|
||||
.. c:function:: void glm_mat4_mulv(mat4 m, vec4 v, vec4 dest)
|
||||
|
||||
multiply mat4 with vec4 (column vector) and store in dest vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** mat4 (left)
|
||||
| *[in]* **v** vec4 (right, column vector)
|
||||
| *[out]* **dest** vec4 (result, column vector)
|
||||
|
||||
.. c:function:: void glm_mat4_mulv3(mat4 m, vec3 v, vec3 dest)
|
||||
|
||||
multiply vector with mat4's mat3 part(rotation)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** mat4 (left)
|
||||
| *[in]* **v** vec3 (right, column vector)
|
||||
| *[out]* **dest** vec3 (result, column vector)
|
||||
|
||||
.. c:function:: void glm_mat4_trace(mat4 m)
|
||||
|
||||
| sum of the elements on the main diagonal from upper left to the lower right
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** matrix
|
||||
|
||||
Returns:
|
||||
trace of matrix
|
||||
|
||||
.. c:function:: void glm_mat4_trace3(mat4 m)
|
||||
|
||||
| trace of matrix (rotation part)
|
||||
| sum of the elements on the main diagonal from upper left to the lower right
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** matrix
|
||||
|
||||
Returns:
|
||||
trace of matrix
|
||||
|
||||
.. c:function:: void glm_mat4_quat(mat4 m, versor dest)
|
||||
|
||||
convert mat4's rotation part to quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine matrix
|
||||
| *[out]* **dest** destination quaternion
|
||||
|
||||
.. c:function:: void glm_mat4_transpose_to(mat4 m, mat4 dest)
|
||||
|
||||
transpose mat4 and store in dest
|
||||
source matrix will not be transposed unless dest is m
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** matrix
|
||||
| *[out]* **dest** destination matrix
|
||||
|
||||
.. c:function:: void glm_mat4_transpose(mat4 m)
|
||||
|
||||
tranpose mat4 and store result in same matrix
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** source
|
||||
| *[out]* **dest** destination matrix
|
||||
|
||||
.. c:function:: void glm_mat4_scale_p(mat4 m, float s)
|
||||
|
||||
scale (multiply with scalar) matrix without simd optimization
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** matrix
|
||||
| *[in]* **s** scalar
|
||||
|
||||
.. c:function:: void glm_mat4_scale(mat4 m, float s)
|
||||
|
||||
scale (multiply with scalar) matrix
|
||||
THIS IS NOT SCALE TRANSFORM, use glm_scale for that.
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** matrix
|
||||
| *[in]* **s** scalar
|
||||
|
||||
.. c:function:: float glm_mat4_det(mat4 mat)
|
||||
|
||||
mat4 determinant
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** matrix
|
||||
|
||||
Return:
|
||||
| determinant
|
||||
|
||||
.. c:function:: void glm_mat4_inv(mat4 mat, mat4 dest)
|
||||
|
||||
inverse mat4 and store in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination matrix (inverse matrix)
|
||||
|
||||
.. c:function:: void glm_mat4_inv_fast(mat4 mat, mat4 dest)
|
||||
|
||||
inverse mat4 and store in dest
|
||||
|
||||
| this func uses reciprocal approximation without extra corrections
|
||||
| e.g Newton-Raphson. this should work faster than normal,
|
||||
| to get more precise use glm_mat4_inv version.
|
||||
|
||||
| NOTE: You will lose precision, glm_mat4_inv is more accurate
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_mat4_swap_col(mat4 mat, int col1, int col2)
|
||||
|
||||
swap two matrix columns
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **mat** matrix
|
||||
| *[in]* **col1** col1
|
||||
| *[in]* **col2** col2
|
||||
|
||||
.. c:function:: void glm_mat4_swap_row(mat4 mat, int row1, int row2)
|
||||
|
||||
swap two matrix rows
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **mat** matrix
|
||||
| *[in]* **row1** row1
|
||||
| *[in]* **row2** row2
|
||||
61
docs/source/opengl.rst
Normal file
61
docs/source/opengl.rst
Normal file
@@ -0,0 +1,61 @@
|
||||
How to send vector or matrix to OpenGL like API
|
||||
==================================================
|
||||
|
||||
*cglm*'s vector and matrix types are arrays. So you can send them directly to a
|
||||
function which accecpts pointer. But you may got warnings for matrix because it is
|
||||
two dimensional array.
|
||||
|
||||
Passing / Uniforming Matrix to OpenGL:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
**glUniformMatrix4fv** accepts float pointer, you can pass matrix to that parameter
|
||||
and it should work but with warnings. "You can pass" doesn't mean that you must pass like that.
|
||||
|
||||
**Correct options:**
|
||||
|
||||
Correct doesn't mean correct way to use OpenGL it is just shows correct way to pass cglm type to it.
|
||||
|
||||
1. Pass first column
|
||||
---------------------
|
||||
|
||||
The goal is that pass address of matrix, first element of matrix is also address of matrix,
|
||||
because it is array of vectors and vector is array of floats.
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat4 matrix;
|
||||
/* ... */
|
||||
glUniformMatrix4fv(location, 1, GL_FALSE, matrix[0]);
|
||||
|
||||
array of matrices:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat4 matrix;
|
||||
/* ... */
|
||||
glUniformMatrix4fv(location, count, GL_FALSE, matrix[0][0]);
|
||||
|
||||
1. Cast matrix to pointer
|
||||
--------------------------
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
mat4 matrix;
|
||||
/* ... */
|
||||
glUniformMatrix4fv(location, count, GL_FALSE, (float *)matrix);
|
||||
|
||||
in this way, passing aray of matrices is same
|
||||
|
||||
Passing / Uniforming Vectors to OpenGL:¶
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
You don't need to do extra thing when passing cglm vectors to OpengL or other APIs.
|
||||
Because a function like **glUniform4fv** accepts vector as pointer. cglm's vectors
|
||||
are array of floats. So you can pass it directly ot those functions:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
vec4 vec;
|
||||
/* ... */
|
||||
glUniform4fv(location, 1, vec);
|
||||
|
||||
this show how to pass **vec4** others are same.
|
||||
42
docs/source/opt.rst
Normal file
42
docs/source/opt.rst
Normal file
@@ -0,0 +1,42 @@
|
||||
.. default-domain:: C
|
||||
|
||||
Options
|
||||
===============================================================================
|
||||
|
||||
A few options are provided via macros.
|
||||
|
||||
Alignment Option
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
As default, cglm requires types to be aligned. Alignment requirements:
|
||||
|
||||
vec3: 8 byte
|
||||
vec4: 16 byte
|
||||
mat4: 16 byte
|
||||
versor: 16 byte
|
||||
|
||||
By starting **v0.4.5** cglm provides an option to disable alignment requirement.
|
||||
To enable this option define **CGLM_ALL_UNALIGNED** macro before all headers.
|
||||
You can define it in Xcode, Visual Studio (or other IDEs) or you can also prefer
|
||||
to define it in build system. If you use pre-compiled verisons then you
|
||||
have to compile cglm with **CGLM_ALL_UNALIGNED** macro.
|
||||
|
||||
**VERY VERY IMPORTANT:** If you use cglm in multiple projects and
|
||||
those projects are depends on each other, then
|
||||
|
||||
| *ALWAYS* or *NEVER USE* **CGLM_ALL_UNALIGNED** macro in linked projects
|
||||
|
||||
if you do not know what you are doing. Because a cglm header included
|
||||
via 'project A' may force types to be aligned and another cglm header
|
||||
included via 'project B' may not require alignment. In this case
|
||||
cglm functions will read from and write to **INVALID MEMORY LOCATIONs**.
|
||||
|
||||
ALWAYS USE SAME CONFIGURATION / OPTION for **cglm** if you have multiple projects.
|
||||
|
||||
For instance if you set CGLM_ALL_UNALIGNED in a project then set it in other projects too
|
||||
|
||||
SSE and SSE2 Shuffle Option
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
**_mm_shuffle_ps** generates **shufps** instruction even if registers are same.
|
||||
You can force it to generate **pshufd** instruction by defining
|
||||
**CGLM_USE_INT_DOMAIN** macro. As default it is not defined.
|
||||
33
docs/source/plane.rst
Normal file
33
docs/source/plane.rst
Normal file
@@ -0,0 +1,33 @@
|
||||
.. default-domain:: C
|
||||
|
||||
plane
|
||||
================================================================================
|
||||
|
||||
Header: cglm/plane.h
|
||||
|
||||
Plane extract functions are in frustum header and documented
|
||||
in :doc:`frustum` page.
|
||||
|
||||
**Definition of plane:**
|
||||
|
||||
Plane equation: **Ax + By + Cz + D = 0**
|
||||
|
||||
Plan is stored in **vec4** as **[A, B, C, D]**. (A, B, C) is normal and D is distance
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_plane_normalize`
|
||||
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_plane_normalize(vec4 plane)
|
||||
|
||||
| normalizes a plane
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **plane** pnale to normalize
|
||||
102
docs/source/project.rst
Normal file
102
docs/source/project.rst
Normal file
@@ -0,0 +1,102 @@
|
||||
.. default-domain:: C
|
||||
|
||||
Project / UnProject
|
||||
================================================================================
|
||||
|
||||
Header: cglm/project.h
|
||||
|
||||
Viewport is required as *vec4* **[X, Y, Width, Height]** but this doesn't mean
|
||||
that you should store it as **vec4**. You can convert your data representation
|
||||
to vec4 before passing it to related functions.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_unprojecti`
|
||||
#. :c:func:`glm_unproject`
|
||||
#. :c:func:`glm_project`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest)
|
||||
|
||||
| maps the specified viewport coordinates into specified space [1]
|
||||
the matrix should contain projection matrix.
|
||||
|
||||
if you don't have ( and don't want to have ) an inverse matrix then use
|
||||
glm_unproject version. You may use existing inverse of matrix in somewhere
|
||||
else, this is why glm_unprojecti exists to save save inversion cost
|
||||
|
||||
[1] space:
|
||||
- if m = invProj: View Space
|
||||
- if m = invViewProj: World Space
|
||||
- if m = invMVP: Object Space
|
||||
|
||||
You probably want to map the coordinates into object space
|
||||
so use invMVP as m
|
||||
|
||||
Computing viewProj:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
glm_mat4_mul(proj, view, viewProj);
|
||||
glm_mat4_mul(viewProj, model, MVP);
|
||||
glm_mat4_inv(viewProj, invMVP);
|
||||
|
||||
Parameters:
|
||||
| *[in]* **pos** point/position in viewport coordinates
|
||||
| *[in]* **invMat** matrix (see brief)
|
||||
| *[in]* **vp** viewport as [x, y, width, height]
|
||||
| *[out]* **dest** unprojected coordinates
|
||||
|
||||
.. c:function:: void glm_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest)
|
||||
|
||||
| maps the specified viewport coordinates into specified space [1]
|
||||
the matrix should contain projection matrix.
|
||||
|
||||
this is same as glm_unprojecti except this function get inverse matrix for
|
||||
you.
|
||||
|
||||
[1] space:
|
||||
- if m = proj: View Space
|
||||
- if m = viewProj: World Space
|
||||
- if m = MVP: Object Space
|
||||
|
||||
You probably want to map the coordinates into object space so use MVP as m
|
||||
|
||||
Computing viewProj and MVP:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
glm_mat4_mul(proj, view, viewProj);
|
||||
glm_mat4_mul(viewProj, model, MVP);
|
||||
|
||||
Parameters:
|
||||
| *[in]* **pos** point/position in viewport coordinates
|
||||
| *[in]* **m** matrix (see brief)
|
||||
| *[in]* **vp** viewport as [x, y, width, height]
|
||||
| *[out]* **dest** unprojected coordinates
|
||||
|
||||
.. c:function:: void glm_project(vec3 pos, mat4 m, vec4 vp, vec3 dest)
|
||||
|
||||
| map object coordinates to window coordinates
|
||||
|
||||
Computing MVP:
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
glm_mat4_mul(proj, view, viewProj);
|
||||
glm_mat4_mul(viewProj, model, MVP);
|
||||
|
||||
this could be useful for gettng a bbox which fits with view frustum and
|
||||
object bounding boxes. In this case you crop view frustum box with objects
|
||||
box
|
||||
|
||||
Parameters:
|
||||
| *[in]* **pos** object coordinates
|
||||
| *[in]* **m** MVP matrix
|
||||
| *[in]* **vp** viewport as [x, y, width, height]
|
||||
| *[out]* **dest** projected coordinates
|
||||
389
docs/source/quat.rst
Normal file
389
docs/source/quat.rst
Normal file
@@ -0,0 +1,389 @@
|
||||
.. default-domain:: C
|
||||
|
||||
quaternions
|
||||
===========
|
||||
|
||||
Header: cglm/quat.h
|
||||
|
||||
**Important:** *cglm* stores quaternion as **[x, y, z, w]** in memory
|
||||
since **v0.4.0** it was **[w, x, y, z]**
|
||||
before v0.4.0 ( **v0.3.5 and earlier** ). w is real part.
|
||||
|
||||
What you can do with quaternions with existing functions is (Some of them):
|
||||
|
||||
- You can rotate transform matrix using quaterion
|
||||
- You can rotate vector using quaterion
|
||||
- You can create view matrix using quaterion
|
||||
- You can create a lookrotation (from source point to dest)
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Macros:
|
||||
|
||||
1. GLM_QUAT_IDENTITY_INIT
|
||||
#. GLM_QUAT_IDENTITY
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_quat_identity`
|
||||
#. :c:func:`glm_quat_identity_array`
|
||||
#. :c:func:`glm_quat_init`
|
||||
#. :c:func:`glm_quat`
|
||||
#. :c:func:`glm_quatv`
|
||||
#. :c:func:`glm_quat_copy`
|
||||
#. :c:func:`glm_quat_norm`
|
||||
#. :c:func:`glm_quat_normalize`
|
||||
#. :c:func:`glm_quat_normalize_to`
|
||||
#. :c:func:`glm_quat_dot`
|
||||
#. :c:func:`glm_quat_conjugate`
|
||||
#. :c:func:`glm_quat_inv`
|
||||
#. :c:func:`glm_quat_add`
|
||||
#. :c:func:`glm_quat_sub`
|
||||
#. :c:func:`glm_quat_real`
|
||||
#. :c:func:`glm_quat_imag`
|
||||
#. :c:func:`glm_quat_imagn`
|
||||
#. :c:func:`glm_quat_imaglen`
|
||||
#. :c:func:`glm_quat_angle`
|
||||
#. :c:func:`glm_quat_axis`
|
||||
#. :c:func:`glm_quat_mul`
|
||||
#. :c:func:`glm_quat_mat4`
|
||||
#. :c:func:`glm_quat_mat4t`
|
||||
#. :c:func:`glm_quat_mat3`
|
||||
#. :c:func:`glm_quat_mat3t`
|
||||
#. :c:func:`glm_quat_lerp`
|
||||
#. :c:func:`glm_quat_slerp`
|
||||
#. :c:func:`glm_quat_look`
|
||||
#. :c:func:`glm_quat_for`
|
||||
#. :c:func:`glm_quat_forp`
|
||||
#. :c:func:`glm_quat_rotatev`
|
||||
#. :c:func:`glm_quat_rotate`
|
||||
#. :c:func:`glm_quat_rotate_at`
|
||||
#. :c:func:`glm_quat_rotate_atm`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_quat_identity(versor q)
|
||||
|
||||
| makes given quat to identity
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **q** quaternion
|
||||
|
||||
.. c:function:: void glm_quat_identity_array(versor * __restrict q, size_t count)
|
||||
|
||||
| make given quaternion array's each element identity quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **q** quat array (must be aligned (16) if alignment is not disabled)
|
||||
| *[in]* **count** count of quaternions
|
||||
|
||||
.. c:function:: void glm_quat_init(versor q, float x, float y, float z, float w)
|
||||
|
||||
| inits quaternion with given values
|
||||
|
||||
Parameters:
|
||||
| *[out]* **q** quaternion
|
||||
| *[in]* **x** imag.x
|
||||
| *[in]* **y** imag.y
|
||||
| *[in]* **z** imag.z
|
||||
| *[in]* **w** w (real part)
|
||||
|
||||
.. c:function:: void glm_quat(versor q, float angle, float x, float y, float z)
|
||||
|
||||
| creates NEW quaternion with individual axis components
|
||||
|
||||
| given axis will be normalized
|
||||
|
||||
Parameters:
|
||||
| *[out]* **q** quaternion
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[in]* **x** axis.x
|
||||
| *[in]* **y** axis.y
|
||||
| *[in]* **z** axis.z
|
||||
|
||||
.. c:function:: void glm_quatv(versor q, float angle, vec3 axis)
|
||||
|
||||
| creates NEW quaternion with axis vector
|
||||
|
||||
| given axis will be normalized
|
||||
|
||||
Parameters:
|
||||
| *[out]* **q** quaternion
|
||||
| *[in]* **angle** angle (radians)
|
||||
| *[in]* **axis** axis (will be normalized)
|
||||
|
||||
.. c:function:: void glm_quat_copy(versor q, versor dest)
|
||||
|
||||
| copy quaternion to another one
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** source quaternion
|
||||
| *[out]* **dest** destination quaternion
|
||||
|
||||
.. c:function:: float glm_quat_norm(versor q)
|
||||
|
||||
| returns norm (magnitude) of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** quaternion
|
||||
|
||||
Returns:
|
||||
norm (magnitude)
|
||||
|
||||
.. c:function:: void glm_quat_normalize_to(versor q, versor dest)
|
||||
|
||||
| normalize quaternion and store result in dest, original one will not be normalized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion to normalize into
|
||||
| *[out]* **dest** destination quaternion
|
||||
|
||||
.. c:function:: void glm_quat_normalize(versor q)
|
||||
|
||||
| normalize quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **q** quaternion
|
||||
|
||||
.. c:function:: float glm_quat_dot(versor p, versor q)
|
||||
|
||||
dot product of two quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **p** quaternion 1
|
||||
| *[in]* **q** quaternion 2
|
||||
|
||||
Returns:
|
||||
dot product
|
||||
|
||||
.. c:function:: void glm_quat_conjugate(versor q, versor dest)
|
||||
|
||||
conjugate of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[in]* **dest** conjugate
|
||||
|
||||
.. c:function:: void glm_quat_inv(versor q, versor dest)
|
||||
|
||||
inverse of non-zero quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[in]* **dest** inverse quaternion
|
||||
|
||||
.. c:function:: void glm_quat_add(versor p, versor q, versor dest)
|
||||
|
||||
add (componentwise) two quaternions and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **p** quaternion 1
|
||||
| *[in]* **q** quaternion 2
|
||||
| *[in]* **dest** result quaternion
|
||||
|
||||
.. c:function:: void glm_quat_sub(versor p, versor q, versor dest)
|
||||
|
||||
subtract (componentwise) two quaternions and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **p** quaternion 1
|
||||
| *[in]* **q** quaternion 2
|
||||
| *[in]* **dest** result quaternion
|
||||
|
||||
.. c:function:: float glm_quat_real(versor q)
|
||||
|
||||
returns real part of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
|
||||
Returns:
|
||||
real part (quat.w)
|
||||
|
||||
.. c:function:: void glm_quat_imag(versor q, vec3 dest)
|
||||
|
||||
returns imaginary part of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** imag
|
||||
|
||||
.. c:function:: void glm_quat_imagn(versor q, vec3 dest)
|
||||
|
||||
returns normalized imaginary part of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** imag
|
||||
|
||||
.. c:function:: float glm_quat_imaglen(versor q)
|
||||
|
||||
returns length of imaginary part of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
|
||||
Returns:
|
||||
norm of imaginary part
|
||||
|
||||
.. c:function:: float glm_quat_angle(versor q)
|
||||
|
||||
returns angle of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
|
||||
Returns:
|
||||
angles of quat (radians)
|
||||
|
||||
.. c:function:: void glm_quat_axis(versor q, versor dest)
|
||||
|
||||
axis of quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **p** quaternion
|
||||
| *[out]* **dest** axis of quaternion
|
||||
|
||||
.. c:function:: void glm_quat_mul(versor p, versor q, versor dest)
|
||||
|
||||
| multiplies two quaternion and stores result in dest
|
||||
|
||||
| this is also called Hamilton Product
|
||||
|
||||
| According to WikiPedia:
|
||||
| The product of two rotation quaternions [clarification needed] will be
|
||||
equivalent to the rotation q followed by the rotation p
|
||||
|
||||
Parameters:
|
||||
| *[in]* **p** quaternion 1 (first rotation)
|
||||
| *[in]* **q** quaternion 2 (second rotation)
|
||||
| *[out]* **dest** result quaternion
|
||||
|
||||
.. c:function:: void glm_quat_mat4(versor q, mat4 dest)
|
||||
|
||||
| convert quaternion to mat4
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_mat4t(versor q, mat4 dest)
|
||||
|
||||
| convert quaternion to mat4 (transposed). This is transposed version of glm_quat_mat4
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_mat3(versor q, mat3 dest)
|
||||
|
||||
| convert quaternion to mat3
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_mat3t(versor q, mat3 dest)
|
||||
|
||||
| convert quaternion to mat3 (transposed). This is transposed version of glm_quat_mat3
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_lerp(versor from, versor to, float t, versor dest)
|
||||
|
||||
| interpolates between two quaternions
|
||||
| using spherical linear interpolation (LERP)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** from
|
||||
| *[in]* **to** to
|
||||
| *[in]* **t** interpolant (amount) clamped between 0 and 1
|
||||
| *[out]* **dest** result quaternion
|
||||
|
||||
.. c:function:: void glm_quat_slerp(versor q, versor r, float t, versor dest)
|
||||
|
||||
| interpolates between two quaternions
|
||||
| using spherical linear interpolation (SLERP)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** from
|
||||
| *[in]* **to** to
|
||||
| *[in]* **t** interpolant (amount) clamped between 0 and 1
|
||||
| *[out]* **dest** result quaternion
|
||||
|
||||
.. c:function:: void glm_quat_look(vec3 eye, versor ori, mat4 dest)
|
||||
|
||||
| creates view matrix using quaternion as camera orientation
|
||||
|
||||
Parameters:
|
||||
| *[in]* **eye** eye
|
||||
| *[in]* **ori** orientation in world space as quaternion
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest)
|
||||
|
||||
| creates look rotation quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **dir** direction to look
|
||||
| *[in]* **fwd** forward vector
|
||||
| *[in]* **up** up vector
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest)
|
||||
|
||||
| creates look rotation quaternion using source and destination positions p suffix stands for position
|
||||
|
||||
| this is similar to glm_quat_for except this computes direction for glm_quat_for for you.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** source point
|
||||
| *[in]* **to** destination point
|
||||
| *[in]* **fwd** forward vector
|
||||
| *[in]* **up** up vector
|
||||
| *[out]* **dest** result matrix
|
||||
|
||||
.. c:function:: void glm_quat_rotatev(versor q, vec3 v, vec3 dest)
|
||||
|
||||
| crotate vector using using quaternion
|
||||
|
||||
Parameters:
|
||||
| *[in]* **q** quaternion
|
||||
| *[in]* **v** vector to rotate
|
||||
| *[out]* **dest** rotated vector
|
||||
|
||||
.. c:function:: void glm_quat_rotate(mat4 m, versor q, mat4 dest)
|
||||
|
||||
| rotate existing transform matrix using quaternion
|
||||
|
||||
instead of passing identity matrix, consider to use quat_mat4 functions
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** existing transform matrix to rotate
|
||||
| *[in]* **q** quaternion
|
||||
| *[out]* **dest** rotated matrix/transform
|
||||
|
||||
.. c:function:: void glm_quat_rotate_at(mat4 m, versor q, vec3 pivot)
|
||||
|
||||
| rotate existing transform matrix using quaternion at pivot point
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** existing transform matrix to rotate
|
||||
| *[in]* **q** quaternion
|
||||
| *[in]* **pivot** pivot
|
||||
|
||||
.. c:function:: void glm_quat_rotate(mat4 m, versor q, mat4 dest)
|
||||
|
||||
| rotate NEW transform matrix using quaternion at pivot point
|
||||
| this creates rotation matrix, it assumes you don't have a matrix
|
||||
|
||||
| this should work faster than glm_quat_rotate_at because it reduces one glm_translate.
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **m** existing transform matrix to rotate
|
||||
| *[in]* **q** quaternion
|
||||
| *[in]* **pivot** pivot
|
||||
74
docs/source/sphere.rst
Normal file
74
docs/source/sphere.rst
Normal file
@@ -0,0 +1,74 @@
|
||||
.. default-domain:: C
|
||||
|
||||
Sphere
|
||||
================================================================================
|
||||
|
||||
Header: cglm/sphere.h
|
||||
|
||||
**Definition of sphere:**
|
||||
|
||||
Sphere Representation in cglm is *vec4*: **[center.x, center.y, center.z, radii]**
|
||||
|
||||
You can call any vec3 function by pasing sphere. Because first three elements
|
||||
defines center of sphere.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_sphere_radii`
|
||||
#. :c:func:`glm_sphere_transform`
|
||||
#. :c:func:`glm_sphere_merge`
|
||||
#. :c:func:`glm_sphere_sphere`
|
||||
#. :c:func:`glm_sphere_point`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: float glm_sphere_radii(vec4 s)
|
||||
|
||||
| helper for getting sphere radius
|
||||
|
||||
Parameters:
|
||||
| *[in]* **s** sphere
|
||||
|
||||
Returns:
|
||||
returns radii
|
||||
|
||||
.. c:function:: void glm_sphere_transform(vec4 s, mat4 m, vec4 dest)
|
||||
|
||||
| apply transform to sphere, it is just wrapper for glm_mat4_mulv3
|
||||
|
||||
Parameters:
|
||||
| *[in]* **s** sphere
|
||||
| *[in]* **m** transform matrix
|
||||
| *[out]* **dest** transformed sphere
|
||||
|
||||
.. c:function:: void glm_sphere_merge(vec4 s1, vec4 s2, vec4 dest)
|
||||
|
||||
| merges two spheres and creates a new one
|
||||
|
||||
two sphere must be in same space, for instance if one in world space then
|
||||
the other must be in world space too, not in local space.
|
||||
|
||||
Parameters:
|
||||
| *[in]* **s1** sphere 1
|
||||
| *[in]* **s2** sphere 2
|
||||
| *[out]* **dest** merged/extended sphere
|
||||
|
||||
.. c:function:: bool glm_sphere_sphere(vec4 s1, vec4 s2)
|
||||
|
||||
| check if two sphere intersects
|
||||
|
||||
Parameters:
|
||||
| *[in]* **s1** sphere
|
||||
| *[in]* **s2** other sphere
|
||||
|
||||
.. c:function:: bool glm_sphere_point(vec4 s, vec3 point)
|
||||
|
||||
| check if sphere intersects with point
|
||||
|
||||
Parameters:
|
||||
| *[in]* **s** sphere
|
||||
| *[in]* **point** point
|
||||
79
docs/source/troubleshooting.rst
Normal file
79
docs/source/troubleshooting.rst
Normal file
@@ -0,0 +1,79 @@
|
||||
.. default-domain:: C
|
||||
|
||||
Troubleshooting
|
||||
================================================================================
|
||||
|
||||
It is possible that sometimes you may get crashes or wrong results.
|
||||
Follow these topics
|
||||
|
||||
Memory Allocation:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Again, **cglm** doesn't alloc any memory on heap.
|
||||
cglm functions works like memcpy; it copies data from src,
|
||||
makes calculations then copy the result to dest.
|
||||
|
||||
You are responsible for allocation of **src** and **dest** parameters.
|
||||
|
||||
Alignment:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
**vec4** and **mat4** types requires 16 byte alignment.
|
||||
These types are marked with align attribute to let compiler know about this
|
||||
requirement.
|
||||
|
||||
But since MSVC (Windows) throws the error:
|
||||
|
||||
**"formal parameter with requested alignment of 16 won't be aligned"**
|
||||
|
||||
The alignment attribute has been commented for MSVC
|
||||
|
||||
.. code-block:: c
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
# define CGLM_ALIGN(X) /* __declspec(align(X)) */
|
||||
#else
|
||||
# define CGLM_ALIGN(X) __attribute((aligned(X)))
|
||||
#endif.
|
||||
|
||||
So MSVC may not know about alignment requirements when creating variables.
|
||||
The interesting thing is that, if I remember correctly Visual Studio 2017
|
||||
doesn't throw the above error. So we may uncomment that line for Visual Studio 2017,
|
||||
you may do it yourself.
|
||||
|
||||
**This MSVC issue is still in TODOs.**
|
||||
|
||||
**UPDATE:** By starting v0.4.5 cglm provides an option to disable alignment requirement.
|
||||
Also alignment is disabled for older msvc verisons as default. Now alignment is only required in Visual Studio 2017 version 15.6+ if CGLM_ALL_UNALIGNED macro is not defined.
|
||||
|
||||
Crashes, Invalid Memory Access:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Probably you are trying to write to invalid memory location.
|
||||
|
||||
You may used wrong function for what you want to do.
|
||||
|
||||
For instance you may called **glm_vec4_** functions for **vec3** data type.
|
||||
It will try to write 32 byte but since **vec3** is 24 byte it should throw
|
||||
memory access error or exit the app without saying anything.
|
||||
|
||||
Wrong Results:
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Again, you may used wrong function.
|
||||
|
||||
For instance if you use **glm_normalize()** or **glm_vec3_normalize()** for **vec4**,
|
||||
it will assume that passed param is **vec3** and will normalize it for **vec3**.
|
||||
Since you need to **vec4** to be normalized in your case, you will get wrong results.
|
||||
|
||||
Accessing vec4 type with vec3 functions is valid, you will not get any error, exception or crash.
|
||||
You only get wrong results if you don't know what you are doing!
|
||||
|
||||
So be carefull, when your IDE (Xcode, Visual Studio ...) tried to autocomplete function names, READ IT :)
|
||||
|
||||
**Also implementation may be wrong please let us know by creating an issue on Github.**
|
||||
|
||||
Other Issues?
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
**Please let us know by creating an issue on Github.**
|
||||
173
docs/source/util.rst
Normal file
173
docs/source/util.rst
Normal file
@@ -0,0 +1,173 @@
|
||||
.. default-domain:: C
|
||||
|
||||
utils / helpers
|
||||
================================================================================
|
||||
|
||||
Header: cglm/util.h
|
||||
|
||||
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_sign`
|
||||
#. :c:func:`glm_signf`
|
||||
#. :c:func:`glm_rad`
|
||||
#. :c:func:`glm_deg`
|
||||
#. :c:func:`glm_make_rad`
|
||||
#. :c:func:`glm_make_deg`
|
||||
#. :c:func:`glm_pow2`
|
||||
#. :c:func:`glm_min`
|
||||
#. :c:func:`glm_max`
|
||||
#. :c:func:`glm_clamp`
|
||||
#. :c:func:`glm_lerp`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: int glm_sign(int val)
|
||||
|
||||
| returns sign of 32 bit integer as +1, -1, 0
|
||||
|
||||
| **Important**: It returns 0 for zero input
|
||||
|
||||
Parameters:
|
||||
| *[in]* **val** an integer
|
||||
|
||||
Returns:
|
||||
sign of given number
|
||||
|
||||
.. c:function:: float glm_signf(float val)
|
||||
|
||||
| returns sign of 32 bit integer as +1.0, -1.0, 0.0
|
||||
|
||||
| **Important**: It returns 0.0f for zero input
|
||||
|
||||
Parameters:
|
||||
| *[in]* **val** a float
|
||||
|
||||
Returns:
|
||||
sign of given number
|
||||
|
||||
.. c:function:: float glm_rad(float deg)
|
||||
|
||||
| convert degree to radians
|
||||
|
||||
Parameters:
|
||||
| *[in]* **deg** angle in degrees
|
||||
|
||||
.. c:function:: float glm_deg(float rad)
|
||||
|
||||
| convert radians to degree
|
||||
|
||||
Parameters:
|
||||
| *[in]* **rad** angle in radians
|
||||
|
||||
.. c:function:: void glm_make_rad(float *degm)
|
||||
|
||||
| convert exsisting degree to radians. this will override degrees value
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **deg** pointer to angle in degrees
|
||||
|
||||
.. c:function:: void glm_make_deg(float *rad)
|
||||
|
||||
| convert exsisting radians to degree. this will override radians value
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **rad** pointer to angle in radians
|
||||
|
||||
.. c:function:: float glm_pow2(float x)
|
||||
|
||||
| multiplies given parameter with itself = x * x or powf(x, 2)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **x** value
|
||||
|
||||
Returns:
|
||||
square of a given number
|
||||
|
||||
.. c:function:: float glm_min(float a, float b)
|
||||
|
||||
| returns minimum of given two values
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** number 1
|
||||
| *[in]* **b** number 2
|
||||
|
||||
Returns:
|
||||
minimum value
|
||||
|
||||
.. c:function:: float glm_max(float a, float b)
|
||||
|
||||
| returns maximum of given two values
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** number 1
|
||||
| *[in]* **b** number 2
|
||||
|
||||
Returns:
|
||||
maximum value
|
||||
|
||||
.. c:function:: void glm_clamp(float val, float minVal, float maxVal)
|
||||
|
||||
constrain a value to lie between two further values
|
||||
|
||||
Parameters:
|
||||
| *[in]* **val** input value
|
||||
| *[in]* **minVal** minimum value
|
||||
| *[in]* **maxVal** maximum value
|
||||
|
||||
Returns:
|
||||
clamped value
|
||||
|
||||
.. c:function:: float glm_lerp(float from, float to, float t)
|
||||
|
||||
linear interpolation between two number
|
||||
|
||||
| formula: from + s * (to - from)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** from value
|
||||
| *[in]* **to** to value
|
||||
| *[in]* **t** interpolant (amount) clamped between 0 and 1
|
||||
|
||||
Returns:
|
||||
interpolated value
|
||||
|
||||
.. c:function:: bool glm_eq(float a, float b)
|
||||
|
||||
check if two float equal with using EPSILON
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** a
|
||||
| *[in]* **b** b
|
||||
|
||||
Returns:
|
||||
true if a and b equals
|
||||
|
||||
.. c:function:: float glm_percent(float from, float to, float current)
|
||||
|
||||
percentage of current value between start and end value
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** from value
|
||||
| *[in]* **to** to value
|
||||
| *[in]* **current** value between from and to values
|
||||
|
||||
Returns:
|
||||
clamped normalized percent (0-100 in 0-1)
|
||||
|
||||
.. c:function:: float glm_percentc(float from, float to, float current)
|
||||
|
||||
clamped percentage of current value between start and end value
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** from value
|
||||
| *[in]* **to** to value
|
||||
| *[in]* **current** value between from and to values
|
||||
|
||||
Returns:
|
||||
clamped normalized percent (0-100 in 0-1)
|
||||
143
docs/source/vec3-ext.rst
Normal file
143
docs/source/vec3-ext.rst
Normal file
@@ -0,0 +1,143 @@
|
||||
.. default-domain:: C
|
||||
|
||||
vec3 extra
|
||||
==========
|
||||
|
||||
Header: cglm/vec3-ext.h
|
||||
|
||||
There are some functions are in called in extra header. These are called extra
|
||||
because they are not used like other functions in vec3.h in the future some of
|
||||
these functions ma be moved to vec3 header.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_vec3_mulv`
|
||||
#. :c:func:`glm_vec3_broadcast`
|
||||
#. :c:func:`glm_vec3_eq`
|
||||
#. :c:func:`glm_vec3_eq_eps`
|
||||
#. :c:func:`glm_vec3_eq_all`
|
||||
#. :c:func:`glm_vec3_eqv`
|
||||
#. :c:func:`glm_vec3_eqv_eps`
|
||||
#. :c:func:`glm_vec3_max`
|
||||
#. :c:func:`glm_vec3_min`
|
||||
#. :c:func:`glm_vec3_isnan`
|
||||
#. :c:func:`glm_vec3_isinf`
|
||||
#. :c:func:`glm_vec3_isvalid`
|
||||
#. :c:func:`glm_vec3_sign`
|
||||
#. :c:func:`glm_vec3_sqrt`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_vec3_mulv(vec3 a, vec3 b, vec3 d)
|
||||
|
||||
multiplies individual items
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vec1
|
||||
| *[in]* **b** vec2
|
||||
| *[out]* **d** destination (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2])
|
||||
|
||||
.. c:function:: void glm_vec3_broadcast(float val, vec3 d)
|
||||
|
||||
fill a vector with specified value
|
||||
|
||||
Parameters:
|
||||
| *[in]* **val** value
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: bool glm_vec3_eq(vec3 v, float val)
|
||||
|
||||
check if vector is equal to value (without epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **val** value
|
||||
|
||||
.. c:function:: bool glm_vec3_eq_eps(vec3 v, float val)
|
||||
|
||||
check if vector is equal to value (with epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **val** value
|
||||
|
||||
.. c:function:: bool glm_vec3_eq_all(vec3 v)
|
||||
|
||||
check if vectors members are equal (without epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec3_eqv(vec3 v1, vec3 v2)
|
||||
|
||||
check if vector is equal to another (without epsilon) vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector 1
|
||||
| *[in]* **vec** vector 2
|
||||
|
||||
.. c:function:: bool glm_vec3_eqv_eps(vec3 v1, vec3 v2)
|
||||
|
||||
check if vector is equal to another (with epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
|
||||
.. c:function:: float glm_vec3_max(vec3 v)
|
||||
|
||||
max value of vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: float glm_vec3_min(vec3 v)
|
||||
|
||||
min value of vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec3_isnan(vec3 v)
|
||||
|
||||
| check if one of items is NaN (not a number)
|
||||
| you should only use this in DEBUG mode or very critical asserts
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec3_isinf(vec3 v)
|
||||
|
||||
| check if one of items is INFINITY
|
||||
| you should only use this in DEBUG mode or very critical asserts
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec3_isvalid(vec3 v)
|
||||
|
||||
| check if all items are valid number
|
||||
| you should only use this in DEBUG mode or very critical asserts
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec3_sign(vec3 v, vec3 dest)
|
||||
|
||||
get sign of 32 bit float as +1, -1, 0
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** sign vector (only keeps signs as -1, 0, -1)
|
||||
|
||||
.. c:function:: void glm_vec3_sqrt(vec3 v, vec3 dest)
|
||||
|
||||
square root of each vector item
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** destination vector (sqrt(v))
|
||||
499
docs/source/vec3.rst
Normal file
499
docs/source/vec3.rst
Normal file
@@ -0,0 +1,499 @@
|
||||
.. default-domain:: C
|
||||
|
||||
vec3
|
||||
====
|
||||
|
||||
Header: cglm/vec3.h
|
||||
|
||||
**Important:** *cglm* was used **glm_vec_** namespace for vec3 functions until
|
||||
**v0.5.0**, since **v0.5.0** cglm uses **glm_vec3_** namespace for vec3.
|
||||
|
||||
Also `glm_vec3_flipsign` has been renamed to `glm_vec3_negate`
|
||||
|
||||
We mostly use vectors in graphics math, to make writing code faster
|
||||
and easy to read, some *vec3* functions are aliased in global namespace.
|
||||
For instance :c:func:`glm_dot` is alias of :c:func:`glm_vec3_dot`,
|
||||
alias means inline wrapper here. There is no call verison of alias functions
|
||||
|
||||
There are also functions for rotating *vec3* vector. **_m4**, **_m3** prefixes
|
||||
rotate *vec3* with matrix.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Macros:
|
||||
|
||||
1. glm_vec3_dup(v, dest)
|
||||
#. GLM_VEC3_ONE_INIT
|
||||
#. GLM_VEC3_ZERO_INIT
|
||||
#. GLM_VEC3_ONE
|
||||
#. GLM_VEC3_ZERO
|
||||
#. GLM_YUP
|
||||
#. GLM_ZUP
|
||||
#. GLM_XUP
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_vec3`
|
||||
#. :c:func:`glm_vec3_copy`
|
||||
#. :c:func:`glm_vec3_zero`
|
||||
#. :c:func:`glm_vec3_one`
|
||||
#. :c:func:`glm_vec3_dot`
|
||||
#. :c:func:`glm_vec3_norm2`
|
||||
#. :c:func:`glm_vec3_norm`
|
||||
#. :c:func:`glm_vec3_add`
|
||||
#. :c:func:`glm_vec3_adds`
|
||||
#. :c:func:`glm_vec3_sub`
|
||||
#. :c:func:`glm_vec3_subs`
|
||||
#. :c:func:`glm_vec3_mul`
|
||||
#. :c:func:`glm_vec3_scale`
|
||||
#. :c:func:`glm_vec3_scale_as`
|
||||
#. :c:func:`glm_vec3_div`
|
||||
#. :c:func:`glm_vec3_divs`
|
||||
#. :c:func:`glm_vec3_addadd`
|
||||
#. :c:func:`glm_vec3_subadd`
|
||||
#. :c:func:`glm_vec3_muladd`
|
||||
#. :c:func:`glm_vec3_muladds`
|
||||
#. :c:func:`glm_vec3_maxadd`
|
||||
#. :c:func:`glm_vec3_minadd`
|
||||
#. :c:func:`glm_vec3_flipsign`
|
||||
#. :c:func:`glm_vec3_flipsign_to`
|
||||
#. :c:func:`glm_vec3_inv`
|
||||
#. :c:func:`glm_vec3_inv_to`
|
||||
#. :c:func:`glm_vec3_negate`
|
||||
#. :c:func:`glm_vec3_negate_to`
|
||||
#. :c:func:`glm_vec3_normalize`
|
||||
#. :c:func:`glm_vec3_normalize_to`
|
||||
#. :c:func:`glm_vec3_cross`
|
||||
#. :c:func:`glm_vec3_crossn`
|
||||
#. :c:func:`glm_vec3_distance2`
|
||||
#. :c:func:`glm_vec3_distance`
|
||||
#. :c:func:`glm_vec3_angle`
|
||||
#. :c:func:`glm_vec3_rotate`
|
||||
#. :c:func:`glm_vec3_rotate_m4`
|
||||
#. :c:func:`glm_vec3_rotate_m3`
|
||||
#. :c:func:`glm_vec3_proj`
|
||||
#. :c:func:`glm_vec3_center`
|
||||
#. :c:func:`glm_vec3_maxv`
|
||||
#. :c:func:`glm_vec3_minv`
|
||||
#. :c:func:`glm_vec3_ortho`
|
||||
#. :c:func:`glm_vec3_clamp`
|
||||
#. :c:func:`glm_vec3_lerp`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_vec3(vec4 v4, vec3 dest)
|
||||
|
||||
init vec3 using vec4
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v4** vector4
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec3_copy(vec3 a, vec3 dest)
|
||||
|
||||
copy all members of [a] to [dest]
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec3_zero(vec3 v)
|
||||
|
||||
makes all members 0.0f (zero)
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec3_one(vec3 v)
|
||||
|
||||
makes all members 1.0f (one)
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: float glm_vec3_dot(vec3 a, vec3 b)
|
||||
|
||||
dot product of vec3
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector1
|
||||
| *[in]* **b** vector2
|
||||
|
||||
Returns:
|
||||
dot product
|
||||
|
||||
.. c:function:: void glm_vec3_cross(vec3 a, vec3 b, vec3 d)
|
||||
|
||||
cross product of two vector (RH)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec3_crossn(vec3 a, vec3 b, vec3 dest)
|
||||
|
||||
cross product of two vector (RH) and normalize the result
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: float glm_vec3_norm2(vec3 v)
|
||||
|
||||
norm * norm (magnitude) of vector
|
||||
|
||||
we can use this func instead of calling norm * norm, because it would call
|
||||
sqrtf fuction twice but with this func we can avoid func call, maybe this is
|
||||
not good name for this func
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
Returns:
|
||||
square of norm / magnitude
|
||||
|
||||
.. c:function:: float glm_vec3_norm(vec3 vec)
|
||||
|
||||
norm (magnitude) of vec3
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector
|
||||
|
||||
.. c:function:: void glm_vec3_add(vec3 a, vec3 b, vec3 dest)
|
||||
|
||||
add a vector to b vector store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector1
|
||||
| *[in]* **b** vector2
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec3_adds(vec3 a, float s, vec3 dest)
|
||||
|
||||
add scalar to v vector store result in dest (d = v + vec(s))
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec3_sub(vec3 v1, vec3 v2, vec3 dest)
|
||||
|
||||
subtract b vector from a vector store result in dest (d = v1 - v2)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector1
|
||||
| *[in]* **b** vector2
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec3_subs(vec3 v, float s, vec3 dest)
|
||||
|
||||
subtract scalar from v vector store result in dest (d = v - vec(s))
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec3_mul(vec3 a, vec3 b, vec3 d)
|
||||
|
||||
multiply two vector (component-wise multiplication)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector
|
||||
| *[in]* **b** scalar
|
||||
| *[out]* **d** result = (a[0] * b[0], a[1] * b[1], a[2] * b[2])
|
||||
|
||||
.. c:function:: void glm_vec3_scale(vec3 v, float s, vec3 dest)
|
||||
|
||||
multiply/scale vec3 vector with scalar: result = v * s
|
||||
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec3_scale_as(vec3 v, float s, vec3 dest)
|
||||
|
||||
make vec3 vector scale as specified: result = unit(v) * s
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec3_div(vec3 a, vec3 b, vec3 dest)
|
||||
|
||||
div vector with another component-wise division: d = a / b
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** result = (a[0] / b[0], a[1] / b[1], a[2] / b[2])
|
||||
|
||||
.. c:function:: void glm_vec3_divs(vec3 v, float s, vec3 dest)
|
||||
|
||||
div vector with scalar: d = v / s
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** result = (a[0] / s, a[1] / s, a[2] / s])
|
||||
|
||||
.. c:function:: void glm_vec3_addadd(vec3 a, vec3 b, vec3 dest)
|
||||
|
||||
| add two vectors and add result to sum
|
||||
| it applies += operator so dest must be initialized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** dest += (a + b)
|
||||
|
||||
.. c:function:: void glm_vec3_subadd(vec3 a, vec3 b, vec3 dest)
|
||||
|
||||
| sub two vectors and add result to sum
|
||||
| it applies += operator so dest must be initialized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** dest += (a - b)
|
||||
|
||||
.. c:function:: void glm_vec3_muladd(vec3 a, vec3 b, vec3 dest)
|
||||
|
||||
| mul two vectors and add result to sum
|
||||
| it applies += operator so dest must be initialized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** dest += (a * b)
|
||||
|
||||
.. c:function:: void glm_vec3_muladds(vec3 a, float s, vec3 dest)
|
||||
|
||||
| mul vector with scalar and add result to sum
|
||||
| it applies += operator so dest must be initialized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** dest += (a * b)
|
||||
|
||||
.. c:function:: void glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest)
|
||||
|
||||
| add max of two vector to result/dest
|
||||
| it applies += operator so dest must be initialized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** dest += (a * b)
|
||||
|
||||
.. c:function:: void glm_vec3_minadd(vec3 a, vec3 b, vec3 dest)
|
||||
|
||||
| add min of two vector to result/dest
|
||||
| it applies += operator so dest must be initialized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** dest += (a * b)
|
||||
|
||||
.. c:function:: void glm_vec3_flipsign(vec3 v)
|
||||
|
||||
**DEPRACATED!**
|
||||
|
||||
use :c:func:`glm_vec3_negate`
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec3_flipsign_to(vec3 v, vec3 dest)
|
||||
|
||||
**DEPRACATED!**
|
||||
|
||||
use :c:func:`glm_vec3_negate_to`
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** negated vector
|
||||
|
||||
.. c:function:: void glm_vec3_inv(vec3 v)
|
||||
|
||||
**DEPRACATED!**
|
||||
|
||||
use :c:func:`glm_vec3_negate`
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec3_inv_to(vec3 v, vec3 dest)
|
||||
|
||||
**DEPRACATED!**
|
||||
|
||||
use :c:func:`glm_vec3_negate_to`
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec3_negate(vec3 v)
|
||||
|
||||
negate vector components
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec3_negate_to(vec3 v, vec3 dest)
|
||||
|
||||
negate vector components and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** negated vector
|
||||
|
||||
.. c:function:: void glm_vec3_normalize(vec3 v)
|
||||
|
||||
normalize vec3 and store result in same vec
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec3_normalize_to(vec3 vec, vec3 dest)
|
||||
|
||||
normalize vec3 to dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: float glm_vec3_angle(vec3 v1, vec3 v2)
|
||||
|
||||
angle betwen two vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
|
||||
Return:
|
||||
| angle as radians
|
||||
|
||||
.. c:function:: void glm_vec3_rotate(vec3 v, float angle, vec3 axis)
|
||||
|
||||
rotate vec3 around axis by angle using Rodrigues' rotation formula
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
| *[in]* **axis** axis vector (will be normalized)
|
||||
| *[out]* **angle** angle (radians)
|
||||
|
||||
.. c:function:: void glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest)
|
||||
|
||||
apply rotation matrix to vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine matrix or rot matrix
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** rotated vector
|
||||
|
||||
.. c:function:: void glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest)
|
||||
|
||||
apply rotation matrix to vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **m** affine matrix or rot matrix
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** rotated vector
|
||||
|
||||
.. c:function:: void glm_vec3_proj(vec3 a, vec3 b, vec3 dest)
|
||||
|
||||
project a vector onto b vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector1
|
||||
| *[in]* **b** vector2
|
||||
| *[out]* **dest** projected vector
|
||||
|
||||
.. c:function:: void glm_vec3_center(vec3 v1, vec3 v2, vec3 dest)
|
||||
|
||||
find center point of two vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** center point
|
||||
|
||||
.. c:function:: float glm_vec3_distance2(vec3 v1, vec3 v2)
|
||||
|
||||
squared distance between two vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** vector1
|
||||
| *[in]* **row1** vector2
|
||||
|
||||
Returns:
|
||||
| squared distance (distance * distance)
|
||||
|
||||
.. c:function:: float glm_vec3_distance(vec3 v1, vec3 v2)
|
||||
|
||||
distance between two vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** vector1
|
||||
| *[in]* **row1** vector2
|
||||
|
||||
Returns:
|
||||
| distance
|
||||
|
||||
.. c:function:: void glm_vec3_maxv(vec3 v1, vec3 v2, vec3 dest)
|
||||
|
||||
max values of vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec3_minv(vec3 v1, vec3 v2, vec3 dest)
|
||||
|
||||
min values of vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec3_ortho(vec3 v, vec3 dest)
|
||||
|
||||
possible orthogonal/perpendicular vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** vector
|
||||
| *[out]* **dest** orthogonal/perpendicular vector
|
||||
|
||||
.. c:function:: void glm_vec3_clamp(vec3 v, float minVal, float maxVal)
|
||||
|
||||
constrain a value to lie between two further values
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
| *[in]* **minVal** minimum value
|
||||
| *[in]* **maxVal** maximum value
|
||||
|
||||
.. c:function:: void glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest)
|
||||
|
||||
linear interpolation between two vector
|
||||
|
||||
| formula: from + s * (to - from)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** from value
|
||||
| *[in]* **to** to value
|
||||
| *[in]* **t** interpolant (amount) clamped between 0 and 1
|
||||
| *[out]* **dest** destination
|
||||
138
docs/source/vec4-ext.rst
Normal file
138
docs/source/vec4-ext.rst
Normal file
@@ -0,0 +1,138 @@
|
||||
.. default-domain:: C
|
||||
|
||||
vec4 extra
|
||||
==========
|
||||
|
||||
Header: cglm/vec4-ext.h
|
||||
|
||||
There are some functions are in called in extra header. These are called extra
|
||||
because they are not used like other functions in vec4.h in the future some of
|
||||
these functions ma be moved to vec4 header.
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_vec4_mulv`
|
||||
#. :c:func:`glm_vec4_broadcast`
|
||||
#. :c:func:`glm_vec4_eq`
|
||||
#. :c:func:`glm_vec4_eq_eps`
|
||||
#. :c:func:`glm_vec4_eq_all`
|
||||
#. :c:func:`glm_vec4_eqv`
|
||||
#. :c:func:`glm_vec4_eqv_eps`
|
||||
#. :c:func:`glm_vec4_max`
|
||||
#. :c:func:`glm_vec4_min`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_vec4_mulv(vec4 a, vec4 b, vec4 d)
|
||||
|
||||
multiplies individual items
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vec1
|
||||
| *[in]* **b** vec2
|
||||
| *[out]* **d** destination
|
||||
|
||||
.. c:function:: void glm_vec4_broadcast(float val, vec4 d)
|
||||
|
||||
fill a vector with specified value
|
||||
|
||||
Parameters:
|
||||
| *[in]* **val** value
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: bool glm_vec4_eq(vec4 v, float val)
|
||||
|
||||
check if vector is equal to value (without epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **val** value
|
||||
|
||||
.. c:function:: bool glm_vec4_eq_eps(vec4 v, float val)
|
||||
|
||||
check if vector is equal to value (with epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **val** value
|
||||
|
||||
.. c:function:: bool glm_vec4_eq_all(vec4 v)
|
||||
|
||||
check if vectors members are equal (without epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec4_eqv(vec4 v1, vec4 v2)
|
||||
|
||||
check if vector is equal to another (without epsilon) vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector 1
|
||||
| *[in]* **vec** vector 2
|
||||
|
||||
.. c:function:: bool glm_vec4_eqv_eps(vec4 v1, vec4 v2)
|
||||
|
||||
check if vector is equal to another (with epsilon)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
|
||||
.. c:function:: float glm_vec4_max(vec4 v)
|
||||
|
||||
max value of vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: float glm_vec4_min(vec4 v)
|
||||
|
||||
min value of vector
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec4_isnan(vec4 v)
|
||||
|
||||
| check if one of items is NaN (not a number)
|
||||
| you should only use this in DEBUG mode or very critical asserts
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec4_isinf(vec4 v)
|
||||
|
||||
| check if one of items is INFINITY
|
||||
| you should only use this in DEBUG mode or very critical asserts
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: bool glm_vec4_isvalid(vec4 v)
|
||||
|
||||
| check if all items are valid number
|
||||
| you should only use this in DEBUG mode or very critical asserts
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec4_sign(vec4 v, vec4 dest)
|
||||
|
||||
get sign of 32 bit float as +1, -1, 0
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** sign vector (only keeps signs as -1, 0, -1)
|
||||
|
||||
.. c:function:: void glm_vec4_sqrt(vec4 v, vec4 dest)
|
||||
|
||||
square root of each vector item
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** destination vector (sqrt(v))
|
||||
403
docs/source/vec4.rst
Normal file
403
docs/source/vec4.rst
Normal file
@@ -0,0 +1,403 @@
|
||||
.. default-domain:: C
|
||||
|
||||
vec4
|
||||
====
|
||||
|
||||
Header: cglm/vec4.h
|
||||
|
||||
Table of contents (click to go):
|
||||
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
Macros:
|
||||
|
||||
1. glm_vec4_dup3(v, dest)
|
||||
#. glm_vec4_dup(v, dest)
|
||||
#. GLM_VEC4_ONE_INIT
|
||||
#. GLM_VEC4_BLACK_INIT
|
||||
#. GLM_VEC4_ZERO_INIT
|
||||
#. GLM_VEC4_ONE
|
||||
#. GLM_VEC4_BLACK
|
||||
#. GLM_VEC4_ZERO
|
||||
|
||||
Functions:
|
||||
|
||||
1. :c:func:`glm_vec4`
|
||||
#. :c:func:`glm_vec4_copy3`
|
||||
#. :c:func:`glm_vec4_copy`
|
||||
#. :c:func:`glm_vec4_ucopy`
|
||||
#. :c:func:`glm_vec4_zero`
|
||||
#. :c:func:`glm_vec4_one`
|
||||
#. :c:func:`glm_vec4_dot`
|
||||
#. :c:func:`glm_vec4_norm2`
|
||||
#. :c:func:`glm_vec4_norm`
|
||||
#. :c:func:`glm_vec4_add`
|
||||
#. :c:func:`glm_vec4_adds`
|
||||
#. :c:func:`glm_vec4_sub`
|
||||
#. :c:func:`glm_vec4_subs`
|
||||
#. :c:func:`glm_vec4_mul`
|
||||
#. :c:func:`glm_vec4_scale`
|
||||
#. :c:func:`glm_vec4_scale_as`
|
||||
#. :c:func:`glm_vec4_div`
|
||||
#. :c:func:`glm_vec4_divs`
|
||||
#. :c:func:`glm_vec4_addadd`
|
||||
#. :c:func:`glm_vec4_subadd`
|
||||
#. :c:func:`glm_vec4_muladd`
|
||||
#. :c:func:`glm_vec4_muladds`
|
||||
#. :c:func:`glm_vec4_maxadd`
|
||||
#. :c:func:`glm_vec4_minadd`
|
||||
#. :c:func:`glm_vec4_flipsign`
|
||||
#. :c:func:`glm_vec4_flipsign_to`
|
||||
#. :c:func:`glm_vec4_inv`
|
||||
#. :c:func:`glm_vec4_inv_to`
|
||||
#. :c:func:`glm_vec4_negate`
|
||||
#. :c:func:`glm_vec4_negate_to`
|
||||
#. :c:func:`glm_vec4_normalize`
|
||||
#. :c:func:`glm_vec4_normalize_to`
|
||||
#. :c:func:`glm_vec4_distance`
|
||||
#. :c:func:`glm_vec4_maxv`
|
||||
#. :c:func:`glm_vec4_minv`
|
||||
#. :c:func:`glm_vec4_clamp`
|
||||
#. :c:func:`glm_vec4_lerp`
|
||||
#. :c:func:`glm_vec4_isnan`
|
||||
#. :c:func:`glm_vec4_isinf`
|
||||
#. :c:func:`glm_vec4_isvalid`
|
||||
#. :c:func:`glm_vec4_sign`
|
||||
#. :c:func:`glm_vec4_sqrt`
|
||||
|
||||
Functions documentation
|
||||
~~~~~~~~~~~~~~~~~~~~~~~
|
||||
|
||||
.. c:function:: void glm_vec4(vec3 v3, float last, vec4 dest)
|
||||
|
||||
init vec4 using vec3, since you are initializing vec4 with vec3
|
||||
you need to set last item. cglm could set it zero but making it parameter
|
||||
gives more control
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v3** vector4
|
||||
| *[in]* **last** last item of vec4
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec4_copy3(vec4 a, vec3 dest)
|
||||
|
||||
copy first 3 members of [a] to [dest]
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec4_copy(vec4 v, vec4 dest)
|
||||
|
||||
copy all members of [a] to [dest]
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** source
|
||||
| *[in]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec4_ucopy(vec4 v, vec4 dest)
|
||||
|
||||
copy all members of [a] to [dest]
|
||||
|
||||
| alignment is not required
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** source
|
||||
| *[in]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec4_zero(vec4 v)
|
||||
|
||||
makes all members zero
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: float glm_vec4_dot(vec4 a, vec4 b)
|
||||
|
||||
dot product of vec4
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector1
|
||||
| *[in]* **b** vector2
|
||||
|
||||
Returns:
|
||||
dot product
|
||||
|
||||
.. c:function:: float glm_vec4_norm2(vec4 v)
|
||||
|
||||
norm * norm (magnitude) of vector
|
||||
|
||||
we can use this func instead of calling norm * norm, because it would call
|
||||
sqrtf fuction twice but with this func we can avoid func call, maybe this is
|
||||
not good name for this func
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
|
||||
Returns:
|
||||
square of norm / magnitude
|
||||
|
||||
.. c:function:: float glm_vec4_norm(vec4 vec)
|
||||
|
||||
norm (magnitude) of vec4
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** vector
|
||||
|
||||
.. c:function:: void glm_vec4_add(vec4 a, vec4 b, vec4 dest)
|
||||
|
||||
add a vector to b vector store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector1
|
||||
| *[in]* **b** vector2
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec4_adds(vec4 v, float s, vec4 dest)
|
||||
|
||||
add scalar to v vector store result in dest (d = v + vec(s))
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec4_sub(vec4 a, vec4 b, vec4 dest)
|
||||
|
||||
subtract b vector from a vector store result in dest (d = v1 - v2)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector1
|
||||
| *[in]* **b** vector2
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec4_subs(vec4 v, float s, vec4 dest)
|
||||
|
||||
subtract scalar from v vector store result in dest (d = v - vec(s))
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec4_mul(vec4 a, vec4 b, vec4 d)
|
||||
|
||||
multiply two vector (component-wise multiplication)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector1
|
||||
| *[in]* **b** vector2
|
||||
| *[out]* **dest** result = (a[0] * b[0], a[1] * b[1], a[2] * b[2], a[3] * b[3])
|
||||
|
||||
.. c:function:: void glm_vec4_scale(vec4 v, float s, vec4 dest)
|
||||
|
||||
multiply/scale vec4 vector with scalar: result = v * s
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec4_scale_as(vec4 v, float s, vec4 dest)
|
||||
|
||||
make vec4 vector scale as specified: result = unit(v) * s
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** destination vector
|
||||
|
||||
.. c:function:: void glm_vec4_div(vec4 a, vec4 b, vec4 dest)
|
||||
|
||||
div vector with another component-wise division: d = v1 / v2
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector1
|
||||
| *[in]* **b** vector2
|
||||
| *[out]* **dest** result = (a[0] / b[0], a[1] / b[1], a[2] / b[2], a[3] / b[3])
|
||||
|
||||
.. c:function:: void glm_vec4_divs(vec4 v, float s, vec4 dest)
|
||||
|
||||
div vector with scalar: d = v / s
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** result = (a[0] / s, a[1] / s, a[2] / s, a[3] / s)
|
||||
|
||||
.. c:function:: void glm_vec4_addadd(vec4 a, vec4 b, vec4 dest)
|
||||
|
||||
| add two vectors and add result to sum
|
||||
| it applies += operator so dest must be initialized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** dest += (a + b)
|
||||
|
||||
.. c:function:: void glm_vec4_subadd(vec4 a, vec4 b, vec4 dest)
|
||||
|
||||
| sub two vectors and add result to sum
|
||||
| it applies += operator so dest must be initialized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** dest += (a - b)
|
||||
|
||||
.. c:function:: void glm_vec4_muladd(vec4 a, vec4 b, vec4 dest)
|
||||
|
||||
| mul two vectors and add result to sum
|
||||
| it applies += operator so dest must be initialized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** dest += (a * b)
|
||||
|
||||
.. c:function:: void glm_vec4_muladds(vec4 a, float s, vec4 dest)
|
||||
|
||||
| mul vector with scalar and add result to sum
|
||||
| it applies += operator so dest must be initialized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector
|
||||
| *[in]* **s** scalar
|
||||
| *[out]* **dest** dest += (a * b)
|
||||
|
||||
.. c:function:: void glm_vec4_maxadd(vec4 a, vec4 b, vec4 dest)
|
||||
|
||||
| add max of two vector to result/dest
|
||||
| it applies += operator so dest must be initialized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** dest += (a * b)
|
||||
|
||||
.. c:function:: void glm_vec4_minadd(vec4 a, vec4 b, vec4 dest)
|
||||
|
||||
| add min of two vector to result/dest
|
||||
| it applies += operator so dest must be initialized
|
||||
|
||||
Parameters:
|
||||
| *[in]* **a** vector 1
|
||||
| *[in]* **b** vector 2
|
||||
| *[out]* **dest** dest += (a * b)
|
||||
|
||||
.. c:function:: void glm_vec4_flipsign(vec4 v)
|
||||
|
||||
**DEPRACATED!**
|
||||
|
||||
use :c:func:`glm_vec4_negate`
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec4_flipsign_to(vec4 v, vec4 dest)
|
||||
|
||||
**DEPRACATED!**
|
||||
|
||||
use :c:func:`glm_vec4_negate_to`
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** negated vector
|
||||
|
||||
.. c:function:: void glm_vec4_inv(vec4 v)
|
||||
|
||||
**DEPRACATED!**
|
||||
|
||||
use :c:func:`glm_vec4_negate`
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec4_inv_to(vec4 v, vec4 dest)
|
||||
|
||||
**DEPRACATED!**
|
||||
|
||||
use :c:func:`glm_vec4_negate_to`
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec4_negate(vec4 v)
|
||||
|
||||
negate vector components
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec4_negate_to(vec4 v, vec4 dest)
|
||||
|
||||
negate vector components and store result in dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v** vector
|
||||
| *[out]* **dest** negated vector
|
||||
|
||||
.. c:function:: void glm_vec4_normalize(vec4 v)
|
||||
|
||||
normalize vec4 and store result in same vec
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
|
||||
.. c:function:: void glm_vec4_normalize_to(vec4 vec, vec4 dest)
|
||||
|
||||
normalize vec4 to dest
|
||||
|
||||
Parameters:
|
||||
| *[in]* **vec** source
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: float glm_vec4_distance(vec4 v1, vec4 v2)
|
||||
|
||||
distance between two vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **mat** vector1
|
||||
| *[in]* **row1** vector2
|
||||
|
||||
Returns:
|
||||
| distance
|
||||
|
||||
.. c:function:: void glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest)
|
||||
|
||||
max values of vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest)
|
||||
|
||||
min values of vectors
|
||||
|
||||
Parameters:
|
||||
| *[in]* **v1** vector1
|
||||
| *[in]* **v2** vector2
|
||||
| *[out]* **dest** destination
|
||||
|
||||
.. c:function:: void glm_vec4_clamp(vec4 v, float minVal, float maxVal)
|
||||
|
||||
constrain a value to lie between two further values
|
||||
|
||||
Parameters:
|
||||
| *[in, out]* **v** vector
|
||||
| *[in]* **minVal** minimum value
|
||||
| *[in]* **maxVal** maximum value
|
||||
|
||||
.. c:function:: void glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest)
|
||||
|
||||
linear interpolation between two vector
|
||||
|
||||
| formula: from + s * (to - from)
|
||||
|
||||
Parameters:
|
||||
| *[in]* **from** from value
|
||||
| *[in]* **to** to value
|
||||
| *[in]* **t** interpolant (amount) clamped between 0 and 1
|
||||
| *[out]* **dest** destination
|
||||
@@ -16,6 +16,7 @@
|
||||
|
||||
#include "common.h"
|
||||
#include "mat4.h"
|
||||
#include "mat3.h"
|
||||
|
||||
#ifdef CGLM_SSE_FP
|
||||
# include "simd/sse2/affine.h"
|
||||
@@ -25,8 +26,22 @@
|
||||
# include "simd/avx/affine.h"
|
||||
#endif
|
||||
|
||||
#include <assert.h>
|
||||
|
||||
/*!
|
||||
* @brief this is similar to glm_mat4_mul but specialized to affine transform
|
||||
*
|
||||
* Matrix format should be:
|
||||
* R R R X
|
||||
* R R R Y
|
||||
* R R R Z
|
||||
* 0 0 0 W
|
||||
*
|
||||
* this reduces some multiplications. It should be faster than mat4_mul.
|
||||
* if you are not sure about matrix format then DON'T use this! use mat4_mul
|
||||
*
|
||||
* @param[in] m1 affine matrix 1
|
||||
* @param[in] m2 affine matrix 2
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mul(mat4 m1, mat4 m2, mat4 dest) {
|
||||
@@ -67,6 +82,59 @@ glm_mul(mat4 m1, mat4 m2, mat4 dest) {
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief this is similar to glm_mat4_mul but specialized to affine transform
|
||||
*
|
||||
* Right Matrix format should be:
|
||||
* R R R 0
|
||||
* R R R 0
|
||||
* R R R 0
|
||||
* 0 0 0 1
|
||||
*
|
||||
* this reduces some multiplications. It should be faster than mat4_mul.
|
||||
* if you are not sure about matrix format then DON'T use this! use mat4_mul
|
||||
*
|
||||
* @param[in] m1 affine matrix 1
|
||||
* @param[in] m2 affine matrix 2
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_mul_rot_sse2(m1, m2, dest);
|
||||
#else
|
||||
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
|
||||
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
|
||||
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3],
|
||||
a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3],
|
||||
|
||||
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
|
||||
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
|
||||
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2];
|
||||
|
||||
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
|
||||
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
|
||||
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
|
||||
dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02;
|
||||
|
||||
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
|
||||
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
|
||||
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
|
||||
dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12;
|
||||
|
||||
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
|
||||
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
|
||||
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
|
||||
dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22;
|
||||
|
||||
dest[3][0] = a30;
|
||||
dest[3][1] = a31;
|
||||
dest[3][2] = a32;
|
||||
dest[3][3] = a33;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inverse orthonormal rotation + translation matrix (ridig-body)
|
||||
*
|
||||
@@ -83,7 +151,7 @@ glm_inv_tr(mat4 mat) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_inv_tr_sse2(mat);
|
||||
#else
|
||||
CGLM_ALIGN(16) mat3 r;
|
||||
CGLM_ALIGN_MAT mat3 r;
|
||||
CGLM_ALIGN(16) vec3 t;
|
||||
|
||||
/* rotate */
|
||||
@@ -92,8 +160,8 @@ glm_inv_tr(mat4 mat) {
|
||||
|
||||
/* translate */
|
||||
glm_mat3_mulv(r, mat[3], t);
|
||||
glm_vec_flipsign(t);
|
||||
glm_vec_copy(t, mat[3]);
|
||||
glm_vec3_negate(t);
|
||||
glm_vec3_copy(t, mat[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -16,14 +16,14 @@
|
||||
CGLM_INLINE void glm_scale_to(mat4 m, vec3 v, mat4 dest);
|
||||
CGLM_INLINE void glm_scale_make(mat4 m, vec3 v);
|
||||
CGLM_INLINE void glm_scale(mat4 m, vec3 v);
|
||||
CGLM_INLINE void glm_scale1(mat4 m, float s);
|
||||
CGLM_INLINE void glm_rotate_x(mat4 m, float rad, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_y(mat4 m, float rad, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_z(mat4 m, float rad, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc);
|
||||
CGLM_INLINE void glm_scale_uni(mat4 m, float s);
|
||||
CGLM_INLINE void glm_rotate_x(mat4 m, float angle, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_y(mat4 m, float angle, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_z(mat4 m, float angle, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_make(mat4 m, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_rotate_ndc(mat4 m, float angle, vec3 axis_ndc);
|
||||
CGLM_INLINE void glm_rotate(mat4 m, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_decompose_scalev(mat4 m, vec3 s);
|
||||
CGLM_INLINE bool glm_uniscaled(mat4 m);
|
||||
CGLM_INLINE void glm_decompose_rs(mat4 m, mat4 r, vec3 s);
|
||||
@@ -34,56 +34,35 @@
|
||||
#define cglm_affine_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec4.h"
|
||||
#include "affine-mat.h"
|
||||
#include "util.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
#include "affine-mat.h"
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_to(mat4 m, vec3 v, mat4 dest) {
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_load_ps(t[0]),
|
||||
_mm_set1_ps(v[0])),
|
||||
_mm_mul_ps(_mm_load_ps(t[1]),
|
||||
_mm_set1_ps(v[1]))),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(t[2]),
|
||||
_mm_set1_ps(v[2])),
|
||||
_mm_load_ps(t[3]))))
|
||||
;
|
||||
|
||||
_mm_store_ps(dest[0], _mm_load_ps(m[0]));
|
||||
_mm_store_ps(dest[1], _mm_load_ps(m[1]));
|
||||
_mm_store_ps(dest[2], _mm_load_ps(m[2]));
|
||||
#else
|
||||
vec4 v1, v2, v3;
|
||||
|
||||
glm_vec4_scale(t[0], v[0], v1);
|
||||
glm_vec4_scale(t[1], v[1], v2);
|
||||
glm_vec4_scale(t[2], v[2], v3);
|
||||
|
||||
glm_vec4_add(v1, t[3], t[3]);
|
||||
glm_vec4_add(v2, t[3], t[3]);
|
||||
glm_vec4_add(v3, t[3], t[3]);
|
||||
|
||||
glm__memcpy(float, dest, t, sizeof(mat4));
|
||||
#endif
|
||||
}
|
||||
glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest);
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by v vector
|
||||
* and stores result in same matrix
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] v translate vector [x, y, z]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate(mat4 m, vec3 v) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(m[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]),
|
||||
_mm_set1_ps(v[0])),
|
||||
_mm_mul_ps(_mm_load_ps(m[1]),
|
||||
_mm_set1_ps(v[1]))),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]),
|
||||
_mm_set1_ps(v[2])),
|
||||
_mm_load_ps(m[3]))))
|
||||
glmm_store(m[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_load(m[0]),
|
||||
_mm_set1_ps(v[0])),
|
||||
_mm_mul_ps(glmm_load(m[1]),
|
||||
_mm_set1_ps(v[1]))),
|
||||
_mm_add_ps(_mm_mul_ps(glmm_load(m[2]),
|
||||
_mm_set1_ps(v[2])),
|
||||
glmm_load(m[3]))))
|
||||
;
|
||||
#else
|
||||
vec4 v1, v2, v3;
|
||||
@@ -98,63 +77,110 @@ glm_translate(mat4 m, vec3 v) {
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by v vector
|
||||
* and store result in dest
|
||||
*
|
||||
* source matrix will remain same
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] v translate vector [x, y, z]
|
||||
* @param[out] dest translated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_x(mat4 m, float to) {
|
||||
glm_translate_to(mat4 m, vec3 v, mat4 dest) {
|
||||
glm_mat4_copy(m, dest);
|
||||
glm_translate(dest, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by x factor
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] x x factor
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_x(mat4 m, float x) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]),
|
||||
_mm_set1_ps(to)),
|
||||
_mm_load_ps(m[3])))
|
||||
glmm_store(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(glmm_load(m[0]),
|
||||
_mm_set1_ps(x)),
|
||||
glmm_load(m[3])))
|
||||
;
|
||||
#else
|
||||
vec4 v1;
|
||||
glm_vec4_scale(m[0], to, v1);
|
||||
glm_vec4_scale(m[0], x, v1);
|
||||
glm_vec4_add(v1, m[3], m[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by y factor
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] y y factor
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_y(mat4 m, float to) {
|
||||
glm_translate_y(mat4 m, float y) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[1]),
|
||||
_mm_set1_ps(to)),
|
||||
_mm_load_ps(m[3])))
|
||||
glmm_store(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(glmm_load(m[1]),
|
||||
_mm_set1_ps(y)),
|
||||
glmm_load(m[3])))
|
||||
;
|
||||
#else
|
||||
vec4 v1;
|
||||
glm_vec4_scale(m[1], to, v1);
|
||||
glm_vec4_scale(m[1], y, v1);
|
||||
glm_vec4_add(v1, m[3], m[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by z factor
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] z z factor
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_z(mat4 m, float to) {
|
||||
glm_translate_z(mat4 m, float z) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]),
|
||||
_mm_set1_ps(to)),
|
||||
_mm_load_ps(m[3])))
|
||||
glmm_store(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(glmm_load(m[2]),
|
||||
_mm_set1_ps(z)),
|
||||
glmm_load(m[3])))
|
||||
;
|
||||
#else
|
||||
vec4 v1;
|
||||
glm_vec4_scale(m[2], to, v1);
|
||||
glm_vec4_scale(m[2], z, v1);
|
||||
glm_vec4_add(v1, m[3], m[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW translate transform matrix by v vector
|
||||
*
|
||||
* @param[out] m affine transfrom
|
||||
* @param[in] v translate vector [x, y, z]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_make(mat4 m, vec3 v) {
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
glm_translate_to(t, v, m);
|
||||
glm_mat4_identity(m);
|
||||
glm_vec3_copy(v, m[3]);
|
||||
}
|
||||
|
||||
/* scale */
|
||||
|
||||
/*!
|
||||
* @brief scale existing transform matrix by v vector
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] v scale vector [x, y, z]
|
||||
* @param[out] dest scaled matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_scale_to(mat4 m, vec3 v, mat4 dest) {
|
||||
@@ -165,173 +191,229 @@ glm_scale_to(mat4 m, vec3 v, mat4 dest) {
|
||||
glm_vec4_copy(m[3], dest[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW scale matrix by v vector
|
||||
*
|
||||
* @param[out] m affine transfrom
|
||||
* @param[in] v scale vector [x, y, z]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_scale_make(mat4 m, vec3 v) {
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
glm_scale_to(t, v, m);
|
||||
glm_mat4_identity(m);
|
||||
m[0][0] = v[0];
|
||||
m[1][1] = v[1];
|
||||
m[2][2] = v[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief scales existing transform matrix by v vector
|
||||
* and stores result in same matrix
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] v scale vector [x, y, z]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_scale(mat4 m, vec3 v) {
|
||||
glm_scale_to(m, v, m);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief applies uniform scale to existing transform matrix v = [s, s, s]
|
||||
* and stores result in same matrix
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] s scale factor
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_scale1(mat4 m, float s) {
|
||||
vec3 v = { s, s, s };
|
||||
glm_scale_uni(mat4 m, float s) {
|
||||
CGLM_ALIGN(8) vec3 v = { s, s, s };
|
||||
glm_scale_to(m, v, m);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around X axis by angle
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[out] dest rotated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_x(mat4 m, float rad, mat4 dest) {
|
||||
float cosVal;
|
||||
float sinVal;
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
glm_rotate_x(mat4 m, float angle, mat4 dest) {
|
||||
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
float c, s;
|
||||
|
||||
cosVal = cosf(rad);
|
||||
sinVal = sinf(rad);
|
||||
c = cosf(angle);
|
||||
s = sinf(angle);
|
||||
|
||||
t[1][1] = cosVal;
|
||||
t[1][2] = sinVal;
|
||||
t[2][1] = -sinVal;
|
||||
t[2][2] = cosVal;
|
||||
t[1][1] = c;
|
||||
t[1][2] = s;
|
||||
t[2][1] = -s;
|
||||
t[2][2] = c;
|
||||
|
||||
glm_mat4_mul(m, t, dest);
|
||||
glm_mul_rot(m, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around Y axis by angle
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[out] dest rotated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_y(mat4 m, float rad, mat4 dest) {
|
||||
float cosVal;
|
||||
float sinVal;
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
glm_rotate_y(mat4 m, float angle, mat4 dest) {
|
||||
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
float c, s;
|
||||
|
||||
cosVal = cosf(rad);
|
||||
sinVal = sinf(rad);
|
||||
c = cosf(angle);
|
||||
s = sinf(angle);
|
||||
|
||||
t[0][0] = cosVal;
|
||||
t[0][2] = -sinVal;
|
||||
t[2][0] = sinVal;
|
||||
t[2][2] = cosVal;
|
||||
t[0][0] = c;
|
||||
t[0][2] = -s;
|
||||
t[2][0] = s;
|
||||
t[2][2] = c;
|
||||
|
||||
glm_mat4_mul(m, t, dest);
|
||||
glm_mul_rot(m, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around Z axis by angle
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[out] dest rotated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_z(mat4 m, float rad, mat4 dest) {
|
||||
float cosVal;
|
||||
float sinVal;
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
glm_rotate_z(mat4 m, float angle, mat4 dest) {
|
||||
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
float c, s;
|
||||
|
||||
cosVal = cosf(rad);
|
||||
sinVal = sinf(rad);
|
||||
c = cosf(angle);
|
||||
s = sinf(angle);
|
||||
|
||||
t[0][0] = cosVal;
|
||||
t[0][1] = sinVal;
|
||||
t[1][0] = -sinVal;
|
||||
t[1][1] = cosVal;
|
||||
t[0][0] = c;
|
||||
t[0][1] = s;
|
||||
t[1][0] = -s;
|
||||
t[1][1] = c;
|
||||
|
||||
glm_mat4_mul(m, t, dest);
|
||||
glm_mul_rot(m, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW rotation matrix by angle and axis
|
||||
*
|
||||
* axis will be normalized so you don't need to normalize it
|
||||
*
|
||||
* @param[out] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc) {
|
||||
/* https://www.opengl.org/sdk/docs/man2/xhtml/glRotate.xml */
|
||||
|
||||
vec3 v, vs;
|
||||
glm_rotate_make(mat4 m, float angle, vec3 axis) {
|
||||
CGLM_ALIGN(8) vec3 axisn, v, vs;
|
||||
float c;
|
||||
|
||||
c = cosf(angle);
|
||||
|
||||
glm_vec_scale(axis_ndc, 1.0f - c, v);
|
||||
glm_vec_scale(axis_ndc, sinf(angle), vs);
|
||||
glm_vec3_normalize_to(axis, axisn);
|
||||
glm_vec3_scale(axisn, 1.0f - c, v);
|
||||
glm_vec3_scale(axisn, sinf(angle), vs);
|
||||
|
||||
glm_vec_scale(axis_ndc, v[0], m[0]);
|
||||
glm_vec_scale(axis_ndc, v[1], m[1]);
|
||||
glm_vec_scale(axis_ndc, v[2], m[2]);
|
||||
glm_vec3_scale(axisn, v[0], m[0]);
|
||||
glm_vec3_scale(axisn, v[1], m[1]);
|
||||
glm_vec3_scale(axisn, v[2], m[2]);
|
||||
|
||||
m[0][0] += c;
|
||||
m[0][1] += vs[2];
|
||||
m[0][2] -= vs[1];
|
||||
|
||||
m[1][0] -= vs[2];
|
||||
m[1][1] += c;
|
||||
m[1][2] += vs[0];
|
||||
|
||||
m[2][0] += vs[1];
|
||||
m[2][1] -= vs[0];
|
||||
m[2][2] += c;
|
||||
m[0][0] += c; m[1][0] -= vs[2]; m[2][0] += vs[1];
|
||||
m[0][1] += vs[2]; m[1][1] += c; m[2][1] -= vs[0];
|
||||
m[0][2] -= vs[1]; m[1][2] += vs[0]; m[2][2] += c;
|
||||
|
||||
m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0f;
|
||||
m[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_make(mat4 m, float angle, vec3 axis) {
|
||||
vec3 axis_ndc;
|
||||
|
||||
glm_vec_normalize_to(axis, axis_ndc);
|
||||
glm_rotate_ndc_make(m, angle, axis_ndc);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_ndc(mat4 m, float angle, vec3 axis_ndc) {
|
||||
mat4 rot, tmp;
|
||||
|
||||
glm_rotate_ndc_make(rot, angle, axis_ndc);
|
||||
|
||||
glm_vec4_scale(m[0], rot[0][0], tmp[1]);
|
||||
glm_vec4_scale(m[1], rot[0][1], tmp[0]);
|
||||
glm_vec4_add(tmp[1], tmp[0], tmp[1]);
|
||||
glm_vec4_scale(m[2], rot[0][2], tmp[0]);
|
||||
glm_vec4_add(tmp[1], tmp[0], tmp[1]);
|
||||
|
||||
glm_vec4_scale(m[0], rot[1][0], tmp[2]);
|
||||
glm_vec4_scale(m[1], rot[1][1], tmp[0]);
|
||||
glm_vec4_add(tmp[2], tmp[0], tmp[2]);
|
||||
glm_vec4_scale(m[2], rot[1][2], tmp[0]);
|
||||
glm_vec4_add(tmp[2], tmp[0], tmp[2]);
|
||||
|
||||
glm_vec4_scale(m[0], rot[2][0], tmp[3]);
|
||||
glm_vec4_scale(m[1], rot[2][1], tmp[0]);
|
||||
glm_vec4_add(tmp[3], tmp[0], tmp[3]);
|
||||
glm_vec4_scale(m[2], rot[2][2], tmp[0]);
|
||||
glm_vec4_add(tmp[3], tmp[0], tmp[3]);
|
||||
|
||||
glm_vec4_copy(tmp[1], m[0]);
|
||||
glm_vec4_copy(tmp[2], m[1]);
|
||||
glm_vec4_copy(tmp[3], m[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around given axis by angle
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate(mat4 m, float angle, vec3 axis) {
|
||||
vec3 axis_ndc;
|
||||
CGLM_ALIGN_MAT mat4 rot;
|
||||
glm_rotate_make(rot, angle, axis);
|
||||
glm_mul_rot(m, rot, m);
|
||||
}
|
||||
|
||||
glm_vec_normalize_to(axis, axis_ndc);
|
||||
glm_rotate_ndc(m, angle, axis_ndc);
|
||||
/*!
|
||||
* @brief rotate existing transform
|
||||
* around given axis by angle at given pivot point (rotation center)
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] pivot rotation center
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis) {
|
||||
CGLM_ALIGN(8) vec3 pivotInv;
|
||||
|
||||
glm_vec3_negate_to(pivot, pivotInv);
|
||||
|
||||
glm_translate(m, pivot);
|
||||
glm_rotate(m, angle, axis);
|
||||
glm_translate(m, pivotInv);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW rotation matrix by angle and axis at given point
|
||||
*
|
||||
* this creates rotation matrix, it assumes you don't have a matrix
|
||||
*
|
||||
* this should work faster than glm_rotate_at because it reduces
|
||||
* one glm_translate.
|
||||
*
|
||||
* @param[out] m affine transfrom
|
||||
* @param[in] pivot rotation center
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis) {
|
||||
CGLM_ALIGN(8) vec3 pivotInv;
|
||||
|
||||
glm_vec3_negate_to(pivot, pivotInv);
|
||||
|
||||
glm_translate_make(m, pivot);
|
||||
glm_rotate(m, angle, axis);
|
||||
glm_translate(m, pivotInv);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decompose scale vector
|
||||
*
|
||||
* @param[in] m affine transform
|
||||
* @param[out] s scale vector (Sx, Sy, Sz)
|
||||
* @param[in] m affine transform
|
||||
* @param[out] s scale vector (Sx, Sy, Sz)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_decompose_scalev(mat4 m, vec3 s) {
|
||||
s[0] = glm_vec_norm(m[0]);
|
||||
s[1] = glm_vec_norm(m[1]);
|
||||
s[2] = glm_vec_norm(m[2]);
|
||||
s[0] = glm_vec3_norm(m[0]);
|
||||
s[1] = glm_vec3_norm(m[1]);
|
||||
s[2] = glm_vec3_norm(m[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -345,10 +427,9 @@ glm_decompose_scalev(mat4 m, vec3 s) {
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_uniscaled(mat4 m) {
|
||||
vec3 s;
|
||||
CGLM_ALIGN(8) vec3 s;
|
||||
glm_decompose_scalev(m, s);
|
||||
|
||||
return glm_vec_eq_all(s);
|
||||
return glm_vec3_eq_all(s);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -362,17 +443,17 @@ glm_uniscaled(mat4 m) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_decompose_rs(mat4 m, mat4 r, vec3 s) {
|
||||
vec4 t = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
vec3 v;
|
||||
CGLM_ALIGN(16) vec4 t = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
CGLM_ALIGN(8) vec3 v;
|
||||
|
||||
glm_vec4_copy(m[0], r[0]);
|
||||
glm_vec4_copy(m[1], r[1]);
|
||||
glm_vec4_copy(m[2], r[2]);
|
||||
glm_vec4_copy(t, r[3]);
|
||||
|
||||
s[0] = glm_vec_norm(m[0]);
|
||||
s[1] = glm_vec_norm(m[1]);
|
||||
s[2] = glm_vec_norm(m[2]);
|
||||
s[0] = glm_vec3_norm(m[0]);
|
||||
s[1] = glm_vec3_norm(m[1]);
|
||||
s[2] = glm_vec3_norm(m[2]);
|
||||
|
||||
glm_vec4_scale(r[0], 1.0f/s[0], r[0]);
|
||||
glm_vec4_scale(r[1], 1.0f/s[1], r[1]);
|
||||
@@ -381,12 +462,12 @@ glm_decompose_rs(mat4 m, mat4 r, vec3 s) {
|
||||
/* Note from Apple Open Source (asume that the matrix is orthonormal):
|
||||
check for a coordinate system flip. If the determinant
|
||||
is -1, then negate the matrix and the scaling factors. */
|
||||
glm_vec_cross(m[0], m[1], v);
|
||||
if (glm_vec_dot(v, m[2]) < 0.0f) {
|
||||
glm_vec4_flipsign(r[0]);
|
||||
glm_vec4_flipsign(r[1]);
|
||||
glm_vec4_flipsign(r[2]);
|
||||
glm_vec_flipsign(s);
|
||||
glm_vec3_cross(m[0], m[1], v);
|
||||
if (glm_vec3_dot(v, m[2]) < 0.0f) {
|
||||
glm_vec4_negate(r[0]);
|
||||
glm_vec4_negate(r[1]);
|
||||
glm_vec4_negate(r[2]);
|
||||
glm_vec3_negate(s);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
279
include/cglm/box.h
Normal file
279
include/cglm/box.h
Normal file
@@ -0,0 +1,279 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_box_h
|
||||
#define cglm_box_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "util.h"
|
||||
|
||||
/*!
|
||||
* @brief apply transform to Axis-Aligned Bounding Box
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] m transform matrix
|
||||
* @param[out] dest transformed bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]) {
|
||||
vec3 v[2], xa, xb, ya, yb, za, zb;
|
||||
|
||||
glm_vec3_scale(m[0], box[0][0], xa);
|
||||
glm_vec3_scale(m[0], box[1][0], xb);
|
||||
|
||||
glm_vec3_scale(m[1], box[0][1], ya);
|
||||
glm_vec3_scale(m[1], box[1][1], yb);
|
||||
|
||||
glm_vec3_scale(m[2], box[0][2], za);
|
||||
glm_vec3_scale(m[2], box[1][2], zb);
|
||||
|
||||
/* translation + min(xa, xb) + min(ya, yb) + min(za, zb) */
|
||||
glm_vec3(m[3], v[0]);
|
||||
glm_vec3_minadd(xa, xb, v[0]);
|
||||
glm_vec3_minadd(ya, yb, v[0]);
|
||||
glm_vec3_minadd(za, zb, v[0]);
|
||||
|
||||
/* translation + max(xa, xb) + max(ya, yb) + max(za, zb) */
|
||||
glm_vec3(m[3], v[1]);
|
||||
glm_vec3_maxadd(xa, xb, v[1]);
|
||||
glm_vec3_maxadd(ya, yb, v[1]);
|
||||
glm_vec3_maxadd(za, zb, v[1]);
|
||||
|
||||
glm_vec3_copy(v[0], dest[0]);
|
||||
glm_vec3_copy(v[1], dest[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief merges two AABB bounding box and creates new one
|
||||
*
|
||||
* two box must be in same space, if one of box is in different space then
|
||||
* you should consider to convert it's space by glm_box_space
|
||||
*
|
||||
* @param[in] box1 bounding box 1
|
||||
* @param[in] box2 bounding box 2
|
||||
* @param[out] dest merged bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2]) {
|
||||
dest[0][0] = glm_min(box1[0][0], box2[0][0]);
|
||||
dest[0][1] = glm_min(box1[0][1], box2[0][1]);
|
||||
dest[0][2] = glm_min(box1[0][2], box2[0][2]);
|
||||
|
||||
dest[1][0] = glm_max(box1[1][0], box2[1][0]);
|
||||
dest[1][1] = glm_max(box1[1][1], box2[1][1]);
|
||||
dest[1][2] = glm_max(box1[1][2], box2[1][2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief crops a bounding box with another one.
|
||||
*
|
||||
* this could be useful for gettng a bbox which fits with view frustum and
|
||||
* object bounding boxes. In this case you crop view frustum box with objects
|
||||
* box
|
||||
*
|
||||
* @param[in] box bounding box 1
|
||||
* @param[in] cropBox crop box
|
||||
* @param[out] dest cropped bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2]) {
|
||||
dest[0][0] = glm_max(box[0][0], cropBox[0][0]);
|
||||
dest[0][1] = glm_max(box[0][1], cropBox[0][1]);
|
||||
dest[0][2] = glm_max(box[0][2], cropBox[0][2]);
|
||||
|
||||
dest[1][0] = glm_min(box[1][0], cropBox[1][0]);
|
||||
dest[1][1] = glm_min(box[1][1], cropBox[1][1]);
|
||||
dest[1][2] = glm_min(box[1][2], cropBox[1][2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief crops a bounding box with another one.
|
||||
*
|
||||
* this could be useful for gettng a bbox which fits with view frustum and
|
||||
* object bounding boxes. In this case you crop view frustum box with objects
|
||||
* box
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] cropBox crop box
|
||||
* @param[in] clampBox miniumum box
|
||||
* @param[out] dest cropped bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_crop_until(vec3 box[2],
|
||||
vec3 cropBox[2],
|
||||
vec3 clampBox[2],
|
||||
vec3 dest[2]) {
|
||||
glm_aabb_crop(box, cropBox, dest);
|
||||
glm_aabb_merge(clampBox, dest, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB intersects with frustum planes
|
||||
*
|
||||
* this could be useful for frustum culling using AABB.
|
||||
*
|
||||
* OPTIMIZATION HINT:
|
||||
* if planes order is similar to LEFT, RIGHT, BOTTOM, TOP, NEAR, FAR
|
||||
* then this method should run even faster because it would only use two
|
||||
* planes if object is not inside the two planes
|
||||
* fortunately cglm extracts planes as this order! just pass what you got!
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] planes frustum planes
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_frustum(vec3 box[2], vec4 planes[6]) {
|
||||
float *p, dp;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 6; i++) {
|
||||
p = planes[i];
|
||||
dp = p[0] * box[p[0] > 0.0f][0]
|
||||
+ p[1] * box[p[1] > 0.0f][1]
|
||||
+ p[2] * box[p[2] > 0.0f][2];
|
||||
|
||||
if (dp < -p[3])
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief invalidate AABB min and max values
|
||||
*
|
||||
* @param[in, out] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_invalidate(vec3 box[2]) {
|
||||
glm_vec3_broadcast(FLT_MAX, box[0]);
|
||||
glm_vec3_broadcast(-FLT_MAX, box[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB is valid or not
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_isvalid(vec3 box[2]) {
|
||||
return glm_vec3_max(box[0]) != FLT_MAX
|
||||
&& glm_vec3_min(box[1]) != -FLT_MAX;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief distance between of min and max
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_aabb_size(vec3 box[2]) {
|
||||
return glm_vec3_distance(box[0], box[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief radius of sphere which surrounds AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_aabb_radius(vec3 box[2]) {
|
||||
return glm_aabb_size(box) * 0.5f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief computes center point of AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[out] dest center of bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_center(vec3 box[2], vec3 dest) {
|
||||
glm_vec3_center(box[0], box[1], dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if two AABB intersects
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] other other bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_aabb(vec3 box[2], vec3 other[2]) {
|
||||
return (box[0][0] <= other[1][0] && box[1][0] >= other[0][0])
|
||||
&& (box[0][1] <= other[1][1] && box[1][1] >= other[0][1])
|
||||
&& (box[0][2] <= other[1][2] && box[1][2] >= other[0][2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB intersects with sphere
|
||||
*
|
||||
* https://github.com/erich666/GraphicsGems/blob/master/gems/BoxSphere.c
|
||||
* Solid Box - Solid Sphere test.
|
||||
*
|
||||
* @param[in] box solid bounding box
|
||||
* @param[in] s solid sphere
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_sphere(vec3 box[2], vec4 s) {
|
||||
float dmin;
|
||||
int a, b, c;
|
||||
|
||||
a = s[0] >= box[0][0];
|
||||
b = s[1] >= box[0][1];
|
||||
c = s[2] >= box[0][2];
|
||||
|
||||
dmin = glm_pow2(s[0] - box[a][0])
|
||||
+ glm_pow2(s[1] - box[b][1])
|
||||
+ glm_pow2(s[2] - box[c][2]);
|
||||
|
||||
return dmin <= glm_pow2(s[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if point is inside of AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] point point
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_point(vec3 box[2], vec3 point) {
|
||||
return (point[0] >= box[0][0] && point[0] <= box[1][0])
|
||||
&& (point[1] >= box[0][1] && point[1] <= box[1][1])
|
||||
&& (point[2] >= box[0][2] && point[2] <= box[1][2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB contains other AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] other other bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_contains(vec3 box[2], vec3 other[2]) {
|
||||
return (box[0][0] <= other[0][0] && box[1][0] >= other[1][0])
|
||||
&& (box[0][1] <= other[0][1] && box[1][1] >= other[1][1])
|
||||
&& (box[0][2] <= other[0][2] && box[1][2] >= other[1][2]);
|
||||
}
|
||||
|
||||
#endif /* cglm_box_h */
|
||||
@@ -20,7 +20,13 @@ extern "C" {
|
||||
#include "call/cam.h"
|
||||
#include "call/quat.h"
|
||||
#include "call/euler.h"
|
||||
#include "call/plane.h"
|
||||
#include "call/frustum.h"
|
||||
#include "call/box.h"
|
||||
#include "call/io.h"
|
||||
#include "call/project.h"
|
||||
#include "call/sphere.h"
|
||||
#include "call/ease.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@@ -13,6 +13,10 @@ extern "C" {
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_translate_make(mat4 m, vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_translate_to(mat4 m, vec3 v, mat4 dest);
|
||||
@@ -33,6 +37,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_translate_z(mat4 m, float to);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_scale_make(mat4 m, vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_scale_to(mat4 m, vec3 v, mat4 dest);
|
||||
@@ -43,7 +51,7 @@ glmc_scale(mat4 m, vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_scale1(mat4 m, float s);
|
||||
glmc_scale_uni(mat4 m, float s);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
@@ -57,26 +65,30 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_z(mat4 m, float rad, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_make(mat4 m, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_ndc(mat4 m, float angle, vec3 axis_ndc);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate(mat4 m, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_decompose_scalev(mat4 m, vec3 s);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_uniscaled(mat4 m);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_decompose_rs(mat4 m, mat4 r, vec3 s);
|
||||
@@ -85,6 +97,20 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_decompose(mat4 m, vec4 t, mat4 r, vec3 s);
|
||||
|
||||
/* affine-mat */
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mul(mat4 m1, mat4 m2, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mul_rot(mat4 m1, mat4 m2, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_inv_tr(mat4 mat);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
79
include/cglm/call/box.h
Normal file
79
include/cglm/call/box.h
Normal file
@@ -0,0 +1,79 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_box_h
|
||||
#define cglmc_box_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_crop_until(vec3 box[2],
|
||||
vec3 cropBox[2],
|
||||
vec3 clampBox[2],
|
||||
vec3 dest[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_frustum(vec3 box[2], vec4 planes[6]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_invalidate(vec3 box[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_isvalid(vec3 box[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_aabb_size(vec3 box[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_aabb_radius(vec3 box[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_center(vec3 box[2], vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_aabb(vec3 box[2], vec3 other[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_point(vec3 box[2], vec3 point);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_contains(vec3 box[2], vec3 other[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_sphere(vec3 box[2], vec4 s);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_box_h */
|
||||
|
||||
@@ -33,6 +33,26 @@ glmc_ortho(float left,
|
||||
float farVal,
|
||||
mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_aabb(vec3 box[2], mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_aabb_p(vec3 box[2], float padding, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_default(float aspect, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_default_s(float aspect, float size, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_perspective(float fovy,
|
||||
@@ -43,10 +63,79 @@ glmc_perspective(float fovy,
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_lookat(vec3 eye,
|
||||
vec3 center,
|
||||
vec3 up,
|
||||
mat4 dest);
|
||||
glmc_persp_move_far(mat4 proj, float deltaFar);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_perspective_default(float aspect, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_perspective_resize(float aspect, mat4 proj);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_look(vec3 eye, vec3 dir, vec3 up, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_look_anyup(vec3 eye, vec3 dir, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom,
|
||||
float * __restrict left,
|
||||
float * __restrict right);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decompv(mat4 proj, float dest[6]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_x(mat4 proj,
|
||||
float * __restrict left,
|
||||
float * __restrict right);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_y(mat4 proj,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_z(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_far(mat4 proj, float * __restrict farVal);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_near(mat4 proj, float * __restrict nearVal);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_persp_fovy(mat4 proj);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_persp_aspect(mat4 proj);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_sizes(mat4 proj, float fovy, vec4 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
140
include/cglm/call/ease.h
Normal file
140
include/cglm/call/ease.h
Normal file
@@ -0,0 +1,140 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_ease_h
|
||||
#define cglmc_ease_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_linear(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_sine_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_sine_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_sine_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quad_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quad_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quad_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_cubic_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_cubic_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_cubic_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quart_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quart_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quart_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quint_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quint_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quint_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_exp_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_exp_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_exp_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_circ_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_circ_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_circ_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_back_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_back_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_back_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_elast_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_elast_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_elast_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_bounce_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_bounce_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_bounce_inout(float t);
|
||||
|
||||
#endif /* cglmc_ease_h */
|
||||
@@ -21,6 +21,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_euler(vec3 angles, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xyz(vec3 angles, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zyx(vec3 angles, mat4 dest);
|
||||
|
||||
41
include/cglm/call/frustum.h
Normal file
41
include/cglm/call/frustum.h
Normal file
@@ -0,0 +1,41 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_frustum_h
|
||||
#define cglmc_frustum_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_planes(mat4 m, vec4 dest[6]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_corners(mat4 invMat, vec4 dest[8]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_center(vec4 corners[8], vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_corners_at(vec4 corners[8],
|
||||
float splitDist,
|
||||
float farDist,
|
||||
vec4 planeCorners[4]);
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_frustum_h */
|
||||
@@ -24,6 +24,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_identity(mat3 mat);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_identity_array(mat3 * __restrict mat, size_t count);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_mul(mat3 m1, mat3 m2, mat3 dest);
|
||||
@@ -40,6 +44,14 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_mulv(mat3 m, vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_mat3_trace(mat3 m);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_quat(mat3 m, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_scale(mat3 m, float s);
|
||||
|
||||
@@ -29,6 +29,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_identity(mat4 mat);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_identity_array(mat4 * __restrict mat, size_t count);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_pick3(mat4 mat, mat3 dest);
|
||||
@@ -47,12 +51,28 @@ glmc_mat4_mul(mat4 m1, mat4 m2, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest);
|
||||
glmc_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_mulv(mat4 m, vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_mat4_trace(mat4 m);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_mat4_trace3(mat4 m);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_quat(mat4 m, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_transpose_to(mat4 m, mat4 dest);
|
||||
@@ -81,6 +101,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_inv_precise(mat4 mat, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_inv_fast(mat4 mat, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_swap_col(mat4 mat, int col1, int col2);
|
||||
|
||||
23
include/cglm/call/plane.h
Normal file
23
include/cglm/call/plane.h
Normal file
@@ -0,0 +1,23 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_plane_h
|
||||
#define cglmc_plane_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_plane_normalize(vec4 plane);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_plane_h */
|
||||
33
include/cglm/call/project.h
Normal file
33
include/cglm/call/project.h
Normal file
@@ -0,0 +1,33 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_project_h
|
||||
#define cglmc_project_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_project(vec3 pos, mat4 m, vec4 vp, vec3 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_project_h */
|
||||
|
||||
|
||||
@@ -19,33 +19,83 @@ glmc_quat_identity(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat(versor q,
|
||||
float angle,
|
||||
float x,
|
||||
float y,
|
||||
float z);
|
||||
glmc_quat_identity_array(versor * __restrict q, size_t count);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quatv(versor q,
|
||||
float angle,
|
||||
vec3 v);
|
||||
glmc_quat_init(versor q, float x, float y, float z, float w);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat(versor q, float angle, float x, float y, float z);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quatv(versor q, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_copy(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_norm(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_normalize_to(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_normalize(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_dot(versor q, versor r);
|
||||
glmc_quat_dot(versor p, versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mulv(versor q1, versor q2, versor dest);
|
||||
glmc_quat_conjugate(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_inv(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_add(versor p, versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_sub(versor p, versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_real(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_imag(versor q, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_imagn(versor q, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_imaglen(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_angle(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_axis(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mul(versor p, versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
@@ -53,10 +103,51 @@ glmc_quat_mat4(versor q, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_slerp(versor q,
|
||||
versor r,
|
||||
float t,
|
||||
versor dest);
|
||||
glmc_quat_mat4t(versor q, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mat3(versor q, mat3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mat3t(versor q, mat3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_lerp(versor from, versor to, float t, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_slerp(versor q, versor r, float t, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_look(vec3 eye, versor ori, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotatev(versor from, vec3 to, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotate(mat4 m, versor q, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotate_at(mat4 model, versor q, vec3 pivot);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotate_atm(mat4 m, versor q, vec3 pivot);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
36
include/cglm/call/sphere.h
Normal file
36
include/cglm/call/sphere.h
Normal file
@@ -0,0 +1,36 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_sphere_h
|
||||
#define cglmc_sphere_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_sphere_radii(vec4 s);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_sphere_transform(vec4 s, mat4 m, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_sphere_merge(vec4 s1, vec4 s2, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_sphere_sphere(vec4 s1, vec4 s2);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_sphere_point(vec4 s, vec3 point);
|
||||
|
||||
#endif /* cglmc_sphere_h */
|
||||
@@ -14,95 +14,233 @@ extern "C" {
|
||||
#include "../cglm.h"
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glmc_vec_dup(v, dest) glmc_vec_copy(v, dest)
|
||||
#define glmc_vec_dup(v, dest) glmc_vec3_copy(v, dest)
|
||||
#define glmc_vec3_flipsign(v) glmc_vec3_negate(v)
|
||||
#define glmc_vec3_flipsign_to(v, dest) glmc_vec3_negate_to(v, dest)
|
||||
#define glmc_vec3_inv(v) glmc_vec3_negate(v)
|
||||
#define glmc_vec3_inv_to(v, dest) glmc_vec3_negate_to(v, dest)
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_copy(vec3 a, vec3 dest);
|
||||
glmc_vec3(vec4 v4, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_copy(vec3 a, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_zero(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_one(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_dot(vec3 a, vec3 b);
|
||||
glmc_vec3_dot(vec3 a, vec3 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_cross(vec3 a, vec3 b, vec3 d);
|
||||
glmc_vec3_cross(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_crossn(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_norm(vec3 vec);
|
||||
glmc_vec3_norm(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_norm2(vec3 vec);
|
||||
glmc_vec3_norm2(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_normalize_to(vec3 vec, vec3 dest);
|
||||
glmc_vec3_normalize_to(vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_normalize(vec3 v);
|
||||
glmc_vec3_normalize(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_add(vec3 v1, vec3 v2, vec3 dest);
|
||||
glmc_vec3_add(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_sub(vec3 v1, vec3 v2, vec3 dest);
|
||||
glmc_vec3_adds(vec3 v, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_scale(vec3 v, float s, vec3 dest);
|
||||
glmc_vec3_sub(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_scale_as(vec3 v, float s, vec3 dest);
|
||||
glmc_vec3_subs(vec3 v, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_flipsign(vec3 v);
|
||||
glmc_vec3_mul(vec3 a, vec3 b, vec3 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_inv(vec3 v);
|
||||
glmc_vec3_scale(vec3 v, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_inv_to(vec3 v, vec3 dest);
|
||||
glmc_vec3_scale_as(vec3 v, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_div(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_divs(vec3 a, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_addadd(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_subadd(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_muladd(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_muladds(vec3 a, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_maxadd(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_minadd(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_negate(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_negate_to(vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_angle(vec3 v1, vec3 v2);
|
||||
glmc_vec3_angle(vec3 a, vec3 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_rotate(vec3 v, float angle, vec3 axis);
|
||||
glmc_vec3_rotate(vec3 v, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_rotate_m4(mat4 m, vec3 v, vec3 dest);
|
||||
glmc_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_proj(vec3 a, vec3 b, vec3 dest);
|
||||
glmc_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_center(vec3 v1, vec3 v2, vec3 dest);
|
||||
glmc_vec3_proj(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_center(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_distance(vec3 v1, vec3 v2);
|
||||
glmc_vec3_distance2(vec3 a, vec3 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec3_distance(vec3 a, vec3 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_maxv(vec3 v1, vec3 v2, vec3 dest);
|
||||
glmc_vec3_maxv(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_minv(vec3 v1, vec3 v2, vec3 dest);
|
||||
glmc_vec3_minv(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_clamp(vec3 v, float minVal, float maxVal);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_ortho(vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest);
|
||||
|
||||
/* ext */
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_mulv(vec3 a, vec3 b, vec3 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_broadcast(float val, vec3 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eq(vec3 v, float val);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eq_eps(vec3 v, float val);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eq_all(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eqv(vec3 a, vec3 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eqv_eps(vec3 a, vec3 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec3_max(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec3_min(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_isnan(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_isinf(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_isvalid(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_sign(vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_sqrt(vec3 v, vec3 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@@ -14,32 +14,52 @@ extern "C" {
|
||||
#include "../cglm.h"
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glmc_vec4_dup3(v, dest) glmc_vec4_copy3(v, dest)
|
||||
#define glmc_vec4_dup(v, dest) glmc_vec4_copy(v, dest)
|
||||
#define glmc_vec4_dup3(v, dest) glmc_vec4_copy3(v, dest)
|
||||
#define glmc_vec4_dup(v, dest) glmc_vec4_copy(v, dest)
|
||||
#define glmc_vec4_flipsign(v) glmc_vec4_negate(v)
|
||||
#define glmc_vec4_flipsign_to(v, dest) glmc_vec4_negate_to(v, dest)
|
||||
#define glmc_vec4_inv(v) glmc_vec4_negate(v)
|
||||
#define glmc_vec4_inv_to(v, dest) glmc_vec4_negate_to(v, dest)
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_copy3(vec4 a, vec3 dest);
|
||||
glmc_vec4(vec3 v3, float last, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_zero(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_one(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_copy3(vec4 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_copy(vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_ucopy(vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_dot(vec4 a, vec4 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_norm(vec4 vec);
|
||||
glmc_vec4_norm(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_norm2(vec4 vec);
|
||||
glmc_vec4_norm2(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_normalize_to(vec4 vec, vec4 dest);
|
||||
glmc_vec4_normalize_to(vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
@@ -47,11 +67,23 @@ glmc_vec4_normalize(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_add(vec4 v1, vec4 v2, vec4 dest);
|
||||
glmc_vec4_add(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sub(vec4 v1, vec4 v2, vec4 dest);
|
||||
glmc_vec4_adds(vec4 v, float s, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sub(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_subs(vec4 v, float s, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_mul(vec4 a, vec4 b, vec4 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
@@ -63,27 +95,121 @@ glmc_vec4_scale_as(vec3 v, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_flipsign(vec4 v);
|
||||
glmc_vec4_div(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_inv(vec4 v);
|
||||
glmc_vec4_divs(vec4 v, float s, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_inv_to(vec4 v, vec4 dest);
|
||||
glmc_vec4_addadd(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_subadd(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_muladd(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_muladds(vec4 a, float s, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_maxadd(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_minadd(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_negate(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_negate_to(vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_distance(vec4 v1, vec4 v2);
|
||||
glmc_vec4_distance(vec4 a, vec4 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_maxv(vec4 v1, vec4 v2, vec4 dest);
|
||||
glmc_vec4_maxv(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_minv(vec4 v1, vec4 v2, vec4 dest);
|
||||
glmc_vec4_minv(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_clamp(vec4 v, float minVal, float maxVal);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest);
|
||||
|
||||
/* ext */
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_mulv(vec4 a, vec4 b, vec4 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_broadcast(float val, vec4 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq(vec4 v, float val);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq_eps(vec4 v, float val);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq_all(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eqv(vec4 a, vec4 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eqv_eps(vec4 a, vec4 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_max(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_min(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isnan(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isinf(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isvalid(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sign(vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sqrt(vec4 v, vec4 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@@ -7,55 +7,60 @@
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE void glm_frustum(float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest);
|
||||
CGLM_INLINE void glm_ortho(float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest);
|
||||
CGLM_INLINE void glm_ortho_default(float aspect, mat4 dest);
|
||||
CGLM_INLINE void glm_ortho_default_s(float aspect, float size, mat4 dest);
|
||||
CGLM_INLINE void glm_perspective(float fovy,
|
||||
float aspect,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest);
|
||||
CGLM_INLINE void glm_perspective_default(float aspect, mat4 dest);
|
||||
CGLM_INLINE void glm_perspective_resize(float aspect, mat4 proj);
|
||||
CGLM_INLINE void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest);
|
||||
CGLM_INLINE void glm_persp_decomp(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom,
|
||||
float * __restrict left,
|
||||
float * __restrict right);
|
||||
CGLM_INLINE void glm_persp_decompv(mat4 proj, float dest[6]);
|
||||
CGLM_INLINE void glm_persp_decomp_x(mat4 proj,
|
||||
float * __restrict left,
|
||||
float * __restrict right);
|
||||
CGLM_INLINE void glm_persp_decomp_y(mat4 proj,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom);
|
||||
CGLM_INLINE void glm_persp_decomp_z(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal);
|
||||
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float * __restrict farVal);
|
||||
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *__restrict nearVal);
|
||||
CGLM_INLINE void glm_frustum(float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest)
|
||||
CGLM_INLINE void glm_ortho(float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_aabb(vec3 box[2], mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_default(float aspect, mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_default_s(float aspect, float size, mat4 dest)
|
||||
CGLM_INLINE void glm_perspective(float fovy,
|
||||
float aspect,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest)
|
||||
CGLM_INLINE void glm_perspective_default(float aspect, mat4 dest)
|
||||
CGLM_INLINE void glm_perspective_resize(float aspect, mat4 proj)
|
||||
CGLM_INLINE void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest)
|
||||
CGLM_INLINE void glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest)
|
||||
CGLM_INLINE void glm_look_anyup(vec3 eye, vec3 dir, mat4 dest)
|
||||
CGLM_INLINE void glm_persp_decomp(mat4 proj,
|
||||
float *nearVal,
|
||||
float *farVal,
|
||||
float *top,
|
||||
float *bottom,
|
||||
float *left,
|
||||
float *right)
|
||||
CGLM_INLINE void glm_persp_decompv(mat4 proj, float dest[6])
|
||||
CGLM_INLINE void glm_persp_decomp_x(mat4 proj, float *left, float *right)
|
||||
CGLM_INLINE void glm_persp_decomp_y(mat4 proj, float *top, float *bottom)
|
||||
CGLM_INLINE void glm_persp_decomp_z(mat4 proj,
|
||||
float *nearVal,
|
||||
float *farVal)
|
||||
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float *farVal)
|
||||
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *nearVal)
|
||||
CGLM_INLINE float glm_persp_fovy(mat4 proj)
|
||||
CGLM_INLINE float glm_persp_aspect(mat4 proj)
|
||||
CGLM_INLINE void glm_persp_sizes(mat4 proj, float fovy, vec4 dest)
|
||||
*/
|
||||
|
||||
#ifndef cglm_vcam_h
|
||||
#define cglm_vcam_h
|
||||
|
||||
#include "common.h"
|
||||
#include "plane.h"
|
||||
|
||||
/*!
|
||||
* @brief set up perspective peprojection matrix
|
||||
@@ -132,6 +137,59 @@ glm_ortho(float left,
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up orthographic projection matrix using bounding box
|
||||
*
|
||||
* bounding box (AABB) must be in view space
|
||||
*
|
||||
* @param[in] box AABB
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_ortho_aabb(vec3 box[2], mat4 dest) {
|
||||
glm_ortho(box[0][0], box[1][0],
|
||||
box[0][1], box[1][1],
|
||||
-box[1][2], -box[0][2],
|
||||
dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up orthographic projection matrix using bounding box
|
||||
*
|
||||
* bounding box (AABB) must be in view space
|
||||
*
|
||||
* @param[in] box AABB
|
||||
* @param[in] padding padding
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest) {
|
||||
glm_ortho(box[0][0] - padding, box[1][0] + padding,
|
||||
box[0][1] - padding, box[1][1] + padding,
|
||||
-(box[1][2] + padding), -(box[0][2] - padding),
|
||||
dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up orthographic projection matrix using bounding box
|
||||
*
|
||||
* bounding box (AABB) must be in view space
|
||||
*
|
||||
* @param[in] box AABB
|
||||
* @param[in] padding padding for near and far
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest) {
|
||||
glm_ortho(box[0][0], box[1][0],
|
||||
box[0][1], box[1][1],
|
||||
-(box[1][2] + padding), -(box[0][2] - padding),
|
||||
dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up unit orthographic projection matrix
|
||||
*
|
||||
@@ -140,26 +198,15 @@ glm_ortho(float left,
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_ortho_default(float aspect,
|
||||
mat4 dest) {
|
||||
glm_ortho_default(float aspect, mat4 dest) {
|
||||
if (aspect >= 1.0f) {
|
||||
glm_ortho(-1.0f * aspect,
|
||||
1.0f * aspect,
|
||||
-1.0f,
|
||||
1.0f,
|
||||
-100.0f,
|
||||
100.0f,
|
||||
dest);
|
||||
return;
|
||||
glm_ortho(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
|
||||
return;
|
||||
}
|
||||
|
||||
glm_ortho(-1.0f,
|
||||
1.0f,
|
||||
-1.0f / aspect,
|
||||
1.0f / aspect,
|
||||
-100.0f,
|
||||
100.0f,
|
||||
dest);
|
||||
aspect = 1.0f / aspect;
|
||||
|
||||
glm_ortho(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -182,7 +229,7 @@ glm_ortho_default_s(float aspect,
|
||||
-size - 100.0f,
|
||||
size + 100.0f,
|
||||
dest);
|
||||
return;
|
||||
return;
|
||||
}
|
||||
|
||||
glm_ortho(-size,
|
||||
@@ -224,6 +271,30 @@ glm_perspective(float fovy,
|
||||
dest[3][2] = 2.0f * nearVal * farVal * fn;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief extend perspective projection matrix's far distance
|
||||
*
|
||||
* this function does not guarantee far >= near, be aware of that!
|
||||
*
|
||||
* @param[in, out] proj projection matrix to extend
|
||||
* @param[in] deltaFar distance from existing far (negative to shink)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_persp_move_far(mat4 proj, float deltaFar) {
|
||||
float fn, farVal, nearVal, p22, p32;
|
||||
|
||||
p22 = proj[2][2];
|
||||
p32 = proj[3][2];
|
||||
|
||||
nearVal = p32 / (p22 - 1.0f);
|
||||
farVal = p32 / (p22 + 1.0f) + deltaFar;
|
||||
fn = 1.0f / (nearVal - farVal);
|
||||
|
||||
proj[2][2] = (nearVal + farVal) * fn;
|
||||
proj[3][2] = 2.0f * nearVal * farVal * fn;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up perspective projection matrix with default near/far
|
||||
* and angle values
|
||||
@@ -233,18 +304,13 @@ glm_perspective(float fovy,
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_perspective_default(float aspect,
|
||||
mat4 dest) {
|
||||
glm_perspective((float)CGLM_PI_4,
|
||||
aspect,
|
||||
0.01f,
|
||||
100.0f,
|
||||
dest);
|
||||
glm_perspective_default(float aspect, mat4 dest) {
|
||||
glm_perspective(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief resize perspective matrix by aspect ratio ( width / height )
|
||||
* this very make easy to resize proj matrix when window, viewport
|
||||
* this makes very easy to resize proj matrix when window /viewport
|
||||
* reized
|
||||
*
|
||||
* @param[in] aspect aspect ratio ( width / height )
|
||||
@@ -252,8 +318,7 @@ glm_perspective_default(float aspect,
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_perspective_resize(float aspect,
|
||||
mat4 proj) {
|
||||
glm_perspective_resize(float aspect, mat4 proj) {
|
||||
if (proj[0][0] == 0.0f)
|
||||
return;
|
||||
|
||||
@@ -263,6 +328,9 @@ glm_perspective_resize(float aspect,
|
||||
/*!
|
||||
* @brief set up view matrix
|
||||
*
|
||||
* NOTE: The UP vector must not be parallel to the line of sight from
|
||||
* the eye point to the reference point
|
||||
*
|
||||
* @param[in] eye eye vector
|
||||
* @param[in] center center vector
|
||||
* @param[in] up up vector
|
||||
@@ -274,15 +342,13 @@ glm_lookat(vec3 eye,
|
||||
vec3 center,
|
||||
vec3 up,
|
||||
mat4 dest) {
|
||||
vec3 f, u, s;
|
||||
CGLM_ALIGN(8) vec3 f, u, s;
|
||||
|
||||
glm_vec_sub(center, eye, f);
|
||||
glm_vec_normalize(f);
|
||||
glm_vec3_sub(center, eye, f);
|
||||
glm_vec3_normalize(f);
|
||||
|
||||
glm_vec_cross(f, up, s);
|
||||
glm_vec_normalize(s);
|
||||
|
||||
glm_vec_cross(s, f, u);
|
||||
glm_vec3_crossn(f, up, s);
|
||||
glm_vec3_cross(s, f, u);
|
||||
|
||||
dest[0][0] = s[0];
|
||||
dest[0][1] = u[0];
|
||||
@@ -293,13 +359,53 @@ glm_lookat(vec3 eye,
|
||||
dest[2][0] = s[2];
|
||||
dest[2][1] = u[2];
|
||||
dest[2][2] =-f[2];
|
||||
dest[3][0] =-glm_vec_dot(s, eye);
|
||||
dest[3][1] =-glm_vec_dot(u, eye);
|
||||
dest[3][2] = glm_vec_dot(f, eye);
|
||||
dest[3][0] =-glm_vec3_dot(s, eye);
|
||||
dest[3][1] =-glm_vec3_dot(u, eye);
|
||||
dest[3][2] = glm_vec3_dot(f, eye);
|
||||
dest[0][3] = dest[1][3] = dest[2][3] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up view matrix
|
||||
*
|
||||
* convenient wrapper for lookat: if you only have direction not target self
|
||||
* then this might be useful. Because you need to get target from direction.
|
||||
*
|
||||
* NOTE: The UP vector must not be parallel to the line of sight from
|
||||
* the eye point to the reference point
|
||||
*
|
||||
* @param[in] eye eye vector
|
||||
* @param[in] dir direction vector
|
||||
* @param[in] up up vector
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
|
||||
CGLM_ALIGN(8) vec3 target;
|
||||
glm_vec3_add(eye, dir, target);
|
||||
glm_lookat(eye, target, up, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up view matrix
|
||||
*
|
||||
* convenient wrapper for look: if you only have direction and if you don't
|
||||
* care what UP vector is then this might be useful to create view matrix
|
||||
*
|
||||
* @param[in] eye eye vector
|
||||
* @param[in] dir direction vector
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
|
||||
CGLM_ALIGN(8) vec3 up;
|
||||
glm_vec3_ortho(dir, up);
|
||||
glm_look(eye, dir, up, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decomposes frustum values of perspective projection.
|
||||
*
|
||||
@@ -320,12 +426,28 @@ glm_persp_decomp(mat4 proj,
|
||||
float * __restrict bottom,
|
||||
float * __restrict left,
|
||||
float * __restrict right) {
|
||||
*nearVal = proj[3][2] / (proj[2][2] - 1);
|
||||
*farVal = proj[3][2] / (proj[2][2] + 1);
|
||||
*bottom = *nearVal * (proj[2][1] - 1) / proj[1][1];
|
||||
*top = *nearVal * (proj[2][1] + 1) / proj[1][1];
|
||||
*left = *nearVal * (proj[2][0] - 1) / proj[0][0];
|
||||
*right = *nearVal * (proj[2][0] + 1) / proj[0][0];
|
||||
float m00, m11, m20, m21, m22, m32, n, f;
|
||||
float n_m11, n_m00;
|
||||
|
||||
m00 = proj[0][0];
|
||||
m11 = proj[1][1];
|
||||
m20 = proj[2][0];
|
||||
m21 = proj[2][1];
|
||||
m22 = proj[2][2];
|
||||
m32 = proj[3][2];
|
||||
|
||||
n = m32 / (m22 - 1.0f);
|
||||
f = m32 / (m22 + 1.0f);
|
||||
|
||||
n_m11 = n / m11;
|
||||
n_m00 = n / m00;
|
||||
|
||||
*nearVal = n;
|
||||
*farVal = f;
|
||||
*bottom = n_m11 * (m21 - 1.0f);
|
||||
*top = n_m11 * (m21 + 1.0f);
|
||||
*left = n_m00 * (m20 - 1.0f);
|
||||
*right = n_m00 * (m20 + 1.0f);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -346,7 +468,7 @@ glm_persp_decompv(mat4 proj, float dest[6]) {
|
||||
* @brief decomposes left and right values of perspective projection.
|
||||
* x stands for x axis (left / right axis)
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[out] left left
|
||||
* @param[out] right right
|
||||
*/
|
||||
@@ -355,11 +477,14 @@ void
|
||||
glm_persp_decomp_x(mat4 proj,
|
||||
float * __restrict left,
|
||||
float * __restrict right) {
|
||||
float nearVal;
|
||||
float nearVal, m20, m00;
|
||||
|
||||
nearVal = proj[3][2] / (proj[3][3] - 1);
|
||||
*left = nearVal * (proj[2][0] - 1) / proj[0][0];
|
||||
*right = nearVal * (proj[2][0] + 1) / proj[0][0];
|
||||
m00 = proj[0][0];
|
||||
m20 = proj[2][0];
|
||||
|
||||
nearVal = proj[3][2] / (proj[3][3] - 1.0f);
|
||||
*left = nearVal * (m20 - 1.0f) / m00;
|
||||
*right = nearVal * (m20 + 1.0f) / m00;
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -375,11 +500,14 @@ void
|
||||
glm_persp_decomp_y(mat4 proj,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom) {
|
||||
float nearVal;
|
||||
float nearVal, m21, m11;
|
||||
|
||||
nearVal = proj[3][2] / (proj[3][3] - 1);
|
||||
*bottom = nearVal * (proj[2][1] - 1) / proj[1][1];
|
||||
*top = nearVal * (proj[2][1] + 1) / proj[1][1];
|
||||
m21 = proj[2][1];
|
||||
m11 = proj[1][1];
|
||||
|
||||
nearVal = proj[3][2] / (proj[3][3] - 1.0f);
|
||||
*bottom = nearVal * (m21 - 1) / m11;
|
||||
*top = nearVal * (m21 + 1) / m11;
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -395,8 +523,13 @@ void
|
||||
glm_persp_decomp_z(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal) {
|
||||
*nearVal = proj[3][2] / (proj[2][2] - 1);
|
||||
*farVal = proj[3][2] / (proj[2][2] + 1);
|
||||
float m32, m22;
|
||||
|
||||
m32 = proj[3][2];
|
||||
m22 = proj[2][2];
|
||||
|
||||
*nearVal = m32 / (m22 - 1.0f);
|
||||
*farVal = m32 / (m22 + 1.0f);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -408,7 +541,7 @@ glm_persp_decomp_z(mat4 proj,
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_persp_decomp_far(mat4 proj, float * __restrict farVal) {
|
||||
*farVal = proj[3][2] / (proj[2][2] + 1);
|
||||
*farVal = proj[3][2] / (proj[2][2] + 1.0f);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -420,6 +553,55 @@ glm_persp_decomp_far(mat4 proj, float * __restrict farVal) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_persp_decomp_near(mat4 proj, float * __restrict nearVal) {
|
||||
*nearVal = proj[3][2] / (proj[2][2] - 1);
|
||||
*nearVal = proj[3][2] / (proj[2][2] - 1.0f);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns field of view angle along the Y-axis (in radians)
|
||||
*
|
||||
* if you need to degrees, use glm_deg to convert it or use this:
|
||||
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_persp_fovy(mat4 proj) {
|
||||
return 2.0f * atanf(1.0f / proj[1][1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns aspect ratio of perspective projection
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_persp_aspect(mat4 proj) {
|
||||
return proj[1][1] / proj[0][0];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns sizes of near and far planes of perspective projection
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[in] fovy fovy (see brief)
|
||||
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_persp_sizes(mat4 proj, float fovy, vec4 dest) {
|
||||
float t, a, nearVal, farVal;
|
||||
|
||||
t = 2.0f * tanf(fovy * 0.5f);
|
||||
a = glm_persp_aspect(proj);
|
||||
|
||||
glm_persp_decomp_z(proj, &nearVal, &farVal);
|
||||
|
||||
dest[1] = t * nearVal;
|
||||
dest[3] = t * farVal;
|
||||
dest[0] = a * dest[1];
|
||||
dest[2] = a * dest[3];
|
||||
}
|
||||
|
||||
#endif /* cglm_vcam_h */
|
||||
|
||||
@@ -15,9 +15,16 @@
|
||||
#include "mat3.h"
|
||||
#include "affine.h"
|
||||
#include "cam.h"
|
||||
#include "frustum.h"
|
||||
#include "quat.h"
|
||||
#include "euler.h"
|
||||
#include "plane.h"
|
||||
#include "box.h"
|
||||
#include "color.h"
|
||||
#include "util.h"
|
||||
#include "io.h"
|
||||
#include "project.h"
|
||||
#include "sphere.h"
|
||||
#include "ease.h"
|
||||
|
||||
#endif /* cglm_h */
|
||||
|
||||
26
include/cglm/color.h
Normal file
26
include/cglm/color.h
Normal file
@@ -0,0 +1,26 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_color_h
|
||||
#define cglm_color_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec3.h"
|
||||
|
||||
/*!
|
||||
* @brief averages the color channels into one value
|
||||
*
|
||||
* @param[in] rgb RGB color
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_luminance(vec3 rgb) {
|
||||
vec3 l = {0.212671f, 0.715160f, 0.072169f};
|
||||
return glm_dot(rgb, l);
|
||||
}
|
||||
|
||||
#endif /* cglm_color_h */
|
||||
@@ -12,8 +12,9 @@
|
||||
|
||||
#include <stdint.h>
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
|
||||
#if defined(_WIN32)
|
||||
#if defined(_MSC_VER)
|
||||
# ifdef CGLM_DLL
|
||||
# define CGLM_EXPORT __declspec(dllexport)
|
||||
# else
|
||||
|
||||
317
include/cglm/ease.h
Normal file
317
include/cglm/ease.h
Normal file
@@ -0,0 +1,317 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_ease_h
|
||||
#define cglm_ease_h
|
||||
|
||||
#include "common.h"
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_linear(float t) {
|
||||
return t;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_sine_in(float t) {
|
||||
return sinf((t - 1.0f) * GLM_PI_2f) + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_sine_out(float t) {
|
||||
return sinf(t * GLM_PI_2f);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_sine_inout(float t) {
|
||||
return 0.5f * (1.0f - cosf(t * GLM_PIf));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quad_in(float t) {
|
||||
return t * t;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quad_out(float t) {
|
||||
return -(t * (t - 2.0f));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quad_inout(float t) {
|
||||
float tt;
|
||||
|
||||
tt = t * t;
|
||||
if (t < 0.5f)
|
||||
return 2.0f * tt;
|
||||
|
||||
return (-2.0f * tt) + (4.0f * t) - 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_cubic_in(float t) {
|
||||
return t * t * t;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_cubic_out(float t) {
|
||||
float f;
|
||||
f = t - 1.0f;
|
||||
return f * f * f + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_cubic_inout(float t) {
|
||||
float f;
|
||||
|
||||
if (t < 0.5f)
|
||||
return 4.0f * t * t * t;
|
||||
|
||||
f = 2.0f * t - 2.0f;
|
||||
|
||||
return 0.5f * f * f * f + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quart_in(float t) {
|
||||
float f;
|
||||
f = t * t;
|
||||
return f * f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quart_out(float t) {
|
||||
float f;
|
||||
|
||||
f = t - 1.0f;
|
||||
|
||||
return f * f * f * (1.0f - t) + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quart_inout(float t) {
|
||||
float f, g;
|
||||
|
||||
if (t < 0.5f) {
|
||||
f = t * t;
|
||||
return 8.0f * f * f;
|
||||
}
|
||||
|
||||
f = t - 1.0f;
|
||||
g = f * f;
|
||||
|
||||
return -8.0f * g * g + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quint_in(float t) {
|
||||
float f;
|
||||
f = t * t;
|
||||
return f * f * t;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quint_out(float t) {
|
||||
float f, g;
|
||||
|
||||
f = t - 1.0f;
|
||||
g = f * f;
|
||||
|
||||
return g * g * f + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quint_inout(float t) {
|
||||
float f, g;
|
||||
|
||||
if (t < 0.5f) {
|
||||
f = t * t;
|
||||
return 16.0f * f * f * t;
|
||||
}
|
||||
|
||||
f = 2.0f * t - 2.0f;
|
||||
g = f * f;
|
||||
|
||||
return 0.5f * g * g * f + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_exp_in(float t) {
|
||||
if (t == 0.0f)
|
||||
return t;
|
||||
|
||||
return powf(2.0f, 10.0f * (t - 1.0f));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_exp_out(float t) {
|
||||
if (t == 1.0f)
|
||||
return t;
|
||||
|
||||
return 1.0f - powf(2.0f, -10.0f * t);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_exp_inout(float t) {
|
||||
if (t == 0.0f || t == 1.0f)
|
||||
return t;
|
||||
|
||||
if (t < 0.5f)
|
||||
return 0.5f * powf(2.0f, (20.0f * t) - 10.0f);
|
||||
|
||||
return -0.5f * powf(2.0f, (-20.0f * t) + 10.0f) + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_circ_in(float t) {
|
||||
return 1.0f - sqrtf(1.0f - (t * t));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_circ_out(float t) {
|
||||
return sqrtf((2.0f - t) * t);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_circ_inout(float t) {
|
||||
if (t < 0.5f)
|
||||
return 0.5f * (1.0f - sqrtf(1.0f - 4.0f * (t * t)));
|
||||
|
||||
return 0.5f * (sqrtf(-((2.0f * t) - 3.0f) * ((2.0f * t) - 1.0f)) + 1.0f);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_back_in(float t) {
|
||||
float o, z;
|
||||
|
||||
o = 1.70158f;
|
||||
z = ((o + 1.0f) * t) - o;
|
||||
|
||||
return t * t * z;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_back_out(float t) {
|
||||
float o, z, n;
|
||||
|
||||
o = 1.70158f;
|
||||
n = t - 1.0f;
|
||||
z = (o + 1.0f) * n + o;
|
||||
|
||||
return n * n * z + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_back_inout(float t) {
|
||||
float o, z, n, m, s, x;
|
||||
|
||||
o = 1.70158f;
|
||||
s = o * 1.525f;
|
||||
x = 0.5;
|
||||
n = t / 0.5f;
|
||||
|
||||
if (n < 1.0f) {
|
||||
z = (s + 1) * n - s;
|
||||
m = n * n * z;
|
||||
return x * m;
|
||||
}
|
||||
|
||||
n -= 2.0f;
|
||||
z = (s + 1.0f) * n + s;
|
||||
m = (n * n * z) + 2;
|
||||
|
||||
return x * m;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_elast_in(float t) {
|
||||
return sinf(13.0f * GLM_PI_2f * t) * powf(2.0f, 10.0f * (t - 1.0f));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_elast_out(float t) {
|
||||
return sinf(-13.0f * GLM_PI_2f * (t + 1.0f)) * powf(2.0f, -10.0f * t) + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_elast_inout(float t) {
|
||||
float a;
|
||||
|
||||
a = 2.0f * t;
|
||||
|
||||
if (t < 0.5f)
|
||||
return 0.5f * sinf(13.0f * GLM_PI_2f * a)
|
||||
* powf(2.0f, 10.0f * (a - 1.0f));
|
||||
|
||||
return 0.5f * (sinf(-13.0f * GLM_PI_2f * a)
|
||||
* powf(2.0f, -10.0f * (a - 1.0f)) + 2.0f);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_bounce_out(float t) {
|
||||
float tt;
|
||||
|
||||
tt = t * t;
|
||||
|
||||
if (t < (4.0f / 11.0f))
|
||||
return (121.0f * tt) / 16.0f;
|
||||
|
||||
if (t < 8.0f / 11.0f)
|
||||
return ((363.0f / 40.0f) * tt) - ((99.0f / 10.0f) * t) + (17.0f / 5.0f);
|
||||
|
||||
if (t < (9.0f / 10.0f))
|
||||
return (4356.0f / 361.0f) * tt
|
||||
- (35442.0f / 1805.0f) * t
|
||||
+ (16061.0f / 1805.0f);
|
||||
|
||||
return ((54.0f / 5.0f) * tt) - ((513.0f / 25.0f) * t) + (268.0f / 25.0f);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_bounce_in(float t) {
|
||||
return 1.0f - glm_ease_bounce_out(1.0f - t);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_bounce_inout(float t) {
|
||||
if (t < 0.5f)
|
||||
return 0.5f * (1.0f - glm_ease_bounce_out(t * 2.0f));
|
||||
|
||||
return 0.5f * glm_ease_bounce_out(t * 2.0f - 1.0f) + 0.5f;
|
||||
}
|
||||
|
||||
#endif /* cglm_ease_h */
|
||||
@@ -5,6 +5,14 @@
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*
|
||||
NOTE:
|
||||
angles must be passed as [X-Angle, Y-Angle, Z-angle] order
|
||||
For instance you don't pass angles as [Z-Angle, X-Angle, Y-angle] to
|
||||
glm_euler_zxy funciton, All RELATED functions accept angles same order
|
||||
which is [X, Y, Z].
|
||||
*/
|
||||
|
||||
/*
|
||||
Types:
|
||||
enum glm_euler_sq
|
||||
@@ -13,13 +21,14 @@
|
||||
CGLM_INLINE glm_euler_sq glm_euler_order(int newOrder[3]);
|
||||
CGLM_INLINE void glm_euler_angles(mat4 m, vec3 dest);
|
||||
CGLM_INLINE void glm_euler(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_xyz(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_zyx(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_zxy(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_xzy(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_yzx(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_yxz(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_by_order(vec3 angles,
|
||||
glm_euler_sq axis,
|
||||
glm_euler_sq ord,
|
||||
mat4 dest);
|
||||
*/
|
||||
|
||||
@@ -48,12 +57,12 @@ typedef enum glm_euler_sq {
|
||||
|
||||
CGLM_INLINE
|
||||
glm_euler_sq
|
||||
glm_euler_order(int newOrder[3]) {
|
||||
return (glm_euler_sq)(newOrder[0] | newOrder[1] << 2 | newOrder[2] << 4);
|
||||
glm_euler_order(int ord[3]) {
|
||||
return (glm_euler_sq)(ord[0] << 0 | ord[1] << 2 | ord[2] << 4);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief euler angles (in radian) using xyz sequence
|
||||
* @brief extract euler angles (in radians) using xyz order
|
||||
*
|
||||
* @param[in] m affine transform
|
||||
* @param[out] dest angles vector [x, y, z]
|
||||
@@ -61,225 +70,289 @@ glm_euler_order(int newOrder[3]) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_angles(mat4 m, vec3 dest) {
|
||||
if (m[0][2] < 1.0f) {
|
||||
if (m[0][2] > -1.0f) {
|
||||
vec3 a[2];
|
||||
float cy1, cy2;
|
||||
int path;
|
||||
float m00, m01, m10, m11, m20, m21, m22;
|
||||
float thetaX, thetaY, thetaZ;
|
||||
|
||||
a[0][1] = asinf(-m[0][2]);
|
||||
a[1][1] = CGLM_PI - a[0][1];
|
||||
m00 = m[0][0]; m10 = m[1][0]; m20 = m[2][0];
|
||||
m01 = m[0][1]; m11 = m[1][1]; m21 = m[2][1];
|
||||
m22 = m[2][2];
|
||||
|
||||
cy1 = cosf(a[0][1]);
|
||||
cy2 = cosf(a[1][1]);
|
||||
|
||||
a[0][0] = atan2f(m[1][2] / cy1, m[2][2] / cy1);
|
||||
a[1][0] = atan2f(m[1][2] / cy2, m[2][2] / cy2);
|
||||
|
||||
a[0][2] = atan2f(m[0][1] / cy1, m[0][0] / cy1);
|
||||
a[1][2] = atan2f(m[0][1] / cy2, m[0][0] / cy2);
|
||||
|
||||
path = (fabsf(a[0][0]) + fabsf(a[0][1]) + fabsf(a[0][2])) >=
|
||||
(fabsf(a[1][0]) + fabsf(a[1][1]) + fabsf(a[1][2]));
|
||||
|
||||
glm_vec_copy(a[path], dest);
|
||||
} else {
|
||||
dest[0] = atan2f(m[1][0], m[2][0]);
|
||||
dest[1] = CGLM_PI_2;
|
||||
dest[2] = 0.0f;
|
||||
if (m20 < 1.0f) {
|
||||
if (m20 > -1.0f) {
|
||||
thetaY = asinf(m20);
|
||||
thetaX = atan2f(-m21, m22);
|
||||
thetaZ = atan2f(-m10, m00);
|
||||
} else { /* m20 == -1 */
|
||||
/* Not a unique solution */
|
||||
thetaY = -GLM_PI_2f;
|
||||
thetaX = -atan2f(m01, m11);
|
||||
thetaZ = 0.0f;
|
||||
}
|
||||
} else {
|
||||
dest[0] = atan2f(-m[1][0], -m[2][0]);
|
||||
dest[1] =-CGLM_PI_2;
|
||||
dest[2] = 0.0f;
|
||||
} else { /* m20 == +1 */
|
||||
thetaY = GLM_PI_2f;
|
||||
thetaX = atan2f(m01, m11);
|
||||
thetaZ = 0.0f;
|
||||
}
|
||||
|
||||
dest[0] = thetaX;
|
||||
dest[1] = thetaY;
|
||||
dest[2] = thetaZ;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles(ExEyEz/RzRyRx)
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Ex, Ey, Ez]
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_xyz(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz, czsx, cxcz, sysz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
czsx = cz * sx;
|
||||
cxcz = cx * cz;
|
||||
sysz = sy * sz;
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = czsx * sy + cx * sz;
|
||||
dest[0][2] = -cxcz * sy + sx * sz;
|
||||
dest[1][0] = -cy * sz;
|
||||
dest[1][1] = cxcz - sx * sysz;
|
||||
dest[1][2] = czsx + cx * sysz;
|
||||
dest[2][0] = sy;
|
||||
dest[2][1] = -cy * sx;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = cy * sz;
|
||||
dest[0][2] =-sy;
|
||||
dest[1][0] = cz * sx * sy - cx * sz;
|
||||
dest[1][1] = cx * cz + sx * sy * sz;
|
||||
dest[1][2] = cy * sx;
|
||||
dest[2][0] = cx * cz * sy + sx * sz;
|
||||
dest[2][1] =-cz * sx + cx * sy * sz;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
glm_euler_xyz(angles, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles (EzEyEx/RxRyRz)
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_zyx(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_xzy(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, sxsy, cysx, cxsy, cxcy;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = cz * sx * sy + cx * sz;
|
||||
dest[0][2] =-cx * cz * sy + sx * sz;
|
||||
dest[1][0] =-cy * sz;
|
||||
dest[1][1] = cx * cz - sx * sy * sz;
|
||||
dest[1][2] = cz * sx + cx * sy * sz;
|
||||
dest[2][0] = sy;
|
||||
dest[2][1] =-cy * sx;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
sxsy = sx * sy;
|
||||
cysx = cy * sx;
|
||||
cxsy = cx * sy;
|
||||
cxcy = cx * cy;
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = sxsy + cxcy * sz;
|
||||
dest[0][2] = -cxsy + cysx * sz;
|
||||
dest[1][0] = -sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cz * sx;
|
||||
dest[2][0] = cz * sy;
|
||||
dest[2][1] = -cysx + cxsy * sz;
|
||||
dest[2][2] = cxcy + sxsy * sz;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_zxy(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_yxz(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, cycz, sysz, czsy, cysz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz + sx * sy * sz;
|
||||
dest[0][1] = cx * sz;
|
||||
dest[0][2] =-cz * sy + cy * sx * sz;
|
||||
dest[1][0] = cz * sx * sy - cy * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cy * cz * sx + sy * sz;
|
||||
dest[2][0] = cx * sy;
|
||||
dest[2][1] =-sx;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
cycz = cy * cz;
|
||||
sysz = sy * sz;
|
||||
czsy = cz * sy;
|
||||
cysz = cy * sz;
|
||||
|
||||
dest[0][0] = cycz + sx * sysz;
|
||||
dest[0][1] = cx * sz;
|
||||
dest[0][2] = -czsy + cysz * sx;
|
||||
dest[1][0] = -cysz + czsy * sx;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cycz * sx + sysz;
|
||||
dest[2][0] = cx * sy;
|
||||
dest[2][1] = -sx;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_xzy(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_yzx(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, sxsy, cxcy, cysx, cxsy;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = sz;
|
||||
dest[0][2] =-cz * sy;
|
||||
dest[1][0] = sx * sy - cx * cy * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cy * sx + cx * sy * sz;
|
||||
dest[2][0] = cx * sy + cy * sx * sz;
|
||||
dest[2][1] =-cz * sx;
|
||||
dest[2][2] = cx * cy - sx * sy * sz;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
sxsy = sx * sy;
|
||||
cxcy = cx * cy;
|
||||
cysx = cy * sx;
|
||||
cxsy = cx * sy;
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = sz;
|
||||
dest[0][2] = -cz * sy;
|
||||
dest[1][0] = sxsy - cxcy * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cysx + cxsy * sz;
|
||||
dest[2][0] = cxsy + cysx * sz;
|
||||
dest[2][1] = -cz * sx;
|
||||
dest[2][2] = cxcy - sxsy * sz;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_yzx(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_zxy(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, cycz, sxsy, cysz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = sx * sy + cx * cy * sz;
|
||||
dest[0][2] =-cx * sy + cy * sx * sz;
|
||||
dest[1][0] =-sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cz * sx;
|
||||
dest[2][0] = cz * sy;
|
||||
dest[2][1] =-cy * sx + cx * sy * sz;
|
||||
dest[2][2] = cx * cy + sx * sy * sz;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
cycz = cy * cz;
|
||||
sxsy = sx * sy;
|
||||
cysz = cy * sz;
|
||||
|
||||
dest[0][0] = cycz - sxsy * sz;
|
||||
dest[0][1] = cz * sxsy + cysz;
|
||||
dest[0][2] = -cx * sy;
|
||||
dest[1][0] = -cx * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = sx;
|
||||
dest[2][0] = cz * sy + cysz * sx;
|
||||
dest[2][1] = -cycz * sx + sy * sz;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_yxz(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_zyx(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, czsx, cxcz, sysz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz - sx * sy * sz;
|
||||
dest[0][1] = cz * sx * sy + cy * sz;
|
||||
dest[0][2] =-cx * sy;
|
||||
dest[1][0] =-cx * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = sx;
|
||||
dest[2][0] = cz * sy + cy * sx * sz;
|
||||
dest[2][1] =-cy * cz * sx + sy * sz;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
czsx = cz * sx;
|
||||
cxcz = cx * cz;
|
||||
sysz = sy * sz;
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = cy * sz;
|
||||
dest[0][2] = -sy;
|
||||
dest[1][0] = czsx * sy - cx * sz;
|
||||
dest[1][1] = cxcz + sx * sysz;
|
||||
dest[1][2] = cy * sx;
|
||||
dest[2][0] = cxcz * sy + sx * sz;
|
||||
dest[2][1] = -czsx + cx * sysz;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[in] ord euler order
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_by_order(vec3 angles, glm_euler_sq axis, mat4 dest) {
|
||||
glm_euler_by_order(vec3 angles, glm_euler_sq ord, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
|
||||
@@ -297,72 +370,72 @@ glm_euler_by_order(vec3 angles, glm_euler_sq axis, mat4 dest) {
|
||||
czsx = cz * sx; cxsz = cx * sz;
|
||||
sysz = sy * sz;
|
||||
|
||||
switch (axis) {
|
||||
case GLM_EULER_XYZ:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = cysz;
|
||||
dest[0][2] =-sy;
|
||||
dest[1][0] = czsx * sy - cxsz;
|
||||
dest[1][1] = cxcz + sx * sysz;
|
||||
dest[1][2] = cysx;
|
||||
dest[2][0] = cx * czsy + sx * sz;
|
||||
dest[2][1] =-czsx + cx * sysz;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
switch (ord) {
|
||||
case GLM_EULER_XZY:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = sz;
|
||||
dest[0][2] =-czsy;
|
||||
dest[1][0] = sx * sy - cx * cysz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = cysx + cx * sysz;
|
||||
dest[2][0] = cx * sy + cysx * sz;
|
||||
dest[2][1] =-czsx;
|
||||
dest[2][2] = cxcy - sx * sysz;
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = sx * sy + cx * cysz;
|
||||
dest[0][2] = -cx * sy + cysx * sz;
|
||||
dest[1][0] = -sz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = czsx;
|
||||
dest[2][0] = czsy;
|
||||
dest[2][1] = -cysx + cx * sysz;
|
||||
dest[2][2] = cxcy + sx * sysz;
|
||||
break;
|
||||
case GLM_EULER_ZXY:
|
||||
dest[0][0] = cycz + sx * sysz;
|
||||
dest[0][1] = cxsz;
|
||||
dest[0][2] =-czsy + cysx * sz;
|
||||
dest[1][0] = czsx * sy - cysz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = cycz * sx + sysz;
|
||||
dest[2][0] = cx * sy;
|
||||
dest[2][1] =-sx;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
case GLM_EULER_ZYX:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = czsx * sy + cxsz;
|
||||
dest[0][2] =-cx * czsy + sx * sz;
|
||||
dest[1][0] =-cysz;
|
||||
dest[1][1] = cxcz - sx * sysz;
|
||||
dest[1][2] = czsx + cx * sysz;
|
||||
dest[2][0] = sy;
|
||||
dest[2][1] =-cysx;
|
||||
dest[2][2] = cxcy;
|
||||
case GLM_EULER_XYZ:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = czsx * sy + cxsz;
|
||||
dest[0][2] = -cx * czsy + sx * sz;
|
||||
dest[1][0] = -cysz;
|
||||
dest[1][1] = cxcz - sx * sysz;
|
||||
dest[1][2] = czsx + cx * sysz;
|
||||
dest[2][0] = sy;
|
||||
dest[2][1] = -cysx;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
case GLM_EULER_YXZ:
|
||||
dest[0][0] = cycz - sx * sysz;
|
||||
dest[0][1] = czsx * sy + cysz;
|
||||
dest[0][2] =-cx * sy;
|
||||
dest[1][0] =-cxsz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = sx;
|
||||
dest[2][0] = czsy + cysx * sz;
|
||||
dest[2][1] =-cycz * sx + sysz;
|
||||
dest[2][2] = cxcy;
|
||||
dest[0][0] = cycz + sx * sysz;
|
||||
dest[0][1] = cxsz;
|
||||
dest[0][2] = -czsy + cysx * sz;
|
||||
dest[1][0] = czsx * sy - cysz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = cycz * sx + sysz;
|
||||
dest[2][0] = cx * sy;
|
||||
dest[2][1] = -sx;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
case GLM_EULER_YZX:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = sx * sy + cx * cysz;
|
||||
dest[0][2] =-cx * sy + cysx * sz;
|
||||
dest[1][0] =-sz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = czsx;
|
||||
dest[2][0] = czsy;
|
||||
dest[2][1] =-cysx + cx * sysz;
|
||||
dest[2][2] = cxcy + sx * sysz;
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = sz;
|
||||
dest[0][2] = -czsy;
|
||||
dest[1][0] = sx * sy - cx * cysz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = cysx + cx * sysz;
|
||||
dest[2][0] = cx * sy + cysx * sz;
|
||||
dest[2][1] = -czsx;
|
||||
dest[2][2] = cxcy - sx * sysz;
|
||||
break;
|
||||
case GLM_EULER_ZXY:
|
||||
dest[0][0] = cycz - sx * sysz;
|
||||
dest[0][1] = czsx * sy + cysz;
|
||||
dest[0][2] = -cx * sy;
|
||||
dest[1][0] = -cxsz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = sx;
|
||||
dest[2][0] = czsy + cysx * sz;
|
||||
dest[2][1] = -cycz * sx + sysz;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
case GLM_EULER_ZYX:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = cysz;
|
||||
dest[0][2] = -sy;
|
||||
dest[1][0] = czsx * sy - cxsz;
|
||||
dest[1][1] = cxcz + sx * sysz;
|
||||
dest[1][2] = cysx;
|
||||
dest[2][0] = cx * czsy + sx * sz;
|
||||
dest[2][1] = -czsx + cx * sysz;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
255
include/cglm/frustum.h
Normal file
255
include/cglm/frustum.h
Normal file
@@ -0,0 +1,255 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_frustum_h
|
||||
#define cglm_frustum_h
|
||||
|
||||
#include "common.h"
|
||||
#include "plane.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
|
||||
#define GLM_LBN 0 /* left bottom near */
|
||||
#define GLM_LTN 1 /* left top near */
|
||||
#define GLM_RTN 2 /* right top near */
|
||||
#define GLM_RBN 3 /* right bottom near */
|
||||
|
||||
#define GLM_LBF 4 /* left bottom far */
|
||||
#define GLM_LTF 5 /* left top far */
|
||||
#define GLM_RTF 6 /* right top far */
|
||||
#define GLM_RBF 7 /* right bottom far */
|
||||
|
||||
#define GLM_LEFT 0
|
||||
#define GLM_RIGHT 1
|
||||
#define GLM_BOTTOM 2
|
||||
#define GLM_TOP 3
|
||||
#define GLM_NEAR 4
|
||||
#define GLM_FAR 5
|
||||
|
||||
/* you can override clip space coords
|
||||
but you have to provide all with same name
|
||||
e.g.: define GLM_CSCOORD_LBN {0.0f, 0.0f, 1.0f, 1.0f} */
|
||||
#ifndef GLM_CUSTOM_CLIPSPACE
|
||||
|
||||
/* near */
|
||||
#define GLM_CSCOORD_LBN {-1.0f, -1.0f, -1.0f, 1.0f}
|
||||
#define GLM_CSCOORD_LTN {-1.0f, 1.0f, -1.0f, 1.0f}
|
||||
#define GLM_CSCOORD_RTN { 1.0f, 1.0f, -1.0f, 1.0f}
|
||||
#define GLM_CSCOORD_RBN { 1.0f, -1.0f, -1.0f, 1.0f}
|
||||
|
||||
/* far */
|
||||
#define GLM_CSCOORD_LBF {-1.0f, -1.0f, 1.0f, 1.0f}
|
||||
#define GLM_CSCOORD_LTF {-1.0f, 1.0f, 1.0f, 1.0f}
|
||||
#define GLM_CSCOORD_RTF { 1.0f, 1.0f, 1.0f, 1.0f}
|
||||
#define GLM_CSCOORD_RBF { 1.0f, -1.0f, 1.0f, 1.0f}
|
||||
|
||||
#endif
|
||||
|
||||
/*!
|
||||
* @brief extracts view frustum planes
|
||||
*
|
||||
* planes' space:
|
||||
* 1- if m = proj: View Space
|
||||
* 2- if m = viewProj: World Space
|
||||
* 3- if m = MVP: Object Space
|
||||
*
|
||||
* You probably want to extract planes in world space so use viewProj as m
|
||||
* Computing viewProj:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
*
|
||||
* Exracted planes order: [left, right, bottom, top, near, far]
|
||||
*
|
||||
* @param[in] m matrix (see brief)
|
||||
* @param[out] dest exracted view frustum planes (see brief)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_frustum_planes(mat4 m, vec4 dest[6]) {
|
||||
mat4 t;
|
||||
|
||||
glm_mat4_transpose_to(m, t);
|
||||
|
||||
glm_vec4_add(t[3], t[0], dest[0]); /* left */
|
||||
glm_vec4_sub(t[3], t[0], dest[1]); /* right */
|
||||
glm_vec4_add(t[3], t[1], dest[2]); /* bottom */
|
||||
glm_vec4_sub(t[3], t[1], dest[3]); /* top */
|
||||
glm_vec4_add(t[3], t[2], dest[4]); /* near */
|
||||
glm_vec4_sub(t[3], t[2], dest[5]); /* far */
|
||||
|
||||
glm_plane_normalize(dest[0]);
|
||||
glm_plane_normalize(dest[1]);
|
||||
glm_plane_normalize(dest[2]);
|
||||
glm_plane_normalize(dest[3]);
|
||||
glm_plane_normalize(dest[4]);
|
||||
glm_plane_normalize(dest[5]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief extracts view frustum corners using clip-space coordinates
|
||||
*
|
||||
* corners' space:
|
||||
* 1- if m = invViewProj: World Space
|
||||
* 2- if m = invMVP: Object Space
|
||||
*
|
||||
* You probably want to extract corners in world space so use invViewProj
|
||||
* Computing invViewProj:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* ...
|
||||
* glm_mat4_inv(viewProj, invViewProj);
|
||||
*
|
||||
* if you have a near coord at i index, you can get it's far coord by i + 4
|
||||
*
|
||||
* Find center coordinates:
|
||||
* for (j = 0; j < 4; j++) {
|
||||
* glm_vec3_center(corners[i], corners[i + 4], centerCorners[i]);
|
||||
* }
|
||||
*
|
||||
* @param[in] invMat matrix (see brief)
|
||||
* @param[out] dest exracted view frustum corners (see brief)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_frustum_corners(mat4 invMat, vec4 dest[8]) {
|
||||
vec4 c[8];
|
||||
|
||||
/* indexOf(nearCoord) = indexOf(farCoord) + 4 */
|
||||
vec4 csCoords[8] = {
|
||||
GLM_CSCOORD_LBN,
|
||||
GLM_CSCOORD_LTN,
|
||||
GLM_CSCOORD_RTN,
|
||||
GLM_CSCOORD_RBN,
|
||||
|
||||
GLM_CSCOORD_LBF,
|
||||
GLM_CSCOORD_LTF,
|
||||
GLM_CSCOORD_RTF,
|
||||
GLM_CSCOORD_RBF
|
||||
};
|
||||
|
||||
glm_mat4_mulv(invMat, csCoords[0], c[0]);
|
||||
glm_mat4_mulv(invMat, csCoords[1], c[1]);
|
||||
glm_mat4_mulv(invMat, csCoords[2], c[2]);
|
||||
glm_mat4_mulv(invMat, csCoords[3], c[3]);
|
||||
glm_mat4_mulv(invMat, csCoords[4], c[4]);
|
||||
glm_mat4_mulv(invMat, csCoords[5], c[5]);
|
||||
glm_mat4_mulv(invMat, csCoords[6], c[6]);
|
||||
glm_mat4_mulv(invMat, csCoords[7], c[7]);
|
||||
|
||||
glm_vec4_scale(c[0], 1.0f / c[0][3], dest[0]);
|
||||
glm_vec4_scale(c[1], 1.0f / c[1][3], dest[1]);
|
||||
glm_vec4_scale(c[2], 1.0f / c[2][3], dest[2]);
|
||||
glm_vec4_scale(c[3], 1.0f / c[3][3], dest[3]);
|
||||
glm_vec4_scale(c[4], 1.0f / c[4][3], dest[4]);
|
||||
glm_vec4_scale(c[5], 1.0f / c[5][3], dest[5]);
|
||||
glm_vec4_scale(c[6], 1.0f / c[6][3], dest[6]);
|
||||
glm_vec4_scale(c[7], 1.0f / c[7][3], dest[7]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief finds center of view frustum
|
||||
*
|
||||
* @param[in] corners view frustum corners
|
||||
* @param[out] dest view frustum center
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_frustum_center(vec4 corners[8], vec4 dest) {
|
||||
vec4 center;
|
||||
|
||||
glm_vec4_copy(corners[0], center);
|
||||
|
||||
glm_vec4_add(corners[1], center, center);
|
||||
glm_vec4_add(corners[2], center, center);
|
||||
glm_vec4_add(corners[3], center, center);
|
||||
glm_vec4_add(corners[4], center, center);
|
||||
glm_vec4_add(corners[5], center, center);
|
||||
glm_vec4_add(corners[6], center, center);
|
||||
glm_vec4_add(corners[7], center, center);
|
||||
|
||||
glm_vec4_scale(center, 0.125f, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief finds bounding box of frustum relative to given matrix e.g. view mat
|
||||
*
|
||||
* @param[in] corners view frustum corners
|
||||
* @param[in] m matrix to convert existing conners
|
||||
* @param[out] box bounding box as array [min, max]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]) {
|
||||
vec4 v;
|
||||
vec3 min, max;
|
||||
int i;
|
||||
|
||||
glm_vec3_broadcast(FLT_MAX, min);
|
||||
glm_vec3_broadcast(-FLT_MAX, max);
|
||||
|
||||
for (i = 0; i < 8; i++) {
|
||||
glm_mat4_mulv(m, corners[i], v);
|
||||
|
||||
min[0] = glm_min(min[0], v[0]);
|
||||
min[1] = glm_min(min[1], v[1]);
|
||||
min[2] = glm_min(min[2], v[2]);
|
||||
|
||||
max[0] = glm_max(max[0], v[0]);
|
||||
max[1] = glm_max(max[1], v[1]);
|
||||
max[2] = glm_max(max[2], v[2]);
|
||||
}
|
||||
|
||||
glm_vec3_copy(min, box[0]);
|
||||
glm_vec3_copy(max, box[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief finds planes corners which is between near and far planes (parallel)
|
||||
*
|
||||
* this will be helpful if you want to split a frustum e.g. CSM/PSSM. This will
|
||||
* find planes' corners but you will need to one more plane.
|
||||
* Actually you have it, it is near, far or created previously with this func ;)
|
||||
*
|
||||
* @param[in] corners view frustum corners
|
||||
* @param[in] splitDist split distance
|
||||
* @param[in] farDist far distance (zFar)
|
||||
* @param[out] planeCorners plane corners [LB, LT, RT, RB]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_frustum_corners_at(vec4 corners[8],
|
||||
float splitDist,
|
||||
float farDist,
|
||||
vec4 planeCorners[4]) {
|
||||
vec4 corner;
|
||||
float dist, sc;
|
||||
|
||||
/* because distance and scale is same for all */
|
||||
dist = glm_vec3_distance(corners[GLM_RTF], corners[GLM_RTN]);
|
||||
sc = dist * (splitDist / farDist);
|
||||
|
||||
/* left bottom */
|
||||
glm_vec4_sub(corners[GLM_LBF], corners[GLM_LBN], corner);
|
||||
glm_vec4_scale_as(corner, sc, corner);
|
||||
glm_vec4_add(corners[GLM_LBN], corner, planeCorners[0]);
|
||||
|
||||
/* left top */
|
||||
glm_vec4_sub(corners[GLM_LTF], corners[GLM_LTN], corner);
|
||||
glm_vec4_scale_as(corner, sc, corner);
|
||||
glm_vec4_add(corners[GLM_LTN], corner, planeCorners[1]);
|
||||
|
||||
/* right top */
|
||||
glm_vec4_sub(corners[GLM_RTF], corners[GLM_RTN], corner);
|
||||
glm_vec4_scale_as(corner, sc, corner);
|
||||
glm_vec4_add(corners[GLM_RTN], corner, planeCorners[2]);
|
||||
|
||||
/* right bottom */
|
||||
glm_vec4_sub(corners[GLM_RBF], corners[GLM_RBN], corner);
|
||||
glm_vec4_scale_as(corner, sc, corner);
|
||||
glm_vec4_add(corners[GLM_RBN], corner, planeCorners[3]);
|
||||
}
|
||||
|
||||
#endif /* cglm_frustum_h */
|
||||
@@ -25,7 +25,7 @@
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_print(mat4 matrix,
|
||||
glm_mat4_print(mat4 matrix,
|
||||
FILE * __restrict ostream) {
|
||||
int i;
|
||||
int j;
|
||||
@@ -55,7 +55,7 @@ glm_mat4_print(mat4 matrix,
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_print(mat3 matrix,
|
||||
glm_mat3_print(mat3 matrix,
|
||||
FILE * __restrict ostream) {
|
||||
int i;
|
||||
int j;
|
||||
@@ -85,7 +85,7 @@ glm_mat3_print(mat3 matrix,
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_print(vec4 vec,
|
||||
glm_vec4_print(vec4 vec,
|
||||
FILE * __restrict ostream) {
|
||||
int i;
|
||||
|
||||
@@ -107,7 +107,7 @@ glm_vec4_print(vec4 vec,
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_print(vec3 vec,
|
||||
glm_vec3_print(vec3 vec,
|
||||
FILE * __restrict ostream) {
|
||||
int i;
|
||||
|
||||
@@ -129,7 +129,7 @@ glm_vec3_print(vec3 vec,
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_ivec3_print(ivec3 vec,
|
||||
glm_ivec3_print(ivec3 vec,
|
||||
FILE * __restrict ostream) {
|
||||
int i;
|
||||
|
||||
@@ -151,7 +151,7 @@ glm_ivec3_print(ivec3 vec,
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_versor_print(versor vec,
|
||||
glm_versor_print(versor vec,
|
||||
FILE * __restrict ostream) {
|
||||
int i;
|
||||
|
||||
@@ -171,4 +171,33 @@ glm_versor_print(versor vec,
|
||||
#undef m
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_print(vec3 bbox[2],
|
||||
const char * __restrict tag,
|
||||
FILE * __restrict ostream) {
|
||||
int i, j;
|
||||
|
||||
#define m 3
|
||||
|
||||
fprintf(ostream, "AABB (%s):\n", tag ? tag: "float");
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
fprintf(ostream, "\t|");
|
||||
|
||||
for (j = 0; j < m; j++) {
|
||||
fprintf(ostream, "%0.4f", bbox[i][j]);
|
||||
|
||||
if (j != m - 1)
|
||||
fprintf(ostream, "\t");
|
||||
}
|
||||
|
||||
fprintf(ostream, "|\n");
|
||||
}
|
||||
|
||||
fprintf(ostream, "\n");
|
||||
|
||||
#undef m
|
||||
}
|
||||
|
||||
#endif /* cglm_io_h */
|
||||
|
||||
@@ -16,10 +16,12 @@
|
||||
Functions:
|
||||
CGLM_INLINE void glm_mat3_copy(mat3 mat, mat3 dest);
|
||||
CGLM_INLINE void glm_mat3_identity(mat3 mat);
|
||||
CGLM_INLINE void glm_mat3_identity_array(mat3 * restrict mat, size_t count);
|
||||
CGLM_INLINE void glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest);
|
||||
CGLM_INLINE void glm_mat3_transpose_to(mat3 m, mat3 dest);
|
||||
CGLM_INLINE void glm_mat3_transpose(mat3 m);
|
||||
CGLM_INLINE void glm_mat3_mulv(mat3 m, vec3 v, vec3 dest);
|
||||
CGLM_INLINE float glm_mat3_trace(mat3 m);
|
||||
CGLM_INLINE void glm_mat3_scale(mat3 m, float s);
|
||||
CGLM_INLINE float glm_mat3_det(mat3 mat);
|
||||
CGLM_INLINE void glm_mat3_inv(mat3 mat, mat3 dest);
|
||||
@@ -31,6 +33,7 @@
|
||||
#define cglm_mat3_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec3.h"
|
||||
|
||||
#ifdef CGLM_SSE_FP
|
||||
# include "simd/sse2/mat3.h"
|
||||
@@ -45,8 +48,8 @@
|
||||
|
||||
|
||||
/* for C only */
|
||||
#define GLM_MAT3_IDENTITY (mat3)GLM_MAT3_IDENTITY_INIT
|
||||
#define GLM_MAT3_ZERO (mat3)GLM_MAT3_ZERO_INIT
|
||||
#define GLM_MAT3_IDENTITY ((mat3)GLM_MAT3_IDENTITY_INIT)
|
||||
#define GLM_MAT3_ZERO ((mat3)GLM_MAT3_ZERO_INIT)
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glm_mat3_dup(mat, dest) glm_mat3_copy(mat, dest)
|
||||
@@ -80,10 +83,29 @@ glm_mat3_copy(mat3 mat, mat3 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_identity(mat3 mat) {
|
||||
mat3 t = GLM_MAT3_IDENTITY_INIT;
|
||||
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_IDENTITY_INIT;
|
||||
glm_mat3_copy(t, mat);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given matrix array's each element identity matrix
|
||||
*
|
||||
* @param[in, out] mat matrix array (must be aligned (16/32)
|
||||
* if alignment is not disabled)
|
||||
*
|
||||
* @param[in] count count of matrices
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_identity_array(mat3 * __restrict mat, size_t count) {
|
||||
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_IDENTITY_INIT;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
glm_mat3_copy(t, mat[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply m1 and m2 to dest
|
||||
*
|
||||
@@ -154,7 +176,7 @@ glm_mat3_transpose_to(mat3 m, mat3 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_transpose(mat3 m) {
|
||||
mat3 tmp;
|
||||
CGLM_ALIGN_MAT mat3 tmp;
|
||||
|
||||
tmp[0][1] = m[1][0];
|
||||
tmp[0][2] = m[2][0];
|
||||
@@ -186,6 +208,68 @@ glm_mat3_mulv(mat3 m, vec3 v, vec3 dest) {
|
||||
dest[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief trace of matrix
|
||||
*
|
||||
* sum of the elements on the main diagonal from upper left to the lower right
|
||||
*
|
||||
* @param[in] m matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_mat3_trace(mat3 m) {
|
||||
return m[0][0] + m[1][1] + m[2][2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert mat3 to quaternion
|
||||
*
|
||||
* @param[in] m rotation matrix
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_quat(mat3 m, versor dest) {
|
||||
float trace, r, rinv;
|
||||
|
||||
/* it seems using like m12 instead of m[1][2] causes extra instructions */
|
||||
|
||||
trace = m[0][0] + m[1][1] + m[2][2];
|
||||
if (trace >= 0.0f) {
|
||||
r = sqrtf(1.0f + trace);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[1][2] - m[2][1]);
|
||||
dest[1] = rinv * (m[2][0] - m[0][2]);
|
||||
dest[2] = rinv * (m[0][1] - m[1][0]);
|
||||
dest[3] = r * 0.5f;
|
||||
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
|
||||
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = r * 0.5f;
|
||||
dest[1] = rinv * (m[0][1] + m[1][0]);
|
||||
dest[2] = rinv * (m[0][2] + m[2][0]);
|
||||
dest[3] = rinv * (m[1][2] - m[2][1]);
|
||||
} else if (m[1][1] >= m[2][2]) {
|
||||
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[0][1] + m[1][0]);
|
||||
dest[1] = r * 0.5f;
|
||||
dest[2] = rinv * (m[1][2] + m[2][1]);
|
||||
dest[3] = rinv * (m[2][0] - m[0][2]);
|
||||
} else {
|
||||
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[0][2] + m[2][0]);
|
||||
dest[1] = rinv * (m[1][2] + m[2][1]);
|
||||
dest[2] = r * 0.5f;
|
||||
dest[3] = rinv * (m[0][1] - m[1][0]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief scale (multiply with scalar) matrix
|
||||
*
|
||||
@@ -259,9 +343,9 @@ CGLM_INLINE
|
||||
void
|
||||
glm_mat3_swap_col(mat3 mat, int col1, int col2) {
|
||||
vec3 tmp;
|
||||
glm_vec_copy(mat[col1], tmp);
|
||||
glm_vec_copy(mat[col2], mat[col1]);
|
||||
glm_vec_copy(tmp, mat[col2]);
|
||||
glm_vec3_copy(mat[col1], tmp);
|
||||
glm_vec3_copy(mat[col2], mat[col1]);
|
||||
glm_vec3_copy(tmp, mat[col2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
|
||||
@@ -16,13 +16,12 @@
|
||||
GLM_MAT4_ZERO_INIT
|
||||
GLM_MAT4_IDENTITY
|
||||
GLM_MAT4_ZERO
|
||||
glm_mat4_udup(mat, dest)
|
||||
glm_mat4_dup(mat, dest)
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE void glm_mat4_ucopy(mat4 mat, mat4 dest);
|
||||
CGLM_INLINE void glm_mat4_copy(mat4 mat, mat4 dest);
|
||||
CGLM_INLINE void glm_mat4_identity(mat4 mat);
|
||||
CGLM_INLINE void glm_mat4_identity_array(mat4 * restrict mat, size_t count);
|
||||
CGLM_INLINE void glm_mat4_pick3(mat4 mat, mat3 dest);
|
||||
CGLM_INLINE void glm_mat4_pick3t(mat4 mat, mat3 dest);
|
||||
CGLM_INLINE void glm_mat4_ins3(mat3 mat, mat4 dest);
|
||||
@@ -30,6 +29,8 @@
|
||||
CGLM_INLINE void glm_mat4_mulN(mat4 *matrices[], int len, mat4 dest);
|
||||
CGLM_INLINE void glm_mat4_mulv(mat4 m, vec4 v, vec4 dest);
|
||||
CGLM_INLINE void glm_mat4_mulv3(mat4 m, vec3 v, vec3 dest);
|
||||
CGLM_INLINE float glm_mat4_trace(mat4 m);
|
||||
CGLM_INLINE float glm_mat4_trace3(mat4 m);
|
||||
CGLM_INLINE void glm_mat4_transpose_to(mat4 m, mat4 dest);
|
||||
CGLM_INLINE void glm_mat4_transpose(mat4 m);
|
||||
CGLM_INLINE void glm_mat4_scale_p(mat4 m, float s);
|
||||
@@ -45,6 +46,8 @@
|
||||
#define cglm_mat_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec4.h"
|
||||
#include "vec3.h"
|
||||
|
||||
#ifdef CGLM_SSE_FP
|
||||
# include "simd/sse2/mat4.h"
|
||||
@@ -58,7 +61,9 @@
|
||||
# include "simd/neon/mat4.h"
|
||||
#endif
|
||||
|
||||
#include <assert.h>
|
||||
#ifdef DEBUG
|
||||
# include <assert.h>
|
||||
#endif
|
||||
|
||||
#define GLM_MAT4_IDENTITY_INIT {{1.0f, 0.0f, 0.0f, 0.0f}, \
|
||||
{0.0f, 1.0f, 0.0f, 0.0f}, \
|
||||
@@ -71,8 +76,8 @@
|
||||
{0.0f, 0.0f, 0.0f, 0.0f}}
|
||||
|
||||
/* for C only */
|
||||
#define GLM_MAT4_IDENTITY (mat4)GLM_MAT4_IDENTITY_INIT
|
||||
#define GLM_MAT4_ZERO (mat4)GLM_MAT4_ZERO_INIT
|
||||
#define GLM_MAT4_IDENTITY ((mat4)GLM_MAT4_IDENTITY_INIT)
|
||||
#define GLM_MAT4_ZERO ((mat4)GLM_MAT4_ZERO_INIT)
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glm_mat4_udup(mat, dest) glm_mat4_ucopy(mat, dest)
|
||||
@@ -106,13 +111,13 @@ CGLM_INLINE
|
||||
void
|
||||
glm_mat4_copy(mat4 mat, mat4 dest) {
|
||||
#ifdef __AVX__
|
||||
_mm256_store_ps(dest[0], _mm256_load_ps(mat[0]));
|
||||
_mm256_store_ps(dest[2], _mm256_load_ps(mat[2]));
|
||||
glmm_store256(dest[0], glmm_load256(mat[0]));
|
||||
glmm_store256(dest[2], glmm_load256(mat[2]));
|
||||
#elif defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest[0], _mm_load_ps(mat[0]));
|
||||
_mm_store_ps(dest[1], _mm_load_ps(mat[1]));
|
||||
_mm_store_ps(dest[2], _mm_load_ps(mat[2]));
|
||||
_mm_store_ps(dest[3], _mm_load_ps(mat[3]));
|
||||
glmm_store(dest[0], glmm_load(mat[0]));
|
||||
glmm_store(dest[1], glmm_load(mat[1]));
|
||||
glmm_store(dest[2], glmm_load(mat[2]));
|
||||
glmm_store(dest[3], glmm_load(mat[3]));
|
||||
#else
|
||||
glm_mat4_ucopy(mat, dest);
|
||||
#endif
|
||||
@@ -135,10 +140,29 @@ glm_mat4_copy(mat4 mat, mat4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_identity(mat4 mat) {
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
glm_mat4_copy(t, mat);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given matrix array's each element identity matrix
|
||||
*
|
||||
* @param[in, out] mat matrix array (must be aligned (16/32)
|
||||
* if alignment is not disabled)
|
||||
*
|
||||
* @param[in] count count of matrices
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_identity_array(mat4 * __restrict mat, size_t count) {
|
||||
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
glm_mat4_copy(t, mat[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy upper-left of mat4 to mat3
|
||||
*
|
||||
@@ -281,19 +305,17 @@ glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest) {
|
||||
int i;
|
||||
glm_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest) {
|
||||
uint32_t i;
|
||||
|
||||
#ifdef DEBUG
|
||||
assert(len > 1 && "there must be least 2 matrices to go!");
|
||||
#endif
|
||||
|
||||
glm_mat4_mul(*matrices[0],
|
||||
*matrices[1],
|
||||
dest);
|
||||
glm_mat4_mul(*matrices[0], *matrices[1], dest);
|
||||
|
||||
for (i = 2; i < len; i++)
|
||||
glm_mat4_mul(dest,
|
||||
*matrices[i],
|
||||
dest);
|
||||
glm_mat4_mul(dest, *matrices[i], dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -319,20 +341,95 @@ glm_mat4_mulv(mat4 m, vec4 v, vec4 dest) {
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply vector with mat4's mat3 part(rotation)
|
||||
* @brief trace of matrix
|
||||
*
|
||||
* @param[in] m mat4(affine transform)
|
||||
* @param[in] v vec3
|
||||
* @param[out] dest vec3
|
||||
* sum of the elements on the main diagonal from upper left to the lower right
|
||||
*
|
||||
* @param[in] m matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_mat4_trace(mat4 m) {
|
||||
return m[0][0] + m[1][1] + m[2][2] + m[3][3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief trace of matrix (rotation part)
|
||||
*
|
||||
* sum of the elements on the main diagonal from upper left to the lower right
|
||||
*
|
||||
* @param[in] m matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_mat4_trace3(mat4 m) {
|
||||
return m[0][0] + m[1][1] + m[2][2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert mat4's rotation part to quaternion
|
||||
*
|
||||
* @param[in] m affine matrix
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_mulv3(mat4 m, vec3 v, vec3 dest) {
|
||||
vec3 res;
|
||||
res[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2];
|
||||
res[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2];
|
||||
res[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2];
|
||||
glm_vec_copy(res, dest);
|
||||
glm_mat4_quat(mat4 m, versor dest) {
|
||||
float trace, r, rinv;
|
||||
|
||||
/* it seems using like m12 instead of m[1][2] causes extra instructions */
|
||||
|
||||
trace = m[0][0] + m[1][1] + m[2][2];
|
||||
if (trace >= 0.0f) {
|
||||
r = sqrtf(1.0f + trace);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[1][2] - m[2][1]);
|
||||
dest[1] = rinv * (m[2][0] - m[0][2]);
|
||||
dest[2] = rinv * (m[0][1] - m[1][0]);
|
||||
dest[3] = r * 0.5f;
|
||||
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
|
||||
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = r * 0.5f;
|
||||
dest[1] = rinv * (m[0][1] + m[1][0]);
|
||||
dest[2] = rinv * (m[0][2] + m[2][0]);
|
||||
dest[3] = rinv * (m[1][2] - m[2][1]);
|
||||
} else if (m[1][1] >= m[2][2]) {
|
||||
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[0][1] + m[1][0]);
|
||||
dest[1] = r * 0.5f;
|
||||
dest[2] = rinv * (m[1][2] + m[2][1]);
|
||||
dest[3] = rinv * (m[2][0] - m[0][2]);
|
||||
} else {
|
||||
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[0][2] + m[2][0]);
|
||||
dest[1] = rinv * (m[1][2] + m[2][1]);
|
||||
dest[2] = r * 0.5f;
|
||||
dest[3] = rinv * (m[0][1] - m[1][0]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply vector with mat4
|
||||
*
|
||||
* @param[in] m mat4(affine transform)
|
||||
* @param[in] v vec3
|
||||
* @param[in] last 4th item to make it vec4
|
||||
* @param[out] dest result vector (vec3)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest) {
|
||||
vec4 res;
|
||||
glm_vec4(v, last, res);
|
||||
glm_mat4_mulv(m, res, res);
|
||||
glm_vec3(res, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -407,7 +504,9 @@ glm_mat4_scale_p(mat4 m, float s) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_scale(mat4 m, float s) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
#ifdef __AVX__
|
||||
glm_mat4_scale_avx(m, s);
|
||||
#elif defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_mat4_scale_sse2(m, s);
|
||||
#else
|
||||
glm_mat4_scale_p(m, s);
|
||||
@@ -457,7 +556,9 @@ glm_mat4_det(mat4 mat) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_inv(mat4 mat, mat4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
#ifdef __AVX__
|
||||
glm_mat4_inv_avx(mat, dest);
|
||||
#elif defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_mat4_inv_sse2(mat, dest);
|
||||
#else
|
||||
float t[6];
|
||||
@@ -518,7 +619,9 @@ glm_mat4_inv(mat4 mat, mat4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_inv_fast(mat4 mat, mat4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
#ifdef __AVX__
|
||||
glm_mat4_inv_fast_avx(mat, dest);
|
||||
#elif defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_mat4_inv_fast_sse2(mat, dest);
|
||||
#else
|
||||
glm_mat4_inv(mat, dest);
|
||||
@@ -535,7 +638,7 @@ glm_mat4_inv_fast(mat4 mat, mat4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_swap_col(mat4 mat, int col1, int col2) {
|
||||
vec4 tmp;
|
||||
CGLM_ALIGN(16) vec4 tmp;
|
||||
glm_vec4_copy(mat[col1], tmp);
|
||||
glm_vec4_copy(mat[col2], mat[col1]);
|
||||
glm_vec4_copy(tmp, mat[col2]);
|
||||
@@ -551,7 +654,7 @@ glm_mat4_swap_col(mat4 mat, int col1, int col2) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_swap_row(mat4 mat, int row1, int row2) {
|
||||
vec4 tmp;
|
||||
CGLM_ALIGN(16) vec4 tmp;
|
||||
tmp[0] = mat[0][row1];
|
||||
tmp[1] = mat[1][row1];
|
||||
tmp[2] = mat[2][row1];
|
||||
@@ -568,5 +671,4 @@ glm_mat4_swap_row(mat4 mat, int row1, int row2) {
|
||||
mat[3][row2] = tmp[3];
|
||||
}
|
||||
|
||||
#else
|
||||
#endif /* cglm_mat_h */
|
||||
|
||||
36
include/cglm/plane.h
Normal file
36
include/cglm/plane.h
Normal file
@@ -0,0 +1,36 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_plane_h
|
||||
#define cglm_plane_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec4.h"
|
||||
|
||||
/*
|
||||
Plane equation: Ax + By + Cz + D = 0;
|
||||
|
||||
It stored in vec4 as [A, B, C, D]. (A, B, C) is normal and D is distance
|
||||
*/
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE void glm_plane_normalize(vec4 plane);
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @brief normalizes a plane
|
||||
*
|
||||
* @param[in, out] plane pnale to normalize
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_plane_normalize(vec4 plane) {
|
||||
glm_vec4_scale(plane, 1.0f / glm_vec3_norm(plane), plane);
|
||||
}
|
||||
|
||||
#endif /* cglm_plane_h */
|
||||
117
include/cglm/project.h
Normal file
117
include/cglm/project.h
Normal file
@@ -0,0 +1,117 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_project_h
|
||||
#define cglm_project_h
|
||||
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
|
||||
/*!
|
||||
* @brief maps the specified viewport coordinates into specified space [1]
|
||||
* the matrix should contain projection matrix.
|
||||
*
|
||||
* if you don't have ( and don't want to have ) an inverse matrix then use
|
||||
* glm_unproject version. You may use existing inverse of matrix in somewhere
|
||||
* else, this is why glm_unprojecti exists to save save inversion cost
|
||||
*
|
||||
* [1] space:
|
||||
* 1- if m = invProj: View Space
|
||||
* 2- if m = invViewProj: World Space
|
||||
* 3- if m = invMVP: Object Space
|
||||
*
|
||||
* You probably want to map the coordinates into object space
|
||||
* so use invMVP as m
|
||||
*
|
||||
* Computing viewProj:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* glm_mat4_mul(viewProj, model, MVP);
|
||||
* glm_mat4_inv(viewProj, invMVP);
|
||||
*
|
||||
* @param[in] pos point/position in viewport coordinates
|
||||
* @param[in] invMat matrix (see brief)
|
||||
* @param[in] vp viewport as [x, y, width, height]
|
||||
* @param[out] dest unprojected coordinates
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
|
||||
vec4 v;
|
||||
|
||||
v[0] = 2.0f * (pos[0] - vp[0]) / vp[2] - 1.0f;
|
||||
v[1] = 2.0f * (pos[1] - vp[1]) / vp[3] - 1.0f;
|
||||
v[2] = 2.0f * pos[2] - 1.0f;
|
||||
v[3] = 1.0f;
|
||||
|
||||
glm_mat4_mulv(invMat, v, v);
|
||||
glm_vec4_scale(v, 1.0f / v[3], v);
|
||||
glm_vec3(v, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief maps the specified viewport coordinates into specified space [1]
|
||||
* the matrix should contain projection matrix.
|
||||
*
|
||||
* this is same as glm_unprojecti except this function get inverse matrix for
|
||||
* you.
|
||||
*
|
||||
* [1] space:
|
||||
* 1- if m = proj: View Space
|
||||
* 2- if m = viewProj: World Space
|
||||
* 3- if m = MVP: Object Space
|
||||
*
|
||||
* You probably want to map the coordinates into object space
|
||||
* so use MVP as m
|
||||
*
|
||||
* Computing viewProj and MVP:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* glm_mat4_mul(viewProj, model, MVP);
|
||||
*
|
||||
* @param[in] pos point/position in viewport coordinates
|
||||
* @param[in] m matrix (see brief)
|
||||
* @param[in] vp viewport as [x, y, width, height]
|
||||
* @param[out] dest unprojected coordinates
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
|
||||
mat4 inv;
|
||||
glm_mat4_inv(m, inv);
|
||||
glm_unprojecti(pos, inv, vp, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief map object coordinates to window coordinates
|
||||
*
|
||||
* Computing MVP:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* glm_mat4_mul(viewProj, model, MVP);
|
||||
*
|
||||
* @param[in] pos object coordinates
|
||||
* @param[in] m MVP matrix
|
||||
* @param[in] vp viewport as [x, y, width, height]
|
||||
* @param[out] dest projected coordinates
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_project(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
|
||||
CGLM_ALIGN(16) vec4 pos4, vone = GLM_VEC4_ONE_INIT;
|
||||
|
||||
glm_vec4(pos, 1.0f, pos4);
|
||||
|
||||
glm_mat4_mulv(m, pos4, pos4);
|
||||
glm_vec4_scale(pos4, 1.0f / pos4[3], pos4); /* pos = pos / pos.w */
|
||||
glm_vec4_add(pos4, vone, pos4);
|
||||
glm_vec4_scale(pos4, 0.5f, pos4);
|
||||
|
||||
dest[0] = pos4[0] * vp[2] + vp[0];
|
||||
dest[1] = pos4[1] * vp[3] + vp[1];
|
||||
dest[2] = pos4[2];
|
||||
}
|
||||
|
||||
#endif /* cglm_project_h */
|
||||
@@ -11,126 +11,443 @@
|
||||
GLM_QUAT_IDENTITY
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE void glm_quat_identity(versor q);
|
||||
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
|
||||
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 v);
|
||||
CGLM_INLINE void glm_quat_identity(versor q);
|
||||
CGLM_INLINE void glm_quat_init(versor q, float x, float y, float z, float w);
|
||||
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
|
||||
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_quat_copy(versor q, versor dest);
|
||||
CGLM_INLINE float glm_quat_norm(versor q);
|
||||
CGLM_INLINE void glm_quat_normalize(versor q);
|
||||
CGLM_INLINE float glm_quat_dot(versor q, versor r);
|
||||
CGLM_INLINE void glm_quat_mulv(versor q1, versor q2, versor dest);
|
||||
CGLM_INLINE void glm_quat_mat4(versor q, mat4 dest);
|
||||
CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest);
|
||||
CGLM_INLINE void glm_quat_normalize(versor q);
|
||||
CGLM_INLINE void glm_quat_normalize_to(versor q, versor dest);
|
||||
CGLM_INLINE float glm_quat_dot(versor p, versor q);
|
||||
CGLM_INLINE void glm_quat_conjugate(versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_inv(versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_add(versor p, versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_sub(versor p, versor q, versor dest);
|
||||
CGLM_INLINE float glm_quat_real(versor q);
|
||||
CGLM_INLINE void glm_quat_imag(versor q, vec3 dest);
|
||||
CGLM_INLINE void glm_quat_imagn(versor q, vec3 dest);
|
||||
CGLM_INLINE float glm_quat_imaglen(versor q);
|
||||
CGLM_INLINE float glm_quat_angle(versor q);
|
||||
CGLM_INLINE void glm_quat_axis(versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_mul(versor p, versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_mat4(versor q, mat4 dest);
|
||||
CGLM_INLINE void glm_quat_mat4t(versor q, mat4 dest);
|
||||
CGLM_INLINE void glm_quat_mat3(versor q, mat3 dest);
|
||||
CGLM_INLINE void glm_quat_mat3t(versor q, mat3 dest);
|
||||
CGLM_INLINE void glm_quat_lerp(versor from, versor to, float t, versor dest);
|
||||
CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest);
|
||||
CGLM_INLINE void glm_quat_look(vec3 eye, versor ori, mat4 dest);
|
||||
CGLM_INLINE void glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
|
||||
CGLM_INLINE void glm_quat_forp(vec3 from,
|
||||
vec3 to,
|
||||
vec3 fwd,
|
||||
vec3 up,
|
||||
versor dest);
|
||||
CGLM_INLINE void glm_quat_rotatev(versor q, vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_quat_rotate(mat4 m, versor q, mat4 dest);
|
||||
*/
|
||||
|
||||
#ifndef cglm_quat_h
|
||||
#define cglm_quat_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
#include "mat3.h"
|
||||
#include "affine-mat.h"
|
||||
|
||||
#ifdef CGLM_SSE_FP
|
||||
# include "simd/sse2/quat.h"
|
||||
#endif
|
||||
|
||||
#define GLM_QUAT_IDENTITY_INIT {1.0f, 0.0f, 0.0f, 0.0f}
|
||||
#define GLM_QUAT_IDENTITY (versor){1.0f, 0.0f, 0.0f, 0.0f}
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_identity(mat4 mat);
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_mulv(mat4 m, vec4 v, vec4 dest);
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest);
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate(mat4 m, vec3 v);
|
||||
|
||||
/*
|
||||
* IMPORTANT:
|
||||
* ----------------------------------------------------------------------------
|
||||
* cglm stores quat as [x, y, z, w] since v0.3.6
|
||||
*
|
||||
* it was [w, x, y, z] before v0.3.6 it has been changed to [x, y, z, w]
|
||||
* with v0.3.6 version.
|
||||
* ----------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#define GLM_QUAT_IDENTITY_INIT {0.0f, 0.0f, 0.0f, 1.0f}
|
||||
#define GLM_QUAT_IDENTITY ((versor)GLM_QUAT_IDENTITY_INIT)
|
||||
|
||||
/*!
|
||||
* @brief makes given quat to identity
|
||||
*
|
||||
* @param[in, out] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_identity(versor q) {
|
||||
versor v = GLM_QUAT_IDENTITY_INIT;
|
||||
CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
|
||||
glm_vec4_copy(v, q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given quaternion array's each element identity quaternion
|
||||
*
|
||||
* @param[in, out] q quat array (must be aligned (16)
|
||||
* if alignment is not disabled)
|
||||
*
|
||||
* @param[in] count count of quaternions
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat(versor q,
|
||||
float angle,
|
||||
float x,
|
||||
float y,
|
||||
float z) {
|
||||
glm_quat_identity_array(versor * __restrict q, size_t count) {
|
||||
CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
glm_vec4_copy(v, q[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inits quaterion with raw values
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] x x
|
||||
* @param[in] y y
|
||||
* @param[in] z z
|
||||
* @param[in] w w (real part)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_init(versor q, float x, float y, float z, float w) {
|
||||
q[0] = x;
|
||||
q[1] = y;
|
||||
q[2] = z;
|
||||
q[3] = w;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion with axis vector
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quatv(versor q, float angle, vec3 axis) {
|
||||
CGLM_ALIGN(8) vec3 k;
|
||||
float a, c, s;
|
||||
|
||||
a = angle * 0.5f;
|
||||
c = cosf(a);
|
||||
s = sinf(a);
|
||||
|
||||
q[0] = c;
|
||||
q[1] = s * x;
|
||||
q[2] = s * y;
|
||||
q[3] = s * z;
|
||||
glm_normalize_to(axis, k);
|
||||
|
||||
q[0] = s * k[0];
|
||||
q[1] = s * k[1];
|
||||
q[2] = s * k[2];
|
||||
q[3] = c;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion with individual axis components
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] x axis.x
|
||||
* @param[in] y axis.y
|
||||
* @param[in] z axis.z
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quatv(versor q,
|
||||
float angle,
|
||||
vec3 v) {
|
||||
float a, c, s;
|
||||
|
||||
a = angle * 0.5f;
|
||||
c = cosf(a);
|
||||
s = sinf(a);
|
||||
|
||||
q[0] = c;
|
||||
q[1] = s * v[0];
|
||||
q[2] = s * v[1];
|
||||
q[3] = s * v[2];
|
||||
glm_quat(versor q, float angle, float x, float y, float z) {
|
||||
CGLM_ALIGN(8) vec3 axis = {x, y, z};
|
||||
glm_quatv(q, angle, axis);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy quaternion to another one
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_copy(versor q, versor dest) {
|
||||
glm_vec4_copy(q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns norm (magnitude) of quaternion
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_norm(versor q) {
|
||||
return glm_vec4_norm(q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize quaternion and store result in dest
|
||||
*
|
||||
* @param[in] q quaternion to normalze
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_normalize_to(versor q, versor dest) {
|
||||
#if defined( __SSE2__ ) || defined( __SSE2__ )
|
||||
__m128 xdot, x0;
|
||||
float dot;
|
||||
|
||||
x0 = glmm_load(q);
|
||||
xdot = glmm_dot(x0, x0);
|
||||
dot = _mm_cvtss_f32(xdot);
|
||||
|
||||
if (dot <= 0.0f) {
|
||||
glm_quat_identity(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
glmm_store(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
|
||||
#else
|
||||
float dot;
|
||||
|
||||
dot = glm_vec4_norm2(q);
|
||||
|
||||
if (dot <= 0.0f) {
|
||||
glm_quat_identity(q);
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec4_scale(q, 1.0f / sqrtf(dot), dest);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize quaternion
|
||||
*
|
||||
* @param[in, out] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_normalize(versor q) {
|
||||
float sum;
|
||||
|
||||
sum = q[0] * q[0] + q[1] * q[1]
|
||||
+ q[2] * q[2] + q[3] * q[3];
|
||||
|
||||
if (fabs(1.0f - sum) < 0.0001f)
|
||||
return;
|
||||
|
||||
glm_vec4_scale(q, 1.0f / sqrtf(sum), q);
|
||||
glm_quat_normalize_to(q, q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief dot product of two quaternion
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_dot(versor q, versor r) {
|
||||
return glm_vec4_dot(q, r);
|
||||
glm_quat_dot(versor p, versor q) {
|
||||
return glm_vec4_dot(p, q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief conjugate of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest conjugate
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mulv(versor q1, versor q2, versor dest) {
|
||||
dest[0] = q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2] - q2[3] * q1[3];
|
||||
dest[1] = q2[0] * q1[1] + q2[1] * q1[0] - q2[2] * q1[3] + q2[3] * q1[2];
|
||||
dest[2] = q2[0] * q1[2] + q2[1] * q1[3] + q2[2] * q1[0] - q2[3] * q1[1];
|
||||
dest[3] = q2[0] * q1[3] - q2[1] * q1[2] + q2[2] * q1[1] + q2[3] * q1[0];
|
||||
|
||||
glm_quat_normalize(dest);
|
||||
glm_quat_conjugate(versor q, versor dest) {
|
||||
glm_vec4_negate_to(q, dest);
|
||||
dest[3] = -dest[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inverse of non-zero quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest inverse quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_inv(versor q, versor dest) {
|
||||
CGLM_ALIGN(16) versor conj;
|
||||
glm_quat_conjugate(q, conj);
|
||||
glm_vec4_scale(conj, 1.0f / glm_vec4_norm2(q), dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add (componentwise) two quaternions and store result in dest
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_add(versor p, versor q, versor dest) {
|
||||
glm_vec4_add(p, q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract (componentwise) two quaternions and store result in dest
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_sub(versor p, versor q, versor dest) {
|
||||
glm_vec4_sub(p, q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns real part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_real(versor q) {
|
||||
return q[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns imaginary part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest imag
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_imag(versor q, vec3 dest) {
|
||||
dest[0] = q[0];
|
||||
dest[1] = q[1];
|
||||
dest[2] = q[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns normalized imaginary part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_imagn(versor q, vec3 dest) {
|
||||
glm_normalize_to(q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns length of imaginary part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_imaglen(versor q) {
|
||||
return glm_vec3_norm(q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns angle of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_angle(versor q) {
|
||||
/*
|
||||
sin(theta / 2) = length(x*x + y*y + z*z)
|
||||
cos(theta / 2) = w
|
||||
theta = 2 * atan(sin(theta / 2) / cos(theta / 2))
|
||||
*/
|
||||
return 2.0f * atan2f(glm_quat_imaglen(q), glm_quat_real(q));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief axis of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest axis of quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_axis(versor q, versor dest) {
|
||||
glm_quat_imagn(q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiplies two quaternion and stores result in dest
|
||||
* this is also called Hamilton Product
|
||||
*
|
||||
* According to WikiPedia:
|
||||
* The product of two rotation quaternions [clarification needed] will be
|
||||
* equivalent to the rotation q followed by the rotation p
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mul(versor p, versor q, versor dest) {
|
||||
/*
|
||||
+ (a1 b2 + b1 a2 + c1 d2 − d1 c2)i
|
||||
+ (a1 c2 − b1 d2 + c1 a2 + d1 b2)j
|
||||
+ (a1 d2 + b1 c2 − c1 b2 + d1 a2)k
|
||||
a1 a2 − b1 b2 − c1 c2 − d1 d2
|
||||
*/
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_quat_mul_sse2(p, q, dest);
|
||||
#else
|
||||
dest[0] = p[3] * q[0] + p[0] * q[3] + p[1] * q[2] - p[2] * q[1];
|
||||
dest[1] = p[3] * q[1] - p[0] * q[2] + p[1] * q[3] + p[2] * q[0];
|
||||
dest[2] = p[3] * q[2] + p[0] * q[1] - p[1] * q[0] + p[2] * q[3];
|
||||
dest[3] = p[3] * q[3] - p[0] * q[0] - p[1] * q[1] - p[2] * q[2];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat4
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mat4(versor q, mat4 dest) {
|
||||
float w, x, y, z;
|
||||
float xx, yy, zz;
|
||||
float xy, yz, xz;
|
||||
float wx, wy, wz;
|
||||
float w, x, y, z,
|
||||
xx, yy, zz,
|
||||
xy, yz, xz,
|
||||
wx, wy, wz, norm, s;
|
||||
|
||||
w = q[0];
|
||||
x = q[1];
|
||||
y = q[2];
|
||||
z = q[3];
|
||||
norm = glm_quat_norm(q);
|
||||
s = norm > 0.0f ? 2.0f / norm : 0.0f;
|
||||
|
||||
xx = 2.0f * x * x; xy = 2.0f * x * y; wx = 2.0f * w * x;
|
||||
yy = 2.0f * y * y; yz = 2.0f * y * z; wy = 2.0f * w * y;
|
||||
zz = 2.0f * z * z; xz = 2.0f * x * z; wz = 2.0f * w * z;
|
||||
x = q[0];
|
||||
y = q[1];
|
||||
z = q[2];
|
||||
w = q[3];
|
||||
|
||||
xx = s * x * x; xy = s * x * y; wx = s * w * x;
|
||||
yy = s * y * y; yz = s * y * z; wy = s * w * y;
|
||||
zz = s * z * z; xz = s * x * z; wz = s * w * z;
|
||||
|
||||
dest[0][0] = 1.0f - yy - zz;
|
||||
dest[1][1] = 1.0f - xx - zz;
|
||||
@@ -144,8 +461,8 @@ glm_quat_mat4(versor q, mat4 dest) {
|
||||
dest[2][1] = yz - wx;
|
||||
dest[0][2] = xz - wy;
|
||||
|
||||
dest[1][3] = 0.0f;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
@@ -153,60 +470,343 @@ glm_quat_mat4(versor q, mat4 dest) {
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat4 (transposed)
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest result matrix as transposed
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_slerp(versor q,
|
||||
versor r,
|
||||
float t,
|
||||
versor dest) {
|
||||
/* https://en.wikipedia.org/wiki/Slerp */
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_quat_slerp_sse2(q, r, t, dest);
|
||||
#else
|
||||
float cosTheta, sinTheta, angle, a, b, c;
|
||||
glm_quat_mat4t(versor q, mat4 dest) {
|
||||
float w, x, y, z,
|
||||
xx, yy, zz,
|
||||
xy, yz, xz,
|
||||
wx, wy, wz, norm, s;
|
||||
|
||||
cosTheta = glm_quat_dot(q, r);
|
||||
if (cosTheta < 0.0f) {
|
||||
q[0] *= -1.0f;
|
||||
q[1] *= -1.0f;
|
||||
q[2] *= -1.0f;
|
||||
q[3] *= -1.0f;
|
||||
norm = glm_quat_norm(q);
|
||||
s = norm > 0.0f ? 2.0f / norm : 0.0f;
|
||||
|
||||
cosTheta = -cosTheta;
|
||||
}
|
||||
x = q[0];
|
||||
y = q[1];
|
||||
z = q[2];
|
||||
w = q[3];
|
||||
|
||||
if (fabs(cosTheta) >= 1.0f) {
|
||||
dest[0] = q[0];
|
||||
dest[1] = q[1];
|
||||
dest[2] = q[2];
|
||||
dest[3] = q[3];
|
||||
xx = s * x * x; xy = s * x * y; wx = s * w * x;
|
||||
yy = s * y * y; yz = s * y * z; wy = s * w * y;
|
||||
zz = s * z * z; xz = s * x * z; wz = s * w * z;
|
||||
|
||||
dest[0][0] = 1.0f - yy - zz;
|
||||
dest[1][1] = 1.0f - xx - zz;
|
||||
dest[2][2] = 1.0f - xx - yy;
|
||||
|
||||
dest[1][0] = xy + wz;
|
||||
dest[2][1] = yz + wx;
|
||||
dest[0][2] = xz + wy;
|
||||
|
||||
dest[0][1] = xy - wz;
|
||||
dest[1][2] = yz - wx;
|
||||
dest[2][0] = xz - wy;
|
||||
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat3
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mat3(versor q, mat3 dest) {
|
||||
float w, x, y, z,
|
||||
xx, yy, zz,
|
||||
xy, yz, xz,
|
||||
wx, wy, wz, norm, s;
|
||||
|
||||
norm = glm_quat_norm(q);
|
||||
s = norm > 0.0f ? 2.0f / norm : 0.0f;
|
||||
|
||||
x = q[0];
|
||||
y = q[1];
|
||||
z = q[2];
|
||||
w = q[3];
|
||||
|
||||
xx = s * x * x; xy = s * x * y; wx = s * w * x;
|
||||
yy = s * y * y; yz = s * y * z; wy = s * w * y;
|
||||
zz = s * z * z; xz = s * x * z; wz = s * w * z;
|
||||
|
||||
dest[0][0] = 1.0f - yy - zz;
|
||||
dest[1][1] = 1.0f - xx - zz;
|
||||
dest[2][2] = 1.0f - xx - yy;
|
||||
|
||||
dest[0][1] = xy + wz;
|
||||
dest[1][2] = yz + wx;
|
||||
dest[2][0] = xz + wy;
|
||||
|
||||
dest[1][0] = xy - wz;
|
||||
dest[2][1] = yz - wx;
|
||||
dest[0][2] = xz - wy;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat3 (transposed)
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mat3t(versor q, mat3 dest) {
|
||||
float w, x, y, z,
|
||||
xx, yy, zz,
|
||||
xy, yz, xz,
|
||||
wx, wy, wz, norm, s;
|
||||
|
||||
norm = glm_quat_norm(q);
|
||||
s = norm > 0.0f ? 2.0f / norm : 0.0f;
|
||||
|
||||
x = q[0];
|
||||
y = q[1];
|
||||
z = q[2];
|
||||
w = q[3];
|
||||
|
||||
xx = s * x * x; xy = s * x * y; wx = s * w * x;
|
||||
yy = s * y * y; yz = s * y * z; wy = s * w * y;
|
||||
zz = s * z * z; xz = s * x * z; wz = s * w * z;
|
||||
|
||||
dest[0][0] = 1.0f - yy - zz;
|
||||
dest[1][1] = 1.0f - xx - zz;
|
||||
dest[2][2] = 1.0f - xx - yy;
|
||||
|
||||
dest[1][0] = xy + wz;
|
||||
dest[2][1] = yz + wx;
|
||||
dest[0][2] = xz + wy;
|
||||
|
||||
dest[0][1] = xy - wz;
|
||||
dest[1][2] = yz - wx;
|
||||
dest[2][0] = xz - wy;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief interpolates between two quaternions
|
||||
* using linear interpolation (LERP)
|
||||
*
|
||||
* @param[in] from from
|
||||
* @param[in] to to
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_lerp(versor from, versor to, float t, versor dest) {
|
||||
glm_vec4_lerp(from, to, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief interpolates between two quaternions
|
||||
* using spherical linear interpolation (SLERP)
|
||||
*
|
||||
* @param[in] from from
|
||||
* @param[in] to to
|
||||
* @param[in] t amout
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_slerp(versor from, versor to, float t, versor dest) {
|
||||
CGLM_ALIGN(16) vec4 q1, q2;
|
||||
float cosTheta, sinTheta, angle;
|
||||
|
||||
cosTheta = glm_quat_dot(from, to);
|
||||
glm_quat_copy(from, q1);
|
||||
|
||||
if (fabsf(cosTheta) >= 1.0f) {
|
||||
glm_quat_copy(q1, dest);
|
||||
return;
|
||||
}
|
||||
|
||||
sinTheta = sqrt(1.0f - cosTheta * cosTheta);
|
||||
if (cosTheta < 0.0f) {
|
||||
glm_vec4_negate(q1);
|
||||
cosTheta = -cosTheta;
|
||||
}
|
||||
|
||||
c = 1.0f - t;
|
||||
sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
|
||||
|
||||
/* LERP */
|
||||
/* TODO: FLT_EPSILON vs 0.001? */
|
||||
if (sinTheta < 0.001f) {
|
||||
dest[0] = c * q[0] + t * r[0];
|
||||
dest[1] = c * q[1] + t * r[1];
|
||||
dest[2] = c * q[2] + t * r[2];
|
||||
dest[3] = c * q[3] + t * r[3];
|
||||
/* LERP to avoid zero division */
|
||||
if (fabsf(sinTheta) < 0.001f) {
|
||||
glm_quat_lerp(from, to, t, dest);
|
||||
return;
|
||||
}
|
||||
|
||||
/* SLERP */
|
||||
angle = acosf(cosTheta);
|
||||
a = sinf(c * angle);
|
||||
b = sinf(t * angle);
|
||||
glm_vec4_scale(q1, sinf((1.0f - t) * angle), q1);
|
||||
glm_vec4_scale(to, sinf(t * angle), q2);
|
||||
|
||||
dest[0] = (q[0] * a + r[0] * b) / sinTheta;
|
||||
dest[1] = (q[1] * a + r[1] * b) / sinTheta;
|
||||
dest[2] = (q[2] * a + r[2] * b) / sinTheta;
|
||||
dest[3] = (q[3] * a + r[3] * b) / sinTheta;
|
||||
#endif
|
||||
glm_vec4_add(q1, q2, q1);
|
||||
glm_vec4_scale(q1, 1.0f / sinTheta, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates view matrix using quaternion as camera orientation
|
||||
*
|
||||
* @param[in] eye eye
|
||||
* @param[in] ori orientation in world space as quaternion
|
||||
* @param[out] dest view matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_look(vec3 eye, versor ori, mat4 dest) {
|
||||
/* orientation */
|
||||
glm_quat_mat4t(ori, dest);
|
||||
|
||||
/* translate */
|
||||
glm_mat4_mulv3(dest, eye, 1.0f, dest[3]);
|
||||
glm_vec3_negate(dest[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates look rotation quaternion
|
||||
*
|
||||
* @param[in] dir direction to look
|
||||
* @param[in] fwd forward vector
|
||||
* @param[in] up up vector
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest) {
|
||||
CGLM_ALIGN(8) vec3 axis;
|
||||
float dot, angle;
|
||||
|
||||
dot = glm_vec3_dot(dir, fwd);
|
||||
if (fabsf(dot + 1.0f) < 0.000001f) {
|
||||
glm_quat_init(dest, up[0], up[1], up[2], GLM_PIf);
|
||||
return;
|
||||
}
|
||||
|
||||
if (fabsf(dot - 1.0f) < 0.000001f) {
|
||||
glm_quat_identity(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
angle = acosf(dot);
|
||||
glm_cross(fwd, dir, axis);
|
||||
glm_normalize(axis);
|
||||
|
||||
glm_quatv(dest, angle, axis);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates look rotation quaternion using source and
|
||||
* destination positions p suffix stands for position
|
||||
*
|
||||
* @param[in] from source point
|
||||
* @param[in] to destination point
|
||||
* @param[in] fwd forward vector
|
||||
* @param[in] up up vector
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest) {
|
||||
CGLM_ALIGN(8) vec3 dir;
|
||||
glm_vec3_sub(to, from, dir);
|
||||
glm_quat_for(dir, fwd, up, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate vector using using quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[in] v vector to rotate
|
||||
* @param[out] dest rotated vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_rotatev(versor q, vec3 v, vec3 dest) {
|
||||
CGLM_ALIGN(16) versor p;
|
||||
CGLM_ALIGN(8) vec3 u, v1, v2;
|
||||
float s;
|
||||
|
||||
glm_quat_normalize_to(q, p);
|
||||
glm_quat_imag(p, u);
|
||||
s = glm_quat_real(p);
|
||||
|
||||
glm_vec3_scale(u, 2.0f * glm_vec3_dot(u, v), v1);
|
||||
glm_vec3_scale(v, s * s - glm_vec3_dot(u, u), v2);
|
||||
glm_vec3_add(v1, v2, v1);
|
||||
|
||||
glm_vec3_cross(u, v, v2);
|
||||
glm_vec3_scale(v2, 2.0f * s, v2);
|
||||
|
||||
glm_vec3_add(v1, v2, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix using quaternion
|
||||
*
|
||||
* @param[in] m existing transform matrix
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest rotated matrix/transform
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_rotate(mat4 m, versor q, mat4 dest) {
|
||||
CGLM_ALIGN_MAT mat4 rot;
|
||||
glm_quat_mat4(q, rot);
|
||||
glm_mul_rot(m, rot, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix using quaternion at pivot point
|
||||
*
|
||||
* @param[in, out] m existing transform matrix
|
||||
* @param[in] q quaternion
|
||||
* @param[out] pivot pivot
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_rotate_at(mat4 m, versor q, vec3 pivot) {
|
||||
CGLM_ALIGN(8) vec3 pivotInv;
|
||||
|
||||
glm_vec3_negate_to(pivot, pivotInv);
|
||||
|
||||
glm_translate(m, pivot);
|
||||
glm_quat_rotate(m, q, m);
|
||||
glm_translate(m, pivotInv);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate NEW transform matrix using quaternion at pivot point
|
||||
*
|
||||
* this creates rotation matrix, it assumes you don't have a matrix
|
||||
*
|
||||
* this should work faster than glm_quat_rotate_at because it reduces
|
||||
* one glm_translate.
|
||||
*
|
||||
* @param[out] m existing transform matrix
|
||||
* @param[in] q quaternion
|
||||
* @param[in] pivot pivot
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_rotate_atm(mat4 m, versor q, vec3 pivot) {
|
||||
CGLM_ALIGN(8) vec3 pivotInv;
|
||||
|
||||
glm_vec3_negate_to(pivot, pivotInv);
|
||||
|
||||
glm_translate_make(m, pivot);
|
||||
glm_quat_rotate(m, q, m);
|
||||
glm_translate(m, pivotInv);
|
||||
}
|
||||
|
||||
#endif /* cglm_quat_h */
|
||||
|
||||
@@ -21,27 +21,30 @@ glm_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
|
||||
|
||||
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
|
||||
|
||||
y0 = _mm256_load_ps(m2[0]); /* h g f e d c b a */
|
||||
y1 = _mm256_load_ps(m2[2]); /* p o n m l k j i */
|
||||
y0 = glmm_load256(m2[0]); /* h g f e d c b a */
|
||||
y1 = glmm_load256(m2[2]); /* p o n m l k j i */
|
||||
|
||||
y2 = _mm256_load_ps(m1[0]); /* h g f e d c b a */
|
||||
y3 = _mm256_load_ps(m1[2]); /* p o n m l k j i */
|
||||
y2 = glmm_load256(m1[0]); /* h g f e d c b a */
|
||||
y3 = glmm_load256(m1[2]); /* p o n m l k j i */
|
||||
|
||||
y4 = _mm256_permute2f128_ps(y2, y2, 0b00000011); /* d c b a h g f e */
|
||||
y5 = _mm256_permute2f128_ps(y3, y3, 0b00000000); /* l k j i l k j i */
|
||||
/* 0x03: 0b00000011 */
|
||||
y4 = _mm256_permute2f128_ps(y2, y2, 0x03); /* d c b a h g f e */
|
||||
y5 = _mm256_permute2f128_ps(y3, y3, 0x03); /* l k j i p o n m */
|
||||
|
||||
/* f f f f a a a a */
|
||||
/* g g g g c c c c */
|
||||
/* h h h h c c c c */
|
||||
/* e e e e b b b b */
|
||||
y7 = _mm256_permute_ps(y0, 0b10101010);
|
||||
/* g g g g d d d d */
|
||||
y6 = _mm256_permutevar_ps(y0, _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0));
|
||||
y7 = _mm256_permutevar_ps(y0, _mm256_set_epi32(3, 3, 3, 3, 2, 2, 2, 2));
|
||||
y8 = _mm256_permutevar_ps(y0, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
|
||||
y9 = _mm256_permutevar_ps(y0, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
|
||||
|
||||
_mm256_store_ps(dest[0],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y4, y8)),
|
||||
_mm256_mul_ps(y5, y7)));
|
||||
|
||||
glmm_store256(dest[0],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
|
||||
/* n n n n i i i i */
|
||||
/* p p p p k k k k */
|
||||
@@ -52,11 +55,11 @@ glm_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
|
||||
y8 = _mm256_permutevar_ps(y1, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
|
||||
y9 = _mm256_permutevar_ps(y1, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
|
||||
|
||||
_mm256_store_ps(dest[2],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
glmm_store256(dest[2],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
@@ -14,51 +14,428 @@
|
||||
|
||||
#include <immintrin.h>
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_scale_avx(mat4 m, float s) {
|
||||
__m256 y0;
|
||||
y0 = _mm256_set1_ps(s);
|
||||
|
||||
glmm_store256(m[0], _mm256_mul_ps(y0, glmm_load256(m[0])));
|
||||
glmm_store256(m[2], _mm256_mul_ps(y0, glmm_load256(m[2])));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
|
||||
/* D = R * L (Column-Major) */
|
||||
|
||||
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
|
||||
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
|
||||
__m256i yi0, yi1, yi2, yi3;
|
||||
|
||||
y0 = _mm256_load_ps(m2[0]); /* h g f e d c b a */
|
||||
y1 = _mm256_load_ps(m2[2]); /* p o n m l k j i */
|
||||
y0 = glmm_load256(m2[0]); /* h g f e d c b a */
|
||||
y1 = glmm_load256(m2[2]); /* p o n m l k j i */
|
||||
|
||||
y2 = _mm256_load_ps(m1[0]); /* h g f e d c b a */
|
||||
y3 = _mm256_load_ps(m1[2]); /* p o n m l k j i */
|
||||
y2 = glmm_load256(m1[0]); /* h g f e d c b a */
|
||||
y3 = glmm_load256(m1[2]); /* p o n m l k j i */
|
||||
|
||||
y4 = _mm256_permute2f128_ps(y2, y2, 0b00000011); /* d c b a h g f e */
|
||||
y5 = _mm256_permute2f128_ps(y3, y3, 0b00000011); /* l k j i p o n m */
|
||||
/* 0x03: 0b00000011 */
|
||||
y4 = _mm256_permute2f128_ps(y2, y2, 0x03); /* d c b a h g f e */
|
||||
y5 = _mm256_permute2f128_ps(y3, y3, 0x03); /* l k j i p o n m */
|
||||
|
||||
yi0 = _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0);
|
||||
yi1 = _mm256_set_epi32(3, 3, 3, 3, 2, 2, 2, 2);
|
||||
yi2 = _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1);
|
||||
yi3 = _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3);
|
||||
|
||||
/* f f f f a a a a */
|
||||
/* h h h h c c c c */
|
||||
/* e e e e b b b b */
|
||||
/* g g g g d d d d */
|
||||
y6 = _mm256_permutevar_ps(y0, _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0));
|
||||
y7 = _mm256_permutevar_ps(y0, _mm256_set_epi32(3, 3, 3, 3, 2, 2, 2, 2));
|
||||
y8 = _mm256_permutevar_ps(y0, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
|
||||
y9 = _mm256_permutevar_ps(y0, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
|
||||
y6 = _mm256_permutevar_ps(y0, yi0);
|
||||
y7 = _mm256_permutevar_ps(y0, yi1);
|
||||
y8 = _mm256_permutevar_ps(y0, yi2);
|
||||
y9 = _mm256_permutevar_ps(y0, yi3);
|
||||
|
||||
_mm256_store_ps(dest[0],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
glmm_store256(dest[0],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
|
||||
/* n n n n i i i i */
|
||||
/* p p p p k k k k */
|
||||
/* m m m m j j j j */
|
||||
/* o o o o l l l l */
|
||||
y6 = _mm256_permutevar_ps(y1, _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0));
|
||||
y7 = _mm256_permutevar_ps(y1, _mm256_set_epi32(3, 3, 3, 3, 2, 2, 2, 2));
|
||||
y8 = _mm256_permutevar_ps(y1, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
|
||||
y9 = _mm256_permutevar_ps(y1, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
|
||||
y6 = _mm256_permutevar_ps(y1, yi0);
|
||||
y7 = _mm256_permutevar_ps(y1, yi1);
|
||||
y8 = _mm256_permutevar_ps(y1, yi2);
|
||||
y9 = _mm256_permutevar_ps(y1, yi3);
|
||||
|
||||
_mm256_store_ps(dest[2],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
glmm_store256(dest[2],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_inv_avx(mat4 mat, mat4 dest) {
|
||||
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13;
|
||||
__m256 yt0, yt1, yt2;
|
||||
__m256 t0, t1, t2;
|
||||
__m256 r1, r2;
|
||||
__m256 flpsign;
|
||||
__m256i yi1, yi2, yi3;
|
||||
|
||||
y0 = glmm_load256(mat[0]); /* h g f e d c b a */
|
||||
y1 = glmm_load256(mat[2]); /* p o n m l k j i */
|
||||
|
||||
y2 = _mm256_permute2f128_ps(y1, y1, 0x00); /* l k j i l k j i */
|
||||
y3 = _mm256_permute2f128_ps(y1, y1, 0x11); /* p o n m p o n m */
|
||||
y4 = _mm256_permute2f128_ps(y0, y0, 0x03); /* d c b a h g f e */
|
||||
y13 = _mm256_permute2f128_ps(y4, y4, 0x00); /* h g f e h g f e */
|
||||
|
||||
yi1 = _mm256_set_epi32(0, 0, 0, 0, 0, 1, 1, 2);
|
||||
yi2 = _mm256_set_epi32(1, 1, 1, 2, 3, 2, 3, 3);
|
||||
flpsign = _mm256_set_ps(0.f, -0.f, 0.f, -0.f, -0.f, 0.f, -0.f, 0.f);
|
||||
|
||||
/* i i i i i j j k */
|
||||
/* n n n o p o p p */
|
||||
/* m m m m m n n o */
|
||||
/* j j j k l k l l */
|
||||
/* e e e e e f f g */
|
||||
/* f f f g h g h h */
|
||||
y5 = _mm256_permutevar_ps(y2, yi1);
|
||||
y6 = _mm256_permutevar_ps(y3, yi2);
|
||||
y7 = _mm256_permutevar_ps(y3, yi1);
|
||||
y8 = _mm256_permutevar_ps(y2, yi2);
|
||||
y2 = _mm256_permutevar_ps(y13, yi1);
|
||||
y3 = _mm256_permutevar_ps(y13, yi2);
|
||||
|
||||
yi1 = _mm256_set_epi32(2, 1, 0, 0, 2, 1, 0, 0);
|
||||
yi2 = _mm256_set_epi32(2, 1, 1, 0, 2, 1, 1, 0);
|
||||
yi3 = _mm256_set_epi32(3, 3, 2, 0, 3, 3, 2, 0);
|
||||
|
||||
/*
|
||||
t0[0] = k * p - o * l; t1[0] = g * p - o * h; t2[0] = g * l - k * h;
|
||||
t0[1] = j * p - n * l; t1[1] = f * p - n * h; t2[1] = f * l - j * h;
|
||||
t0[2] = j * o - n * k; t1[2] = f * o - n * g; t2[2] = f * k - j * g;
|
||||
t0[3] = i * p - m * l; t1[3] = e * p - m * h; t2[3] = e * l - i * h;
|
||||
t0[4] = i * o - m * k; t1[4] = e * o - m * g; t2[4] = e * k - i * g;
|
||||
t0[5] = i * n - m * j; t1[5] = e * n - m * f; t2[5] = e * j - i * f;
|
||||
*/
|
||||
yt0 = _mm256_sub_ps(_mm256_mul_ps(y5, y6), _mm256_mul_ps(y7, y8));
|
||||
yt1 = _mm256_sub_ps(_mm256_mul_ps(y2, y6), _mm256_mul_ps(y7, y3));
|
||||
yt2 = _mm256_sub_ps(_mm256_mul_ps(y2, y8), _mm256_mul_ps(y5, y3));
|
||||
|
||||
/* t3 t2 t1 t0 t3 t2 t1 t0 */
|
||||
/* t5 t5 t5 t4 t5 t5 t5 t4 */
|
||||
y9 = _mm256_permute2f128_ps(yt0, yt0, 0x00);
|
||||
y10 = _mm256_permute2f128_ps(yt0, yt0, 0x11);
|
||||
//
|
||||
/* t2 t1 t0 t0 t2 t1 t0 t0 */
|
||||
t0 = _mm256_permutevar_ps(y9, yi1);
|
||||
|
||||
/* t4 t3 t3 t1 t4 t3 t3 t1 */
|
||||
y11 = _mm256_shuffle_ps(y9, y10, 0x4D);
|
||||
y12 = _mm256_permutevar_ps(y11, yi2);
|
||||
t1 = _mm256_permute2f128_ps(y12, y9, 0x00);
|
||||
|
||||
/* t5 t5 t4 t2 t5 t5 t4 t2 */
|
||||
y11 = _mm256_shuffle_ps(y9, y10, 0x4A);
|
||||
y12 = _mm256_permutevar_ps(y11, yi3);
|
||||
t2 = _mm256_permute2f128_ps(y12, y12, 0x00);
|
||||
|
||||
/* a a a b e e e f */
|
||||
/* b b c c f f g g */
|
||||
/* c d d d g h h h */
|
||||
y9 = _mm256_permute_ps(y4, 0x01);
|
||||
y10 = _mm256_permute_ps(y4, 0x5A);
|
||||
y11 = _mm256_permute_ps(y4, 0xBF);
|
||||
|
||||
/*
|
||||
dest[0][0] = f * t[0] - g * t[1] + h * t[2];
|
||||
dest[1][0] =-(e * t[0] - g * t[3] + h * t[4]);
|
||||
dest[2][0] = e * t[1] - f * t[3] + h * t[5];
|
||||
dest[3][0] =-(e * t[2] - f * t[4] + g * t[5]);
|
||||
|
||||
dest[0][1] =-(b * t[0] - c * t[1] + d * t[2]);
|
||||
dest[1][1] = a * t[0] - c * t[3] + d * t[4];
|
||||
dest[2][1] =-(a * t[1] - b * t[3] + d * t[5]);
|
||||
dest[3][1] = a * t[2] - b * t[4] + c * t[5];
|
||||
*/
|
||||
r1 = _mm256_xor_ps(_mm256_add_ps(_mm256_sub_ps(_mm256_mul_ps(y9, t0),
|
||||
_mm256_mul_ps(y10, t1)),
|
||||
_mm256_mul_ps(y11, t2)),
|
||||
flpsign);
|
||||
|
||||
/* d c b a d c b a */
|
||||
y2 = _mm256_permute2f128_ps(y0, y0, 0x0);
|
||||
|
||||
/* a a a b a a a b */
|
||||
/* b b c c b b c c */
|
||||
/* c d d d c d d d */
|
||||
y3 = _mm256_permutevar_ps(y2, _mm256_set_epi32(0, 0, 0, 1, 0, 0, 0, 1));
|
||||
y4 = _mm256_permutevar_ps(y2, _mm256_set_epi32(1, 1, 2, 2, 1, 1, 2, 2));
|
||||
y5 = _mm256_permutevar_ps(y2, _mm256_set_epi32(2, 3, 3, 3, 2, 3, 3, 3));
|
||||
|
||||
/* t2[3] t2[2] t2[1] t2[0] t1[3] t1[2] t1[1] t1[0] */
|
||||
/* t2[5] t2[5] t2[5] t2[4] t1[5] t1[5] t1[5] t1[4] */
|
||||
y6 = _mm256_permute2f128_ps(yt1, yt2, 0x20);
|
||||
y7 = _mm256_permute2f128_ps(yt1, yt2, 0x31);
|
||||
|
||||
/* t2[2] t2[1] t2[0] t2[0] t1[2] t1[1] t1[0] t1[0] */
|
||||
t0 = _mm256_permutevar_ps(y6, yi1);
|
||||
|
||||
/* t1[4] t1[3] t1[3] t1[1] t1[4] t1[3] t1[3] t1[1] */
|
||||
|
||||
/* t1[4] t1[3] t1[3] t1[1] t1[4] t1[3] t1[3] t1[1] */
|
||||
y11 = _mm256_shuffle_ps(y6, y7, 0x4D);
|
||||
t1 = _mm256_permutevar_ps(y11, yi2);
|
||||
|
||||
|
||||
/* t2[5] t2[5] t2[4] t2[2] t1[5] t1[5] t1[4] t1[2] */
|
||||
y11 = _mm256_shuffle_ps(y6, y7, 0x4A);
|
||||
t2 = _mm256_permutevar_ps(y11, yi3);
|
||||
|
||||
/*
|
||||
dest[0][2] = b * t1[0] - c * t1[1] + d * t1[2];
|
||||
dest[1][2] =-(a * t1[0] - c * t1[3] + d * t1[4]);
|
||||
dest[2][2] = a * t1[1] - b * t1[3] + d * t1[5];
|
||||
dest[3][2] =-(a * t1[2] - b * t1[4] + c * t1[5]);
|
||||
|
||||
dest[0][3] =-(b * t2[0] - c * t2[1] + d * t2[2]);
|
||||
dest[1][3] = a * t2[0] - c * t2[3] + d * t2[4];
|
||||
dest[2][3] =-(a * t2[1] - b * t2[3] + d * t2[5]);
|
||||
dest[3][3] = a * t2[2] - b * t2[4] + c * t2[5];
|
||||
*/
|
||||
r2 = _mm256_xor_ps(_mm256_add_ps(_mm256_sub_ps(_mm256_mul_ps(y3, t0),
|
||||
_mm256_mul_ps(y4, t1)),
|
||||
_mm256_mul_ps(y5, t2)),
|
||||
flpsign);
|
||||
|
||||
/* determinant */
|
||||
|
||||
y4 = _mm256_mul_ps(y0, r1);
|
||||
y4 = _mm256_permute2f128_ps(y4, y4, 0x30);
|
||||
y4 = _mm256_dp_ps(y0, r1, 0xff);
|
||||
|
||||
y5 = _mm256_div_ps(_mm256_set1_ps(1.0f), y4);
|
||||
r1 = _mm256_mul_ps(r1, y5);
|
||||
r2 = _mm256_mul_ps(r2, y5);
|
||||
|
||||
/* transpose */
|
||||
|
||||
/* d c b a h g f e */
|
||||
/* l k j i p o n m */
|
||||
y0 = _mm256_permute2f128_ps(r1, r1, 0x03);
|
||||
y1 = _mm256_permute2f128_ps(r2, r2, 0x03);
|
||||
|
||||
/* b a f e f e b a */
|
||||
/* j i n m n m j i */
|
||||
/* i m a e m i e a */
|
||||
/* j n b f n j f b */
|
||||
/* n j f b m i e a */
|
||||
y2 = _mm256_shuffle_ps(r1, y0, 0x44);
|
||||
y3 = _mm256_shuffle_ps(r2, y1, 0x44);
|
||||
y4 = _mm256_shuffle_ps(y2, y3, 0x88);
|
||||
y5 = _mm256_shuffle_ps(y2, y3, 0xDD);
|
||||
y6 = _mm256_permute2f128_ps(y4, y5, 0x20);
|
||||
|
||||
/* d c h g h g d c */
|
||||
/* l k p o p o l k */
|
||||
/* k o c g o k g c */
|
||||
/* l p d h p l h d */
|
||||
/* p l h d o k g c */
|
||||
y2 = _mm256_shuffle_ps(r1, y0, 0xEE);
|
||||
y3 = _mm256_shuffle_ps(r2, y1, 0xEE);
|
||||
y4 = _mm256_shuffle_ps(y2, y3, 0x88);
|
||||
y5 = _mm256_shuffle_ps(y2, y3, 0xDD);
|
||||
y7 = _mm256_permute2f128_ps(y4, y5, 0x20);
|
||||
|
||||
glmm_store256(dest[0], y6);
|
||||
glmm_store256(dest[2], y7);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_inv_fast_avx(mat4 mat, mat4 dest) {
|
||||
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11, y12, y13;
|
||||
__m256 yt0, yt1, yt2;
|
||||
__m256 t0, t1, t2;
|
||||
__m256 r1, r2;
|
||||
__m256 flpsign;
|
||||
__m256i yi1, yi2, yi3;
|
||||
|
||||
y0 = glmm_load256(mat[0]); /* h g f e d c b a */
|
||||
y1 = glmm_load256(mat[2]); /* p o n m l k j i */
|
||||
|
||||
y2 = _mm256_permute2f128_ps(y1, y1, 0x00); /* l k j i l k j i */
|
||||
y3 = _mm256_permute2f128_ps(y1, y1, 0x11); /* p o n m p o n m */
|
||||
y4 = _mm256_permute2f128_ps(y0, y0, 0x03); /* d c b a h g f e */
|
||||
y13 = _mm256_permute2f128_ps(y4, y4, 0x00); /* h g f e h g f e */
|
||||
|
||||
yi1 = _mm256_set_epi32(0, 0, 0, 0, 0, 1, 1, 2);
|
||||
yi2 = _mm256_set_epi32(1, 1, 1, 2, 3, 2, 3, 3);
|
||||
flpsign = _mm256_set_ps(0.f, -0.f, 0.f, -0.f, -0.f, 0.f, -0.f, 0.f);
|
||||
|
||||
/* i i i i i j j k */
|
||||
/* n n n o p o p p */
|
||||
/* m m m m m n n o */
|
||||
/* j j j k l k l l */
|
||||
/* e e e e e f f g */
|
||||
/* f f f g h g h h */
|
||||
y5 = _mm256_permutevar_ps(y2, yi1);
|
||||
y6 = _mm256_permutevar_ps(y3, yi2);
|
||||
y7 = _mm256_permutevar_ps(y3, yi1);
|
||||
y8 = _mm256_permutevar_ps(y2, yi2);
|
||||
y2 = _mm256_permutevar_ps(y13, yi1);
|
||||
y3 = _mm256_permutevar_ps(y13, yi2);
|
||||
|
||||
yi1 = _mm256_set_epi32(2, 1, 0, 0, 2, 1, 0, 0);
|
||||
yi2 = _mm256_set_epi32(2, 1, 1, 0, 2, 1, 1, 0);
|
||||
yi3 = _mm256_set_epi32(3, 3, 2, 0, 3, 3, 2, 0);
|
||||
|
||||
/*
|
||||
t0[0] = k * p - o * l; t1[0] = g * p - o * h; t2[0] = g * l - k * h;
|
||||
t0[1] = j * p - n * l; t1[1] = f * p - n * h; t2[1] = f * l - j * h;
|
||||
t0[2] = j * o - n * k; t1[2] = f * o - n * g; t2[2] = f * k - j * g;
|
||||
t0[3] = i * p - m * l; t1[3] = e * p - m * h; t2[3] = e * l - i * h;
|
||||
t0[4] = i * o - m * k; t1[4] = e * o - m * g; t2[4] = e * k - i * g;
|
||||
t0[5] = i * n - m * j; t1[5] = e * n - m * f; t2[5] = e * j - i * f;
|
||||
*/
|
||||
yt0 = _mm256_sub_ps(_mm256_mul_ps(y5, y6), _mm256_mul_ps(y7, y8));
|
||||
yt1 = _mm256_sub_ps(_mm256_mul_ps(y2, y6), _mm256_mul_ps(y7, y3));
|
||||
yt2 = _mm256_sub_ps(_mm256_mul_ps(y2, y8), _mm256_mul_ps(y5, y3));
|
||||
|
||||
/* t3 t2 t1 t0 t3 t2 t1 t0 */
|
||||
/* t5 t5 t5 t4 t5 t5 t5 t4 */
|
||||
y9 = _mm256_permute2f128_ps(yt0, yt0, 0x00);
|
||||
y10 = _mm256_permute2f128_ps(yt0, yt0, 0x11);
|
||||
|
||||
/* t2 t1 t0 t0 t2 t1 t0 t0 */
|
||||
t0 = _mm256_permutevar_ps(y9, yi1);
|
||||
|
||||
/* t4 t3 t3 t1 t4 t3 t3 t1 */
|
||||
y11 = _mm256_shuffle_ps(y9, y10, 0x4D);
|
||||
y12 = _mm256_permutevar_ps(y11, yi2);
|
||||
t1 = _mm256_permute2f128_ps(y12, y9, 0x00);
|
||||
|
||||
/* t5 t5 t4 t2 t5 t5 t4 t2 */
|
||||
y11 = _mm256_shuffle_ps(y9, y10, 0x4A);
|
||||
y12 = _mm256_permutevar_ps(y11, yi3);
|
||||
t2 = _mm256_permute2f128_ps(y12, y12, 0x00);
|
||||
|
||||
/* a a a b e e e f */
|
||||
/* b b c c f f g g */
|
||||
/* c d d d g h h h */
|
||||
y9 = _mm256_permute_ps(y4, 0x01);
|
||||
y10 = _mm256_permute_ps(y4, 0x5A);
|
||||
y11 = _mm256_permute_ps(y4, 0xBF);
|
||||
|
||||
/*
|
||||
dest[0][0] = f * t[0] - g * t[1] + h * t[2];
|
||||
dest[1][0] =-(e * t[0] - g * t[3] + h * t[4]);
|
||||
dest[2][0] = e * t[1] - f * t[3] + h * t[5];
|
||||
dest[3][0] =-(e * t[2] - f * t[4] + g * t[5]);
|
||||
|
||||
dest[0][1] =-(b * t[0] - c * t[1] + d * t[2]);
|
||||
dest[1][1] = a * t[0] - c * t[3] + d * t[4];
|
||||
dest[2][1] =-(a * t[1] - b * t[3] + d * t[5]);
|
||||
dest[3][1] = a * t[2] - b * t[4] + c * t[5];
|
||||
*/
|
||||
r1 = _mm256_xor_ps(_mm256_add_ps(_mm256_sub_ps(_mm256_mul_ps(y9, t0),
|
||||
_mm256_mul_ps(y10, t1)),
|
||||
_mm256_mul_ps(y11, t2)),
|
||||
flpsign);
|
||||
|
||||
/* d c b a d c b a */
|
||||
y2 = _mm256_permute2f128_ps(y0, y0, 0x0);
|
||||
|
||||
/* a a a b a a a b */
|
||||
/* b b c c b b c c */
|
||||
/* c d d d c d d d */
|
||||
y3 = _mm256_permutevar_ps(y2, _mm256_set_epi32(0, 0, 0, 1, 0, 0, 0, 1));
|
||||
y4 = _mm256_permutevar_ps(y2, _mm256_set_epi32(1, 1, 2, 2, 1, 1, 2, 2));
|
||||
y5 = _mm256_permutevar_ps(y2, _mm256_set_epi32(2, 3, 3, 3, 2, 3, 3, 3));
|
||||
|
||||
/* t2[3] t2[2] t2[1] t2[0] t1[3] t1[2] t1[1] t1[0] */
|
||||
/* t2[5] t2[5] t2[5] t2[4] t1[5] t1[5] t1[5] t1[4] */
|
||||
y6 = _mm256_permute2f128_ps(yt1, yt2, 0x20);
|
||||
y7 = _mm256_permute2f128_ps(yt1, yt2, 0x31);
|
||||
|
||||
/* t2[2] t2[1] t2[0] t2[0] t1[2] t1[1] t1[0] t1[0] */
|
||||
t0 = _mm256_permutevar_ps(y6, yi1);
|
||||
|
||||
/* t1[4] t1[3] t1[3] t1[1] t1[4] t1[3] t1[3] t1[1] */
|
||||
|
||||
/* t1[4] t1[3] t1[3] t1[1] t1[4] t1[3] t1[3] t1[1] */
|
||||
y11 = _mm256_shuffle_ps(y6, y7, 0x4D);
|
||||
t1 = _mm256_permutevar_ps(y11, yi2);
|
||||
|
||||
|
||||
/* t2[5] t2[5] t2[4] t2[2] t1[5] t1[5] t1[4] t1[2] */
|
||||
y11 = _mm256_shuffle_ps(y6, y7, 0x4A);
|
||||
t2 = _mm256_permutevar_ps(y11, yi3);
|
||||
|
||||
/*
|
||||
dest[0][2] = b * t1[0] - c * t1[1] + d * t1[2];
|
||||
dest[1][2] =-(a * t1[0] - c * t1[3] + d * t1[4]);
|
||||
dest[2][2] = a * t1[1] - b * t1[3] + d * t1[5];
|
||||
dest[3][2] =-(a * t1[2] - b * t1[4] + c * t1[5]);
|
||||
|
||||
dest[0][3] =-(b * t2[0] - c * t2[1] + d * t2[2]);
|
||||
dest[1][3] = a * t2[0] - c * t2[3] + d * t2[4];
|
||||
dest[2][3] =-(a * t2[1] - b * t2[3] + d * t2[5]);
|
||||
dest[3][3] = a * t2[2] - b * t2[4] + c * t2[5];
|
||||
*/
|
||||
r2 = _mm256_xor_ps(_mm256_add_ps(_mm256_sub_ps(_mm256_mul_ps(y3, t0),
|
||||
_mm256_mul_ps(y4, t1)),
|
||||
_mm256_mul_ps(y5, t2)),
|
||||
flpsign);
|
||||
|
||||
/* determinant */
|
||||
|
||||
y4 = _mm256_mul_ps(y0, r1);
|
||||
y4 = _mm256_permute2f128_ps(y4, y4, 0x30);
|
||||
y4 = _mm256_dp_ps(y0, r1, 0xff);
|
||||
|
||||
y5 = _mm256_rcp_ps(y4);
|
||||
r1 = _mm256_mul_ps(r1, y5);
|
||||
r2 = _mm256_mul_ps(r2, y5);
|
||||
|
||||
/* transpose */
|
||||
|
||||
/* d c b a h g f e */
|
||||
/* l k j i p o n m */
|
||||
y0 = _mm256_permute2f128_ps(r1, r1, 0x03);
|
||||
y1 = _mm256_permute2f128_ps(r2, r2, 0x03);
|
||||
|
||||
/* b a f e f e b a */
|
||||
/* j i n m n m j i */
|
||||
/* i m a e m i e a */
|
||||
/* j n b f n j f b */
|
||||
/* n j f b m i e a */
|
||||
y2 = _mm256_shuffle_ps(r1, y0, 0x44);
|
||||
y3 = _mm256_shuffle_ps(r2, y1, 0x44);
|
||||
y4 = _mm256_shuffle_ps(y2, y3, 0x88);
|
||||
y5 = _mm256_shuffle_ps(y2, y3, 0xDD);
|
||||
y6 = _mm256_permute2f128_ps(y4, y5, 0x20);
|
||||
|
||||
/* d c h g h g d c */
|
||||
/* l k p o p o l k */
|
||||
/* k o c g o k g c */
|
||||
/* l p d h p l h d */
|
||||
/* p l h d o k g c */
|
||||
y2 = _mm256_shuffle_ps(r1, y0, 0xEE);
|
||||
y3 = _mm256_shuffle_ps(r2, y1, 0xEE);
|
||||
y4 = _mm256_shuffle_ps(y2, y3, 0x88);
|
||||
y5 = _mm256_shuffle_ps(y2, y3, 0xDD);
|
||||
y7 = _mm256_permute2f128_ps(y4, y5, 0x20);
|
||||
|
||||
glmm_store256(dest[0], y6);
|
||||
glmm_store256(dest[2], y7);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
@@ -8,11 +8,19 @@
|
||||
#ifndef cglm_intrin_h
|
||||
#define cglm_intrin_h
|
||||
|
||||
#if defined( _WIN32 )
|
||||
#if defined( _MSC_VER )
|
||||
# if (defined(_M_AMD64) || defined(_M_X64)) || _M_IX86_FP == 2
|
||||
# define __SSE2__
|
||||
# ifndef __SSE2__
|
||||
# define __SSE2__
|
||||
# endif
|
||||
# elif _M_IX86_FP == 1
|
||||
# define __SSE__
|
||||
# ifndef __SSE__
|
||||
# define __SSE__
|
||||
# endif
|
||||
# endif
|
||||
/* do not use alignment for older visual studio versions */
|
||||
# if _MSC_VER < 1913 /* Visual Studio 2017 version 15.6 */
|
||||
# define CGLM_ALL_UNALIGNED
|
||||
# endif
|
||||
#endif
|
||||
|
||||
@@ -20,16 +28,63 @@
|
||||
# include <xmmintrin.h>
|
||||
# include <emmintrin.h>
|
||||
|
||||
/* float */
|
||||
# define _mm_shuffle1_ps(a, z, y, x, w) \
|
||||
_mm_shuffle_ps(a, a, _MM_SHUFFLE(z, y, x, w))
|
||||
/* OPTIONAL: You may save some instructions but latency (not sure) */
|
||||
#ifdef CGLM_USE_INT_DOMAIN
|
||||
# define glmm_shuff1(xmm, z, y, x, w) \
|
||||
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(xmm), \
|
||||
_MM_SHUFFLE(z, y, x, w)))
|
||||
#else
|
||||
# define glmm_shuff1(xmm, z, y, x, w) \
|
||||
_mm_shuffle_ps(xmm, xmm, _MM_SHUFFLE(z, y, x, w))
|
||||
#endif
|
||||
|
||||
# define _mm_shuffle1_ps1(a, x) \
|
||||
_mm_shuffle_ps(a, a, _MM_SHUFFLE(x, x, x, x))
|
||||
#define glmm_shuff1x(xmm, x) glmm_shuff1(xmm, x, x, x, x)
|
||||
#define glmm_shuff2(a, b, z0, y0, x0, w0, z1, y1, x1, w1) \
|
||||
glmm_shuff1(_mm_shuffle_ps(a, b, _MM_SHUFFLE(z0, y0, x0, w0)), \
|
||||
z1, y1, x1, w1)
|
||||
|
||||
static inline
|
||||
__m128
|
||||
glmm_dot(__m128 a, __m128 b) {
|
||||
__m128 x0;
|
||||
x0 = _mm_mul_ps(a, b);
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 3, 2));
|
||||
return _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 0, 1));
|
||||
}
|
||||
|
||||
static inline
|
||||
__m128
|
||||
glmm_norm(__m128 a) {
|
||||
return _mm_sqrt_ps(glmm_dot(a, a));
|
||||
}
|
||||
|
||||
static inline
|
||||
__m128
|
||||
glmm_load3(float v[3]) {
|
||||
__m128i xy;
|
||||
__m128 z;
|
||||
|
||||
xy = _mm_loadl_epi64((const __m128i *)v);
|
||||
z = _mm_load_ss(&v[2]);
|
||||
|
||||
return _mm_movelh_ps(_mm_castsi128_ps(xy), z);
|
||||
}
|
||||
|
||||
static inline
|
||||
void
|
||||
glmm_store3(__m128 vx, float v[3]) {
|
||||
_mm_storel_pi((__m64 *)&v[0], vx);
|
||||
_mm_store_ss(&v[2], glmm_shuff1(vx, 2, 2, 2, 2));
|
||||
}
|
||||
|
||||
#ifdef CGLM_ALL_UNALIGNED
|
||||
# define glmm_load(p) _mm_loadu_ps(p)
|
||||
# define glmm_store(p, a) _mm_storeu_ps(p, a)
|
||||
#else
|
||||
# define glmm_load(p) _mm_load_ps(p)
|
||||
# define glmm_store(p, a) _mm_store_ps(p, a)
|
||||
#endif
|
||||
|
||||
# define _mm_shuffle2_ps(a, b, z0, y0, x0, w0, z1, y1, x1, w1) \
|
||||
_mm_shuffle1_ps(_mm_shuffle_ps(a, b, _MM_SHUFFLE(z0, y0, x0, w0)), \
|
||||
z1, y1, x1, w1)
|
||||
#endif
|
||||
|
||||
/* x86, x64 */
|
||||
@@ -39,6 +94,15 @@
|
||||
|
||||
#ifdef __AVX__
|
||||
# define CGLM_AVX_FP 1
|
||||
|
||||
#ifdef CGLM_ALL_UNALIGNED
|
||||
# define glmm_load256(p) _mm256_loadu_ps(p)
|
||||
# define glmm_store256(p, a) _mm256_storeu_ps(p, a)
|
||||
#else
|
||||
# define glmm_load256(p) _mm256_load_ps(p)
|
||||
# define glmm_store256(p, a) _mm256_store_ps(p, a)
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
/* ARM Neon */
|
||||
|
||||
@@ -18,35 +18,67 @@ glm_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
|
||||
/* D = R * L (Column-Major) */
|
||||
__m128 l0, l1, l2, l3, r;
|
||||
|
||||
l0 = _mm_load_ps(m1[0]);
|
||||
l1 = _mm_load_ps(m1[1]);
|
||||
l2 = _mm_load_ps(m1[2]);
|
||||
l3 = _mm_load_ps(m1[3]);
|
||||
l0 = glmm_load(m1[0]);
|
||||
l1 = glmm_load(m1[1]);
|
||||
l2 = glmm_load(m1[2]);
|
||||
l3 = glmm_load(m1[3]);
|
||||
|
||||
r = _mm_load_ps(m2[0]);
|
||||
_mm_store_ps(dest[0],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2)));
|
||||
r = glmm_load(m2[0]);
|
||||
glmm_store(dest[0],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
|
||||
|
||||
r = _mm_load_ps(m2[1]);
|
||||
_mm_store_ps(dest[1],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2)));
|
||||
r = glmm_load(m2[1]);
|
||||
glmm_store(dest[1],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
|
||||
|
||||
r = _mm_load_ps(m2[2]);
|
||||
_mm_store_ps(dest[2],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2)));
|
||||
r = glmm_load(m2[2]);
|
||||
glmm_store(dest[2],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
|
||||
|
||||
r = _mm_load_ps(m2[3]);
|
||||
_mm_store_ps(dest[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
|
||||
r = glmm_load(m2[3]);
|
||||
glmm_store(dest[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mul_rot_sse2(mat4 m1, mat4 m2, mat4 dest) {
|
||||
/* D = R * L (Column-Major) */
|
||||
__m128 l0, l1, l2, l3, r;
|
||||
|
||||
l0 = glmm_load(m1[0]);
|
||||
l1 = glmm_load(m1[1]);
|
||||
l2 = glmm_load(m1[2]);
|
||||
l3 = glmm_load(m1[3]);
|
||||
|
||||
r = glmm_load(m2[0]);
|
||||
glmm_store(dest[0],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
|
||||
|
||||
r = glmm_load(m2[1]);
|
||||
glmm_store(dest[1],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
|
||||
|
||||
r = glmm_load(m2[2]);
|
||||
glmm_store(dest[2],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
|
||||
|
||||
glmm_store(dest[3], l3);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
@@ -54,25 +86,25 @@ void
|
||||
glm_inv_tr_sse2(mat4 mat) {
|
||||
__m128 r0, r1, r2, r3, x0, x1;
|
||||
|
||||
r0 = _mm_load_ps(mat[0]);
|
||||
r1 = _mm_load_ps(mat[1]);
|
||||
r2 = _mm_load_ps(mat[2]);
|
||||
r3 = _mm_load_ps(mat[3]);
|
||||
x1 = _mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f);
|
||||
r0 = glmm_load(mat[0]);
|
||||
r1 = glmm_load(mat[1]);
|
||||
r2 = glmm_load(mat[2]);
|
||||
r3 = glmm_load(mat[3]);
|
||||
x1 = _mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f);
|
||||
|
||||
_MM_TRANSPOSE4_PS(r0, r1, r2, x1);
|
||||
|
||||
x0 = _mm_add_ps(_mm_mul_ps(r0, _mm_shuffle1_ps(r3, 0, 0, 0, 0)),
|
||||
_mm_mul_ps(r1, _mm_shuffle1_ps(r3, 1, 1, 1, 1)));
|
||||
x0 = _mm_add_ps(x0, _mm_mul_ps(r2, _mm_shuffle1_ps(r3, 2, 2, 2, 2)));
|
||||
x0 = _mm_add_ps(_mm_mul_ps(r0, glmm_shuff1(r3, 0, 0, 0, 0)),
|
||||
_mm_mul_ps(r1, glmm_shuff1(r3, 1, 1, 1, 1)));
|
||||
x0 = _mm_add_ps(x0, _mm_mul_ps(r2, glmm_shuff1(r3, 2, 2, 2, 2)));
|
||||
x0 = _mm_xor_ps(x0, _mm_set1_ps(-0.f));
|
||||
|
||||
x0 = _mm_add_ps(x0, x1);
|
||||
|
||||
_mm_store_ps(mat[0], r0);
|
||||
_mm_store_ps(mat[1], r1);
|
||||
_mm_store_ps(mat[2], r2);
|
||||
_mm_store_ps(mat[3], x0);
|
||||
glmm_store(mat[0], r0);
|
||||
glmm_store(mat[1], r1);
|
||||
glmm_store(mat[2], r2);
|
||||
glmm_store(mat[3], x0);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
@@ -27,27 +27,25 @@ glm_mat3_mul_sse2(mat3 m1, mat3 m2, mat3 dest) {
|
||||
r1 = _mm_loadu_ps(&m2[1][1]);
|
||||
r2 = _mm_set1_ps(m2[2][2]);
|
||||
|
||||
x1 = _mm_shuffle2_ps(l0, l1, 1, 0, 3, 3, 0, 3, 2, 0);
|
||||
x2 = _mm_shuffle2_ps(l1, l2, 0, 0, 3, 2, 0, 2, 1, 0);
|
||||
x1 = glmm_shuff2(l0, l1, 1, 0, 3, 3, 0, 3, 2, 0);
|
||||
x2 = glmm_shuff2(l1, l2, 0, 0, 3, 2, 0, 2, 1, 0);
|
||||
|
||||
x0 = _mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps(l0, 0, 2, 1, 0),
|
||||
_mm_shuffle1_ps(r0, 3, 0, 0, 0)),
|
||||
_mm_mul_ps(x1,
|
||||
_mm_shuffle2_ps(r0, r1, 0, 0, 1, 1, 2, 0, 0, 0)));
|
||||
x0 = _mm_add_ps(_mm_mul_ps(glmm_shuff1(l0, 0, 2, 1, 0),
|
||||
glmm_shuff1(r0, 3, 0, 0, 0)),
|
||||
_mm_mul_ps(x1, glmm_shuff2(r0, r1, 0, 0, 1, 1, 2, 0, 0, 0)));
|
||||
|
||||
x0 = _mm_add_ps(x0,
|
||||
_mm_mul_ps(x2,
|
||||
_mm_shuffle2_ps(r0, r1, 1, 1, 2, 2, 2, 0, 0, 0)));
|
||||
_mm_mul_ps(x2, glmm_shuff2(r0, r1, 1, 1, 2, 2, 2, 0, 0, 0)));
|
||||
|
||||
_mm_storeu_ps(dest[0], x0);
|
||||
|
||||
x0 = _mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps(l0, 1, 0, 2, 1),
|
||||
x0 = _mm_add_ps(_mm_mul_ps(glmm_shuff1(l0, 1, 0, 2, 1),
|
||||
_mm_shuffle_ps(r0, r1, _MM_SHUFFLE(2, 2, 3, 3))),
|
||||
_mm_mul_ps(_mm_shuffle1_ps(x1, 1, 0, 2, 1),
|
||||
_mm_shuffle1_ps(r1, 3, 3, 0, 0)));
|
||||
_mm_mul_ps(glmm_shuff1(x1, 1, 0, 2, 1),
|
||||
glmm_shuff1(r1, 3, 3, 0, 0)));
|
||||
|
||||
x0 = _mm_add_ps(x0,
|
||||
_mm_mul_ps(_mm_shuffle1_ps(x2, 1, 0, 2, 1),
|
||||
_mm_mul_ps(glmm_shuff1(x2, 1, 0, 2, 1),
|
||||
_mm_shuffle_ps(r1, r2, _MM_SHUFFLE(0, 0, 1, 1))));
|
||||
|
||||
_mm_storeu_ps(&dest[1][1], x0);
|
||||
|
||||
@@ -16,32 +16,32 @@
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_scale_sse2(mat4 m, float s){
|
||||
glm_mat4_scale_sse2(mat4 m, float s) {
|
||||
__m128 x0;
|
||||
x0 = _mm_set1_ps(s);
|
||||
|
||||
_mm_store_ps(m[0], _mm_mul_ps(_mm_load_ps(m[0]), x0));
|
||||
_mm_store_ps(m[1], _mm_mul_ps(_mm_load_ps(m[1]), x0));
|
||||
_mm_store_ps(m[2], _mm_mul_ps(_mm_load_ps(m[2]), x0));
|
||||
_mm_store_ps(m[3], _mm_mul_ps(_mm_load_ps(m[3]), x0));
|
||||
glmm_store(m[0], _mm_mul_ps(glmm_load(m[0]), x0));
|
||||
glmm_store(m[1], _mm_mul_ps(glmm_load(m[1]), x0));
|
||||
glmm_store(m[2], _mm_mul_ps(glmm_load(m[2]), x0));
|
||||
glmm_store(m[3], _mm_mul_ps(glmm_load(m[3]), x0));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_transp_sse2(mat4 m, mat4 dest){
|
||||
glm_mat4_transp_sse2(mat4 m, mat4 dest) {
|
||||
__m128 r0, r1, r2, r3;
|
||||
|
||||
r0 = _mm_load_ps(m[0]);
|
||||
r1 = _mm_load_ps(m[1]);
|
||||
r2 = _mm_load_ps(m[2]);
|
||||
r3 = _mm_load_ps(m[3]);
|
||||
r0 = glmm_load(m[0]);
|
||||
r1 = glmm_load(m[1]);
|
||||
r2 = glmm_load(m[2]);
|
||||
r3 = glmm_load(m[3]);
|
||||
|
||||
_MM_TRANSPOSE4_PS(r0, r1, r2, r3);
|
||||
|
||||
_mm_store_ps(dest[0], r0);
|
||||
_mm_store_ps(dest[1], r1);
|
||||
_mm_store_ps(dest[2], r2);
|
||||
_mm_store_ps(dest[3], r3);
|
||||
glmm_store(dest[0], r0);
|
||||
glmm_store(dest[1], r1);
|
||||
glmm_store(dest[2], r2);
|
||||
glmm_store(dest[3], r3);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
@@ -51,36 +51,36 @@ glm_mat4_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
|
||||
|
||||
__m128 l0, l1, l2, l3, r;
|
||||
|
||||
l0 = _mm_load_ps(m1[0]);
|
||||
l1 = _mm_load_ps(m1[1]);
|
||||
l2 = _mm_load_ps(m1[2]);
|
||||
l3 = _mm_load_ps(m1[3]);
|
||||
l0 = glmm_load(m1[0]);
|
||||
l1 = glmm_load(m1[1]);
|
||||
l2 = glmm_load(m1[2]);
|
||||
l3 = glmm_load(m1[3]);
|
||||
|
||||
r = _mm_load_ps(m2[0]);
|
||||
_mm_store_ps(dest[0],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
|
||||
r = _mm_load_ps(m2[1]);
|
||||
_mm_store_ps(dest[1],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
|
||||
r = _mm_load_ps(m2[2]);
|
||||
_mm_store_ps(dest[2],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
|
||||
r = glmm_load(m2[0]);
|
||||
glmm_store(dest[0],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
|
||||
r = glmm_load(m2[1]);
|
||||
glmm_store(dest[1],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
|
||||
r = glmm_load(m2[2]);
|
||||
glmm_store(dest[2],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
|
||||
|
||||
r = _mm_load_ps(m2[3]);
|
||||
_mm_store_ps(dest[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
|
||||
r = glmm_load(m2[3]);
|
||||
glmm_store(dest[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
@@ -88,18 +88,14 @@ void
|
||||
glm_mat4_mulv_sse2(mat4 m, vec4 v, vec4 dest) {
|
||||
__m128 x0, x1, x2;
|
||||
|
||||
x0 = _mm_load_ps(v);
|
||||
x1 = _mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]),
|
||||
_mm_shuffle1_ps1(x0, 0)),
|
||||
_mm_mul_ps(_mm_load_ps(m[1]),
|
||||
_mm_shuffle1_ps1(x0, 1)));
|
||||
x0 = glmm_load(v);
|
||||
x1 = _mm_add_ps(_mm_mul_ps(glmm_load(m[0]), glmm_shuff1x(x0, 0)),
|
||||
_mm_mul_ps(glmm_load(m[1]), glmm_shuff1x(x0, 1)));
|
||||
|
||||
x2 = _mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]),
|
||||
_mm_shuffle1_ps1(x0, 2)),
|
||||
_mm_mul_ps(_mm_load_ps(m[3]),
|
||||
_mm_shuffle1_ps1(x0, 3)));
|
||||
x2 = _mm_add_ps(_mm_mul_ps(glmm_load(m[2]), glmm_shuff1x(x0, 2)),
|
||||
_mm_mul_ps(glmm_load(m[3]), glmm_shuff1x(x0, 3)));
|
||||
|
||||
_mm_store_ps(dest, _mm_add_ps(x1, x2));
|
||||
glmm_store(dest, _mm_add_ps(x1, x2));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
@@ -108,10 +104,10 @@ glm_mat4_det_sse2(mat4 mat) {
|
||||
__m128 r0, r1, r2, r3, x0, x1, x2;
|
||||
|
||||
/* 127 <- 0, [square] det(A) = det(At) */
|
||||
r0 = _mm_load_ps(mat[0]); /* d c b a */
|
||||
r1 = _mm_load_ps(mat[1]); /* h g f e */
|
||||
r2 = _mm_load_ps(mat[2]); /* l k j i */
|
||||
r3 = _mm_load_ps(mat[3]); /* p o n m */
|
||||
r0 = glmm_load(mat[0]); /* d c b a */
|
||||
r1 = glmm_load(mat[1]); /* h g f e */
|
||||
r2 = glmm_load(mat[2]); /* l k j i */
|
||||
r3 = glmm_load(mat[3]); /* p o n m */
|
||||
|
||||
/*
|
||||
t[1] = j * p - n * l;
|
||||
@@ -119,20 +115,20 @@ glm_mat4_det_sse2(mat4 mat) {
|
||||
t[3] = i * p - m * l;
|
||||
t[4] = i * o - m * k;
|
||||
*/
|
||||
x0 = _mm_sub_ps(_mm_mul_ps(_mm_shuffle1_ps(r2, 0, 0, 1, 1),
|
||||
_mm_shuffle1_ps(r3, 2, 3, 2, 3)),
|
||||
_mm_mul_ps(_mm_shuffle1_ps(r3, 0, 0, 1, 1),
|
||||
_mm_shuffle1_ps(r2, 2, 3, 2, 3)));
|
||||
x0 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r2, 0, 0, 1, 1),
|
||||
glmm_shuff1(r3, 2, 3, 2, 3)),
|
||||
_mm_mul_ps(glmm_shuff1(r3, 0, 0, 1, 1),
|
||||
glmm_shuff1(r2, 2, 3, 2, 3)));
|
||||
/*
|
||||
t[0] = k * p - o * l;
|
||||
t[0] = k * p - o * l;
|
||||
t[5] = i * n - m * j;
|
||||
t[5] = i * n - m * j;
|
||||
*/
|
||||
x1 = _mm_sub_ps(_mm_mul_ps(_mm_shuffle1_ps(r2, 0, 0, 2, 2),
|
||||
_mm_shuffle1_ps(r3, 1, 1, 3, 3)),
|
||||
_mm_mul_ps(_mm_shuffle1_ps(r3, 0, 0, 2, 2),
|
||||
_mm_shuffle1_ps(r2, 1, 1, 3, 3)));
|
||||
x1 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r2, 0, 0, 2, 2),
|
||||
glmm_shuff1(r3, 1, 1, 3, 3)),
|
||||
_mm_mul_ps(glmm_shuff1(r3, 0, 0, 2, 2),
|
||||
glmm_shuff1(r2, 1, 1, 3, 3)));
|
||||
|
||||
/*
|
||||
a * (f * t[0] - g * t[1] + h * t[2])
|
||||
@@ -140,19 +136,19 @@ glm_mat4_det_sse2(mat4 mat) {
|
||||
+ c * (e * t[1] - f * t[3] + h * t[5])
|
||||
- d * (e * t[2] - f * t[4] + g * t[5])
|
||||
*/
|
||||
x2 = _mm_sub_ps(_mm_mul_ps(_mm_shuffle1_ps(r1, 0, 0, 0, 1),
|
||||
x2 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r1, 0, 0, 0, 1),
|
||||
_mm_shuffle_ps(x1, x0, _MM_SHUFFLE(1, 0, 0, 0))),
|
||||
_mm_mul_ps(_mm_shuffle1_ps(r1, 1, 1, 2, 2),
|
||||
_mm_shuffle1_ps(x0, 3, 2, 2, 0)));
|
||||
_mm_mul_ps(glmm_shuff1(r1, 1, 1, 2, 2),
|
||||
glmm_shuff1(x0, 3, 2, 2, 0)));
|
||||
|
||||
x2 = _mm_add_ps(x2,
|
||||
_mm_mul_ps(_mm_shuffle1_ps(r1, 2, 3, 3, 3),
|
||||
_mm_mul_ps(glmm_shuff1(r1, 2, 3, 3, 3),
|
||||
_mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 2, 3, 1))));
|
||||
x2 = _mm_xor_ps(x2, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
|
||||
|
||||
x0 = _mm_mul_ps(r0, x2);
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3));
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 3, 3, 1));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 3, 3, 1));
|
||||
|
||||
return _mm_cvtss_f32(x0);
|
||||
}
|
||||
@@ -166,14 +162,14 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
|
||||
x0, x1, x2, x3, x4, x5, x6, x7;
|
||||
|
||||
/* 127 <- 0 */
|
||||
r0 = _mm_load_ps(mat[0]); /* d c b a */
|
||||
r1 = _mm_load_ps(mat[1]); /* h g f e */
|
||||
r2 = _mm_load_ps(mat[2]); /* l k j i */
|
||||
r3 = _mm_load_ps(mat[3]); /* p o n m */
|
||||
r0 = glmm_load(mat[0]); /* d c b a */
|
||||
r1 = glmm_load(mat[1]); /* h g f e */
|
||||
r2 = glmm_load(mat[2]); /* l k j i */
|
||||
r3 = glmm_load(mat[3]); /* p o n m */
|
||||
|
||||
x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */
|
||||
x1 = _mm_shuffle1_ps(x0, 1, 3, 3, 3); /* l p p p */
|
||||
x2 = _mm_shuffle1_ps(x0, 0, 2, 2, 2); /* k o o o */
|
||||
x1 = glmm_shuff1(x0, 1, 3, 3, 3); /* l p p p */
|
||||
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
|
||||
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
|
||||
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
|
||||
|
||||
@@ -184,7 +180,7 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
|
||||
t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0));
|
||||
|
||||
x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */
|
||||
x4 = _mm_shuffle1_ps(x4, 0, 2, 2, 2); /* j n n n */
|
||||
x4 = glmm_shuff1(x4, 0, 2, 2, 2); /* j n n n */
|
||||
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
|
||||
|
||||
/* t1[1] = j * p - n * l;
|
||||
@@ -200,7 +196,7 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
|
||||
t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3));
|
||||
|
||||
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
|
||||
x7 = _mm_shuffle2_ps(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
|
||||
x7 = glmm_shuff2(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
|
||||
|
||||
/* t1[3] = i * p - m * l;
|
||||
t1[3] = i * p - m * l;
|
||||
@@ -220,10 +216,10 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
|
||||
t3[5] = e * j - i * f; */
|
||||
t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5));
|
||||
|
||||
x0 = _mm_shuffle2_ps(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
|
||||
x1 = _mm_shuffle2_ps(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
|
||||
x2 = _mm_shuffle2_ps(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
|
||||
x3 = _mm_shuffle2_ps(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
|
||||
x0 = glmm_shuff2(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
|
||||
x1 = glmm_shuff2(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
|
||||
x2 = glmm_shuff2(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
|
||||
x3 = glmm_shuff2(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
|
||||
|
||||
/*
|
||||
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
|
||||
@@ -271,14 +267,14 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
|
||||
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
|
||||
|
||||
x0 = _mm_mul_ps(x0, r0);
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3));
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 0, 0, 1));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
|
||||
x0 = _mm_rcp_ps(x0);
|
||||
|
||||
_mm_store_ps(dest[0], _mm_mul_ps(v0, x0));
|
||||
_mm_store_ps(dest[1], _mm_mul_ps(v1, x0));
|
||||
_mm_store_ps(dest[2], _mm_mul_ps(v2, x0));
|
||||
_mm_store_ps(dest[3], _mm_mul_ps(v3, x0));
|
||||
glmm_store(dest[0], _mm_mul_ps(v0, x0));
|
||||
glmm_store(dest[1], _mm_mul_ps(v1, x0));
|
||||
glmm_store(dest[2], _mm_mul_ps(v2, x0));
|
||||
glmm_store(dest[3], _mm_mul_ps(v3, x0));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
@@ -290,14 +286,14 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
|
||||
x0, x1, x2, x3, x4, x5, x6, x7;
|
||||
|
||||
/* 127 <- 0 */
|
||||
r0 = _mm_load_ps(mat[0]); /* d c b a */
|
||||
r1 = _mm_load_ps(mat[1]); /* h g f e */
|
||||
r2 = _mm_load_ps(mat[2]); /* l k j i */
|
||||
r3 = _mm_load_ps(mat[3]); /* p o n m */
|
||||
r0 = glmm_load(mat[0]); /* d c b a */
|
||||
r1 = glmm_load(mat[1]); /* h g f e */
|
||||
r2 = glmm_load(mat[2]); /* l k j i */
|
||||
r3 = glmm_load(mat[3]); /* p o n m */
|
||||
|
||||
x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */
|
||||
x1 = _mm_shuffle1_ps(x0, 1, 3, 3, 3); /* l p p p */
|
||||
x2 = _mm_shuffle1_ps(x0, 0, 2, 2, 2); /* k o o o */
|
||||
x1 = glmm_shuff1(x0, 1, 3, 3, 3); /* l p p p */
|
||||
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
|
||||
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
|
||||
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
|
||||
|
||||
@@ -308,7 +304,7 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
|
||||
t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0));
|
||||
|
||||
x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */
|
||||
x4 = _mm_shuffle1_ps(x4, 0, 2, 2, 2); /* j n n n */
|
||||
x4 = glmm_shuff1(x4, 0, 2, 2, 2); /* j n n n */
|
||||
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
|
||||
|
||||
/* t1[1] = j * p - n * l;
|
||||
@@ -324,7 +320,7 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
|
||||
t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3));
|
||||
|
||||
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
|
||||
x7 = _mm_shuffle2_ps(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
|
||||
x7 = glmm_shuff2(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
|
||||
|
||||
/* t1[3] = i * p - m * l;
|
||||
t1[3] = i * p - m * l;
|
||||
@@ -344,10 +340,10 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
|
||||
t3[5] = e * j - i * f; */
|
||||
t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5));
|
||||
|
||||
x0 = _mm_shuffle2_ps(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
|
||||
x1 = _mm_shuffle2_ps(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
|
||||
x2 = _mm_shuffle2_ps(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
|
||||
x3 = _mm_shuffle2_ps(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
|
||||
x0 = glmm_shuff2(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
|
||||
x1 = glmm_shuff2(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
|
||||
x2 = glmm_shuff2(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
|
||||
x3 = glmm_shuff2(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
|
||||
|
||||
/*
|
||||
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
|
||||
@@ -395,14 +391,14 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
|
||||
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
|
||||
|
||||
x0 = _mm_mul_ps(x0, r0);
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3));
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 0, 0, 1));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
|
||||
x0 = _mm_div_ps(_mm_set1_ps(1.0f), x0);
|
||||
|
||||
_mm_store_ps(dest[0], _mm_mul_ps(v0, x0));
|
||||
_mm_store_ps(dest[1], _mm_mul_ps(v1, x0));
|
||||
_mm_store_ps(dest[2], _mm_mul_ps(v2, x0));
|
||||
_mm_store_ps(dest[3], _mm_mul_ps(v3, x0));
|
||||
glmm_store(dest[0], _mm_mul_ps(v0, x0));
|
||||
glmm_store(dest[1], _mm_mul_ps(v1, x0));
|
||||
glmm_store(dest[2], _mm_mul_ps(v2, x0));
|
||||
glmm_store(dest[3], _mm_mul_ps(v3, x0));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
@@ -14,56 +14,33 @@
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_slerp_sse2(versor q,
|
||||
versor r,
|
||||
float t,
|
||||
versor dest) {
|
||||
/* https://en.wikipedia.org/wiki/Slerp */
|
||||
float cosTheta, sinTheta, angle, a, b, c;
|
||||
glm_quat_mul_sse2(versor p, versor q, versor dest) {
|
||||
/*
|
||||
+ (a1 b2 + b1 a2 + c1 d2 − d1 c2)i
|
||||
+ (a1 c2 − b1 d2 + c1 a2 + d1 b2)j
|
||||
+ (a1 d2 + b1 c2 − c1 b2 + d1 a2)k
|
||||
a1 a2 − b1 b2 − c1 c2 − d1 d2
|
||||
*/
|
||||
|
||||
__m128 xmm_q;
|
||||
__m128 xp, xq, x0, r;
|
||||
|
||||
xmm_q = _mm_load_ps(q);
|
||||
xp = glmm_load(p); /* 3 2 1 0 */
|
||||
xq = glmm_load(q);
|
||||
|
||||
cosTheta = glm_vec4_dot(q, r);
|
||||
if (cosTheta < 0.0f) {
|
||||
_mm_store_ps(q,
|
||||
_mm_xor_ps(xmm_q,
|
||||
_mm_set1_ps(-0.f))) ;
|
||||
r = _mm_mul_ps(glmm_shuff1x(xp, 3), xq);
|
||||
|
||||
cosTheta = -cosTheta;
|
||||
}
|
||||
x0 = _mm_xor_ps(glmm_shuff1x(xp, 0), _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
|
||||
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 0, 1, 2, 3)));
|
||||
|
||||
if (cosTheta >= 1.0f) {
|
||||
_mm_store_ps(dest, xmm_q);
|
||||
return;
|
||||
}
|
||||
x0 = _mm_xor_ps(glmm_shuff1x(xp, 1), _mm_set_ps(-0.f, -0.f, 0.f, 0.f));
|
||||
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 1, 0, 3, 2)));
|
||||
|
||||
sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
|
||||
x0 = _mm_xor_ps(glmm_shuff1x(xp, 2), _mm_set_ps(-0.f, 0.f, 0.f, -0.f));
|
||||
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 2, 3, 0, 1)));
|
||||
|
||||
c = 1.0f - t;
|
||||
|
||||
/* LERP */
|
||||
if (sinTheta < 0.001f) {
|
||||
_mm_store_ps(dest, _mm_add_ps(_mm_mul_ps(_mm_set1_ps(c),
|
||||
xmm_q),
|
||||
_mm_mul_ps(_mm_set1_ps(t),
|
||||
_mm_load_ps(r))));
|
||||
return;
|
||||
}
|
||||
|
||||
/* SLERP */
|
||||
angle = acosf(cosTheta);
|
||||
a = sinf(c * angle);
|
||||
b = sinf(t * angle);
|
||||
|
||||
_mm_store_ps(dest,
|
||||
_mm_div_ps(_mm_add_ps(_mm_mul_ps(_mm_set1_ps(a),
|
||||
xmm_q),
|
||||
_mm_mul_ps(_mm_set1_ps(b),
|
||||
_mm_load_ps(r))),
|
||||
_mm_set1_ps(sinTheta)));
|
||||
glmm_store(dest, r);
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
#endif /* cglm_quat_simd_h */
|
||||
|
||||
99
include/cglm/sphere.h
Normal file
99
include/cglm/sphere.h
Normal file
@@ -0,0 +1,99 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_sphere_h
|
||||
#define cglm_sphere_h
|
||||
|
||||
#include "common.h"
|
||||
#include "mat4.h"
|
||||
|
||||
/*
|
||||
Sphere Representation in cglm: [center.x, center.y, center.z, radii]
|
||||
|
||||
You could use this representation or you can convert it to vec4 before call
|
||||
any function
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @brief helper for getting sphere radius
|
||||
*
|
||||
* @param[in] s sphere
|
||||
*
|
||||
* @return returns radii
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_sphere_radii(vec4 s) {
|
||||
return s[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief apply transform to sphere, it is just wrapper for glm_mat4_mulv3
|
||||
*
|
||||
* @param[in] s sphere
|
||||
* @param[in] m transform matrix
|
||||
* @param[out] dest transformed sphere
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_sphere_transform(vec4 s, mat4 m, vec4 dest) {
|
||||
glm_mat4_mulv3(m, s, 1.0f, dest);
|
||||
dest[3] = s[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief merges two spheres and creates a new one
|
||||
*
|
||||
* two sphere must be in same space, for instance if one in world space then
|
||||
* the other must be in world space too, not in local space.
|
||||
*
|
||||
* @param[in] s1 sphere 1
|
||||
* @param[in] s2 sphere 2
|
||||
* @param[out] dest merged/extended sphere
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_sphere_merge(vec4 s1, vec4 s2, vec4 dest) {
|
||||
float dist, radii;
|
||||
|
||||
dist = glm_vec3_distance(s1, s2);
|
||||
radii = dist + s1[3] + s2[3];
|
||||
|
||||
radii = glm_max(radii, s1[3]);
|
||||
radii = glm_max(radii, s2[3]);
|
||||
|
||||
glm_vec3_center(s1, s2, dest);
|
||||
dest[3] = radii;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if two sphere intersects
|
||||
*
|
||||
* @param[in] s1 sphere
|
||||
* @param[in] s2 other sphere
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_sphere_sphere(vec4 s1, vec4 s2) {
|
||||
return glm_vec3_distance2(s1, s2) <= glm_pow2(s1[3] + s2[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if sphere intersects with point
|
||||
*
|
||||
* @param[in] s sphere
|
||||
* @param[in] point point
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_sphere_point(vec4 s, vec3 point) {
|
||||
float rr;
|
||||
rr = s[3] * s[3];
|
||||
return glm_vec3_distance2(point, s) <= rr;
|
||||
}
|
||||
|
||||
#endif /* cglm_sphere_h */
|
||||
@@ -9,22 +9,73 @@
|
||||
#define cglm_types_h
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
# define CGLM_ALIGN(X) /* __declspec(align(X)) */
|
||||
/* do not use alignment for older visual studio versions */
|
||||
# if _MSC_VER < 1913 /* Visual Studio 2017 version 15.6 */
|
||||
# define CGLM_ALL_UNALIGNED
|
||||
# define CGLM_ALIGN(X) /* no alignment */
|
||||
# else
|
||||
# define CGLM_ALIGN(X) __declspec(align(X))
|
||||
# endif
|
||||
#else
|
||||
# define CGLM_ALIGN(X) __attribute((aligned(X)))
|
||||
#endif
|
||||
|
||||
typedef float vec3[3];
|
||||
typedef int ivec3[3];
|
||||
typedef CGLM_ALIGN(16) float vec4[4];
|
||||
#ifndef CGLM_ALL_UNALIGNED
|
||||
# define CGLM_ALIGN_IF(X) CGLM_ALIGN(X)
|
||||
#else
|
||||
# define CGLM_ALIGN_IF(X) /* no alignment */
|
||||
#endif
|
||||
|
||||
typedef vec3 mat3[3];
|
||||
typedef vec4 mat4[4];
|
||||
#ifdef __AVX__
|
||||
# define CGLM_ALIGN_MAT CGLM_ALIGN(32)
|
||||
#else
|
||||
# define CGLM_ALIGN_MAT CGLM_ALIGN(16)
|
||||
#endif
|
||||
|
||||
typedef vec4 versor;
|
||||
typedef float vec2[2];
|
||||
typedef float vec3[3];
|
||||
typedef int ivec3[3];
|
||||
typedef CGLM_ALIGN_IF(16) float vec4[4];
|
||||
typedef vec4 versor;
|
||||
typedef vec3 mat3[3];
|
||||
|
||||
#define CGLM_PI (float)M_PI
|
||||
#define CGLM_PI_2 (float)M_PI_2
|
||||
#define CGLM_PI_4 (float)M_PI_4
|
||||
#ifdef __AVX__
|
||||
typedef CGLM_ALIGN_IF(32) vec4 mat4[4];
|
||||
#else
|
||||
typedef CGLM_ALIGN_IF(16) vec4 mat4[4];
|
||||
#endif
|
||||
|
||||
#define GLM_E 2.71828182845904523536028747135266250 /* e */
|
||||
#define GLM_LOG2E 1.44269504088896340735992468100189214 /* log2(e) */
|
||||
#define GLM_LOG10E 0.434294481903251827651128918916605082 /* log10(e) */
|
||||
#define GLM_LN2 0.693147180559945309417232121458176568 /* loge(2) */
|
||||
#define GLM_LN10 2.30258509299404568401799145468436421 /* loge(10) */
|
||||
#define GLM_PI 3.14159265358979323846264338327950288 /* pi */
|
||||
#define GLM_PI_2 1.57079632679489661923132169163975144 /* pi/2 */
|
||||
#define GLM_PI_4 0.785398163397448309615660845819875721 /* pi/4 */
|
||||
#define GLM_1_PI 0.318309886183790671537767526745028724 /* 1/pi */
|
||||
#define GLM_2_PI 0.636619772367581343075535053490057448 /* 2/pi */
|
||||
#define GLM_2_SQRTPI 1.12837916709551257389615890312154517 /* 2/sqrt(pi) */
|
||||
#define GLM_SQRT2 1.41421356237309504880168872420969808 /* sqrt(2) */
|
||||
#define GLM_SQRT1_2 0.707106781186547524400844362104849039 /* 1/sqrt(2) */
|
||||
|
||||
#define GLM_Ef ((float)GLM_E)
|
||||
#define GLM_LOG2Ef ((float)GLM_LOG2E)
|
||||
#define GLM_LOG10Ef ((float)GLM_LOG10E)
|
||||
#define GLM_LN2f ((float)GLM_LN2)
|
||||
#define GLM_LN10f ((float)GLM_LN10)
|
||||
#define GLM_PIf ((float)GLM_PI)
|
||||
#define GLM_PI_2f ((float)GLM_PI_2)
|
||||
#define GLM_PI_4f ((float)GLM_PI_4)
|
||||
#define GLM_1_PIf ((float)GLM_1_PI)
|
||||
#define GLM_2_PIf ((float)GLM_2_PI)
|
||||
#define GLM_2_SQRTPIf ((float)GLM_2_SQRTPI)
|
||||
#define GLM_SQRT2f ((float)GLM_SQRT2)
|
||||
#define GLM_SQRT1_2f ((float)GLM_SQRT1_2)
|
||||
|
||||
/* DEPRECATED! use GLM_PI and friends */
|
||||
#define CGLM_PI GLM_PIf
|
||||
#define CGLM_PI_2 GLM_PI_2f
|
||||
#define CGLM_PI_4 GLM_PI_4f
|
||||
|
||||
#endif /* cglm_types_h */
|
||||
|
||||
@@ -19,9 +19,15 @@
|
||||
#define cglm_util_h
|
||||
|
||||
#include "common.h"
|
||||
#include <stdbool.h>
|
||||
|
||||
#define GLM_MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
|
||||
#define GLM_MAX(X, Y) (((X) > (Y)) ? (X) : (Y))
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit integer as +1 or -1
|
||||
* @brief get sign of 32 bit integer as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero input
|
||||
*
|
||||
* @param val integer value
|
||||
*/
|
||||
@@ -31,34 +37,184 @@ glm_sign(int val) {
|
||||
return ((val >> 31) - (-val >> 31));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit float as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero/NaN input
|
||||
*
|
||||
* @param val float value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_signf(float val) {
|
||||
return (float)((val > 0.0f) - (val < 0.0f));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert degree to radians
|
||||
*
|
||||
* @param[in] deg angle in degrees
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_rad(float deg) {
|
||||
return deg * CGLM_PI / 180.0f;
|
||||
return deg * GLM_PIf / 180.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert radians to degree
|
||||
*
|
||||
* @param[in] rad angle in radians
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_deg(float rad) {
|
||||
return rad * 180.0f / CGLM_PI;
|
||||
return rad * 180.0f / GLM_PIf;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert exsisting degree to radians. this will override degrees value
|
||||
*
|
||||
* @param[in, out] deg pointer to angle in degrees
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_make_rad(float *deg) {
|
||||
*deg = *deg * CGLM_PI / 180.0f;
|
||||
*deg = *deg * GLM_PIf / 180.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert exsisting radians to degree. this will override radians value
|
||||
*
|
||||
* @param[in, out] rad pointer to angle in radians
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_make_deg(float *rad) {
|
||||
*rad = *rad * 180.0f / CGLM_PI;
|
||||
*rad = *rad * 180.0f / GLM_PIf;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiplies given parameter with itself = x * x or powf(x, 2)
|
||||
*
|
||||
* @param[in] x x
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_pow2(float x) {
|
||||
return x * x;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief find minimum of given two values
|
||||
*
|
||||
* @param[in] a number 1
|
||||
* @param[in] b number 2
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_min(float a, float b) {
|
||||
if (a < b)
|
||||
return a;
|
||||
return b;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief find maximum of given two values
|
||||
*
|
||||
* @param[in] a number 1
|
||||
* @param[in] b number 2
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_max(float a, float b) {
|
||||
if (a > b)
|
||||
return a;
|
||||
return b;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief clamp a number between min and max
|
||||
*
|
||||
* @param[in] val value to clamp
|
||||
* @param[in] minVal minimum value
|
||||
* @param[in] maxVal maximum value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_clamp(float val, float minVal, float maxVal) {
|
||||
return glm_min(glm_max(val, minVal), maxVal);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief clamp a number to zero and one
|
||||
*
|
||||
* @param[in] val value to clamp
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_clamp_zo(float val) {
|
||||
return glm_clamp(val, 0.0f, 1.0f);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief linear interpolation between two number
|
||||
*
|
||||
* formula: from + s * (to - from)
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_lerp(float from, float to, float t) {
|
||||
return from + glm_clamp_zo(t) * (to - from);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if two float equal with using EPSILON
|
||||
*
|
||||
* @param[in] a a
|
||||
* @param[in] b b
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_eq(float a, float b) {
|
||||
return fabsf(a - b) <= FLT_EPSILON;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief percentage of current value between start and end value
|
||||
*
|
||||
* maybe fraction could be alternative name.
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] current current value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_percent(float from, float to, float current) {
|
||||
float t;
|
||||
|
||||
if ((t = to - from) == 0.0f)
|
||||
return 1.0f;
|
||||
|
||||
return (current - from) / t;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief clamped percentage of current value between start and end value
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] current current value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_percentc(float from, float to, float current) {
|
||||
return glm_clamp(glm_percent(from, to, current), 0.0f, 1.0f);
|
||||
}
|
||||
|
||||
#endif /* cglm_util_h */
|
||||
|
||||
@@ -11,73 +11,63 @@
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE void glm_vec_mulv(vec3 a, vec3 b, vec3 d);
|
||||
CGLM_INLINE void glm_vec_broadcast(float val, vec3 d);
|
||||
CGLM_INLINE bool glm_vec_eq(vec3 v, float val);
|
||||
CGLM_INLINE bool glm_vec_eq_eps(vec4 v, float val);
|
||||
CGLM_INLINE bool glm_vec_eq_all(vec3 v);
|
||||
CGLM_INLINE bool glm_vec_eqv(vec3 v1, vec3 v2);
|
||||
CGLM_INLINE bool glm_vec_eqv_eps(vec3 v1, vec3 v2);
|
||||
CGLM_INLINE float glm_vec_max(vec3 v);
|
||||
CGLM_INLINE float glm_vec_min(vec3 v);
|
||||
CGLM_INLINE void glm_vec3_broadcast(float val, vec3 d);
|
||||
CGLM_INLINE bool glm_vec3_eq(vec3 v, float val);
|
||||
CGLM_INLINE bool glm_vec3_eq_eps(vec3 v, float val);
|
||||
CGLM_INLINE bool glm_vec3_eq_all(vec3 v);
|
||||
CGLM_INLINE bool glm_vec3_eqv(vec3 a, vec3 b);
|
||||
CGLM_INLINE bool glm_vec3_eqv_eps(vec3 a, vec3 b);
|
||||
CGLM_INLINE float glm_vec3_max(vec3 v);
|
||||
CGLM_INLINE float glm_vec3_min(vec3 v);
|
||||
CGLM_INLINE bool glm_vec3_isnan(vec3 v);
|
||||
CGLM_INLINE bool glm_vec3_isinf(vec3 v);
|
||||
CGLM_INLINE bool glm_vec3_isvalid(vec3 v);
|
||||
CGLM_INLINE void glm_vec3_sign(vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_sqrt(vec3 v, vec3 dest);
|
||||
*/
|
||||
|
||||
#ifndef cglm_vec3_ext_h
|
||||
#define cglm_vec3_ext_h
|
||||
|
||||
#include "common.h"
|
||||
#include "util.h"
|
||||
#include <stdbool.h>
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
|
||||
/*!
|
||||
* @brief multiplies individual items, just for convenient like SIMD
|
||||
*
|
||||
* @param a vec1
|
||||
* @param b vec2
|
||||
* @param d vec3 = (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_mulv(vec3 a, vec3 b, vec3 d) {
|
||||
d[0] = a[0] * b[0];
|
||||
d[1] = a[1] * b[1];
|
||||
d[2] = a[2] * b[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief fill a vector with specified value
|
||||
*
|
||||
* @param val value
|
||||
* @param d dest
|
||||
* @param[in] val value
|
||||
* @param[out] d dest
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_broadcast(float val, vec3 d) {
|
||||
glm_vec3_broadcast(float val, vec3 d) {
|
||||
d[0] = d[1] = d[2] = val;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to value (without epsilon)
|
||||
*
|
||||
* @param v vector
|
||||
* @param val value
|
||||
* @param[in] v vector
|
||||
* @param[in] val value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_eq(vec3 v, float val) {
|
||||
glm_vec3_eq(vec3 v, float val) {
|
||||
return v[0] == val && v[0] == v[1] && v[0] == v[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to value (with epsilon)
|
||||
*
|
||||
* @param v vector
|
||||
* @param val value
|
||||
* @param[in] v vector
|
||||
* @param[in] val value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_eq_eps(vec4 v, float val) {
|
||||
glm_vec3_eq_eps(vec3 v, float val) {
|
||||
return fabsf(v[0] - val) <= FLT_EPSILON
|
||||
&& fabsf(v[1] - val) <= FLT_EPSILON
|
||||
&& fabsf(v[2] - val) <= FLT_EPSILON;
|
||||
@@ -86,50 +76,50 @@ glm_vec_eq_eps(vec4 v, float val) {
|
||||
/*!
|
||||
* @brief check if vectors members are equal (without epsilon)
|
||||
*
|
||||
* @param v vector
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_eq_all(vec3 v) {
|
||||
glm_vec3_eq_all(vec3 v) {
|
||||
return v[0] == v[1] && v[0] == v[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to another (without epsilon)
|
||||
*
|
||||
* @param v1 vector
|
||||
* @param v2 vector
|
||||
* @param[in] a vector
|
||||
* @param[in] b vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_eqv(vec3 v1, vec3 v2) {
|
||||
return v1[0] == v2[0]
|
||||
&& v1[1] == v2[1]
|
||||
&& v1[2] == v2[2];
|
||||
glm_vec3_eqv(vec3 a, vec3 b) {
|
||||
return a[0] == b[0]
|
||||
&& a[1] == b[1]
|
||||
&& a[2] == b[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to another (with epsilon)
|
||||
*
|
||||
* @param v1 vector
|
||||
* @param v2 vector
|
||||
* @param[in] a vector
|
||||
* @param[in] b vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_eqv_eps(vec3 v1, vec3 v2) {
|
||||
return fabsf(v1[0] - v2[0]) <= FLT_EPSILON
|
||||
&& fabsf(v1[1] - v2[1]) <= FLT_EPSILON
|
||||
&& fabsf(v1[2] - v2[2]) <= FLT_EPSILON;
|
||||
glm_vec3_eqv_eps(vec3 a, vec3 b) {
|
||||
return fabsf(a[0] - b[0]) <= FLT_EPSILON
|
||||
&& fabsf(a[1] - b[1]) <= FLT_EPSILON
|
||||
&& fabsf(a[2] - b[2]) <= FLT_EPSILON;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief max value of vector
|
||||
*
|
||||
* @param v vector
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec_max(vec3 v) {
|
||||
glm_vec3_max(vec3 v) {
|
||||
float max;
|
||||
|
||||
max = v[0];
|
||||
@@ -144,11 +134,11 @@ glm_vec_max(vec3 v) {
|
||||
/*!
|
||||
* @brief min value of vector
|
||||
*
|
||||
* @param v vector
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec_min(vec3 v) {
|
||||
glm_vec3_min(vec3 v) {
|
||||
float min;
|
||||
|
||||
min = v[0];
|
||||
@@ -160,4 +150,69 @@ glm_vec_min(vec3 v) {
|
||||
return min;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are NaN (not a number)
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec3_isnan(vec3 v) {
|
||||
return isnan(v[0]) || isnan(v[1]) || isnan(v[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are INFINITY
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec3_isinf(vec3 v) {
|
||||
return isinf(v[0]) || isinf(v[1]) || isinf(v[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are valid number
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec3_isvalid(vec3 v) {
|
||||
return !glm_vec3_isnan(v) && !glm_vec3_isinf(v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit float as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero/NaN input
|
||||
*
|
||||
* @param v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_sign(vec3 v, vec3 dest) {
|
||||
dest[0] = glm_signf(v[0]);
|
||||
dest[1] = glm_signf(v[1]);
|
||||
dest[2] = glm_signf(v[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief square root of each vector item
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_sqrt(vec3 v, vec3 dest) {
|
||||
dest[0] = sqrtf(v[0]);
|
||||
dest[1] = sqrtf(v[1]);
|
||||
dest[2] = sqrtf(v[2]);
|
||||
}
|
||||
|
||||
#endif /* cglm_vec3_ext_h */
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -11,15 +11,19 @@
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE void glm_vec4_mulv(vec4 a, vec4 b, vec4 d);
|
||||
CGLM_INLINE void glm_vec4_broadcast(float val, vec4 d);
|
||||
CGLM_INLINE bool glm_vec4_eq(vec4 v, float val);
|
||||
CGLM_INLINE bool glm_vec4_eq_eps(vec4 v, float val);
|
||||
CGLM_INLINE bool glm_vec4_eq_all(vec4 v);
|
||||
CGLM_INLINE bool glm_vec4_eqv(vec4 v1, vec4 v2);
|
||||
CGLM_INLINE bool glm_vec4_eqv_eps(vec3 v1, vec3 v2);
|
||||
CGLM_INLINE bool glm_vec4_eqv(vec4 a, vec4 b);
|
||||
CGLM_INLINE bool glm_vec4_eqv_eps(vec4 a, vec4 b);
|
||||
CGLM_INLINE float glm_vec4_max(vec4 v);
|
||||
CGLM_INLINE float glm_vec4_min(vec4 v);
|
||||
CGLM_INLINE bool glm_vec4_isnan(vec4 v);
|
||||
CGLM_INLINE bool glm_vec4_isinf(vec4 v);
|
||||
CGLM_INLINE bool glm_vec4_isvalid(vec4 v);
|
||||
CGLM_INLINE void glm_vec4_sign(vec4 v, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_sqrt(vec4 v, vec4 dest);
|
||||
*/
|
||||
|
||||
#ifndef cglm_vec4_ext_h
|
||||
@@ -31,26 +35,6 @@
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
|
||||
/*!
|
||||
* @brief multiplies individual items, just for convenient like SIMD
|
||||
*
|
||||
* @param a v1
|
||||
* @param b v2
|
||||
* @param d v3 = (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2], v1[3] * v2[3])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_mulv(vec4 a, vec4 b, vec4 d) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(d, _mm_mul_ps(_mm_load_ps(a), _mm_load_ps(b)));
|
||||
#else
|
||||
d[0] = a[0] * b[0];
|
||||
d[1] = a[1] * b[1];
|
||||
d[2] = a[2] * b[2];
|
||||
d[3] = a[3] * b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief fill a vector with specified value
|
||||
*
|
||||
@@ -61,7 +45,7 @@ CGLM_INLINE
|
||||
void
|
||||
glm_vec4_broadcast(float val, vec4 d) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(d, _mm_set1_ps(val));
|
||||
glmm_store(d, _mm_set1_ps(val));
|
||||
#else
|
||||
d[0] = d[1] = d[2] = d[3] = val;
|
||||
#endif
|
||||
@@ -113,31 +97,31 @@ glm_vec4_eq_all(vec4 v) {
|
||||
/*!
|
||||
* @brief check if vector is equal to another (without epsilon)
|
||||
*
|
||||
* @param v1 vector
|
||||
* @param v2 vector
|
||||
* @param a vector
|
||||
* @param b vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_eqv(vec4 v1, vec4 v2) {
|
||||
return v1[0] == v2[0]
|
||||
&& v1[1] == v2[1]
|
||||
&& v1[2] == v2[2]
|
||||
&& v1[3] == v2[3];
|
||||
glm_vec4_eqv(vec4 a, vec4 b) {
|
||||
return a[0] == b[0]
|
||||
&& a[1] == b[1]
|
||||
&& a[2] == b[2]
|
||||
&& a[3] == b[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to another (with epsilon)
|
||||
*
|
||||
* @param v1 vector
|
||||
* @param v2 vector
|
||||
* @param a vector
|
||||
* @param b vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_eqv_eps(vec3 v1, vec3 v2) {
|
||||
return fabsf(v1[0] - v2[0]) <= FLT_EPSILON
|
||||
&& fabsf(v1[1] - v2[1]) <= FLT_EPSILON
|
||||
&& fabsf(v1[2] - v2[2]) <= FLT_EPSILON
|
||||
&& fabsf(v1[3] - v2[3]) <= FLT_EPSILON;
|
||||
glm_vec4_eqv_eps(vec4 a, vec4 b) {
|
||||
return fabsf(a[0] - b[0]) <= FLT_EPSILON
|
||||
&& fabsf(a[1] - b[1]) <= FLT_EPSILON
|
||||
&& fabsf(a[2] - b[2]) <= FLT_EPSILON
|
||||
&& fabsf(a[3] - b[3]) <= FLT_EPSILON;
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -150,7 +134,7 @@ float
|
||||
glm_vec4_max(vec4 v) {
|
||||
float max;
|
||||
|
||||
max = glm_vec_max(v);
|
||||
max = glm_vec3_max(v);
|
||||
if (v[3] > max)
|
||||
max = v[3];
|
||||
|
||||
@@ -167,12 +151,95 @@ float
|
||||
glm_vec4_min(vec4 v) {
|
||||
float min;
|
||||
|
||||
min = glm_vec_min(v);
|
||||
min = glm_vec3_min(v);
|
||||
if (v[3] < min)
|
||||
min = v[3];
|
||||
|
||||
return min;
|
||||
}
|
||||
|
||||
#endif /* cglm_vec4_ext_h */
|
||||
/*!
|
||||
* @brief check if one of items is NaN (not a number)
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_isnan(vec4 v) {
|
||||
return isnan(v[0]) || isnan(v[1]) || isnan(v[2]) || isnan(v[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if one of items is INFINITY
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_isinf(vec4 v) {
|
||||
return isinf(v[0]) || isinf(v[1]) || isinf(v[2]) || isinf(v[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are valid number
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_isvalid(vec4 v) {
|
||||
return !glm_vec4_isnan(v) && !glm_vec4_isinf(v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit float as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero/NaN input
|
||||
*
|
||||
* @param v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_sign(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE2__ ) || defined( __SSE2__ )
|
||||
__m128 x0, x1, x2, x3, x4;
|
||||
|
||||
x0 = glmm_load(v);
|
||||
x1 = _mm_set_ps(0.0f, 0.0f, 1.0f, -1.0f);
|
||||
x2 = glmm_shuff1x(x1, 2);
|
||||
|
||||
x3 = _mm_and_ps(_mm_cmpgt_ps(x0, x2), glmm_shuff1x(x1, 1));
|
||||
x4 = _mm_and_ps(_mm_cmplt_ps(x0, x2), glmm_shuff1x(x1, 0));
|
||||
|
||||
glmm_store(dest, _mm_or_ps(x3, x4));
|
||||
#else
|
||||
dest[0] = glm_signf(v[0]);
|
||||
dest[1] = glm_signf(v[1]);
|
||||
dest[2] = glm_signf(v[2]);
|
||||
dest[3] = glm_signf(v[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief square root of each vector item
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_sqrt(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_sqrt_ps(glmm_load(v)));
|
||||
#else
|
||||
dest[0] = sqrtf(v[0]);
|
||||
dest[1] = sqrtf(v[1]);
|
||||
dest[2] = sqrtf(v[2]);
|
||||
dest[3] = sqrtf(v[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* cglm_vec4_ext_h */
|
||||
|
||||
@@ -5,38 +5,56 @@
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*!
|
||||
* vec3 functions dont have suffix e.g glm_vec_dot (not glm_vec3_dot)
|
||||
* all functions without suffix are vec3 functions
|
||||
*/
|
||||
|
||||
/*
|
||||
Macros:
|
||||
glm_vec4_dup3(v, dest)
|
||||
glm_vec4_dup(v, dest)
|
||||
GLM_VEC4_ONE_INIT
|
||||
GLM_VEC4_BLACK_INIT
|
||||
GLM_VEC4_ZERO_INIT
|
||||
GLM_VEC4_ONE
|
||||
GLM_VEC4_BLACK
|
||||
GLM_VEC4_ZERO
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE void glm_vec4(vec3 v3, float last, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_copy3(vec4 a, vec3 dest);
|
||||
CGLM_INLINE void glm_vec4_copy(vec4 v, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_ucopy(vec4 v, vec4 dest);
|
||||
CGLM_INLINE float glm_vec4_dot(vec4 a, vec4 b);
|
||||
CGLM_INLINE float glm_vec4_norm2(vec4 v);
|
||||
CGLM_INLINE float glm_vec4_norm(vec4 vec);
|
||||
CGLM_INLINE void glm_vec4_add(vec4 v1, vec4 v2, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_sub(vec4 v1, vec4 v2, vec4 dest);
|
||||
CGLM_INLINE float glm_vec4_norm(vec4 v);
|
||||
CGLM_INLINE void glm_vec4_add(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_adds(vec4 v, float s, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_sub(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_subs(vec4 v, float s, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_mul(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_scale(vec4 v, float s, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_scale_as(vec4 v, float s, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_flipsign(vec4 v);
|
||||
CGLM_INLINE void glm_vec4_div(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_divs(vec4 v, float s, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_addadd(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_subadd(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_muladd(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_muladds(vec4 a, float s, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_maxadd(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_minadd(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_negate(vec4 v);
|
||||
CGLM_INLINE void glm_vec4_inv(vec4 v);
|
||||
CGLM_INLINE void glm_vec4_inv_to(vec4 v, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_normalize(vec4 v);
|
||||
CGLM_INLINE void glm_vec4_normalize_to(vec4 vec, vec4 dest);
|
||||
CGLM_INLINE float glm_vec4_distance(vec4 v1, vec4 v2);
|
||||
CGLM_INLINE void glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest);
|
||||
CGLM_INLINE float glm_vec4_distance(vec4 a, vec4 b);
|
||||
CGLM_INLINE void glm_vec4_maxv(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_minv(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_clamp(vec4 v, float minVal, float maxVal);
|
||||
CGLM_INLINE void glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest)
|
||||
|
||||
DEPRECATED:
|
||||
glm_vec4_dup
|
||||
glm_vec4_flipsign
|
||||
glm_vec4_flipsign_to
|
||||
glm_vec4_inv
|
||||
glm_vec4_inv_to
|
||||
glm_vec4_mulv
|
||||
*/
|
||||
|
||||
#ifndef cglm_vec4_h
|
||||
@@ -46,15 +64,38 @@
|
||||
#include "vec4-ext.h"
|
||||
#include "util.h"
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glm_vec4_dup3(v, dest) glm_vec4_copy3(v, dest)
|
||||
#define glm_vec4_dup(v, dest) glm_vec4_copy(v, dest)
|
||||
/* DEPRECATED! functions */
|
||||
#define glm_vec4_dup3(v, dest) glm_vec4_copy3(v, dest)
|
||||
#define glm_vec4_dup(v, dest) glm_vec4_copy(v, dest)
|
||||
#define glm_vec4_flipsign(v) glm_vec4_negate(v)
|
||||
#define glm_vec4_flipsign_to(v, dest) glm_vec4_negate_to(v, dest)
|
||||
#define glm_vec4_inv(v) glm_vec4_negate(v)
|
||||
#define glm_vec4_inv_to(v, dest) glm_vec4_negate_to(v, dest)
|
||||
#define glm_vec4_mulv(a, b, d) glm_vec4_mul(a, b, d)
|
||||
|
||||
#define GLM_VEC4_ONE_INIT {1.0f, 1.0f, 1.0f, 1.0f}
|
||||
#define GLM_VEC4_BLACK_INIT {0.0f, 0.0f, 0.0f, 1.0f}
|
||||
#define GLM_VEC4_ZERO_INIT {0.0f, 0.0f, 0.0f, 0.0f}
|
||||
|
||||
#define GLM_VEC4_ONE (vec4)GLM_VEC4_ONE_INIT
|
||||
#define GLM_VEC4_BLACK (vec4)GLM_VEC4_BLACK_INIT
|
||||
#define GLM_VEC4_ONE ((vec4)GLM_VEC4_ONE_INIT)
|
||||
#define GLM_VEC4_BLACK ((vec4)GLM_VEC4_BLACK_INIT)
|
||||
#define GLM_VEC4_ZERO ((vec4)GLM_VEC4_ZERO_INIT)
|
||||
|
||||
/*!
|
||||
* @brief init vec4 using vec3
|
||||
*
|
||||
* @param[in] v3 vector3
|
||||
* @param[in] last last item
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4(vec3 v3, float last, vec4 dest) {
|
||||
dest[0] = v3[0];
|
||||
dest[1] = v3[1];
|
||||
dest[2] = v3[2];
|
||||
dest[3] = last;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy first 3 members of [a] to [dest]
|
||||
@@ -80,7 +121,7 @@ CGLM_INLINE
|
||||
void
|
||||
glm_vec4_copy(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest, _mm_load_ps(v));
|
||||
glmm_store(dest, glmm_load(v));
|
||||
#else
|
||||
dest[0] = v[0];
|
||||
dest[1] = v[1];
|
||||
@@ -89,6 +130,59 @@ glm_vec4_copy(vec4 v, vec4 dest) {
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy all members of [a] to [dest]
|
||||
*
|
||||
* alignment is not required
|
||||
*
|
||||
* @param[in] v source
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_ucopy(vec4 v, vec4 dest) {
|
||||
dest[0] = v[0];
|
||||
dest[1] = v[1];
|
||||
dest[2] = v[2];
|
||||
dest[3] = v[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector zero
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_zero(vec4 v) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(v, _mm_setzero_ps());
|
||||
#else
|
||||
v[0] = 0.0f;
|
||||
v[1] = 0.0f;
|
||||
v[2] = 0.0f;
|
||||
v[3] = 0.0f;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector one
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_one(vec4 v) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(v, _mm_set1_ps(1.0f));
|
||||
#else
|
||||
v[0] = 1.0f;
|
||||
v[1] = 1.0f;
|
||||
v[2] = 1.0f;
|
||||
v[3] = 1.0f;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief vec4 dot product
|
||||
*
|
||||
@@ -100,7 +194,14 @@ glm_vec4_copy(vec4 v, vec4 dest) {
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec4_dot(vec4 a, vec4 b) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
__m128 x0;
|
||||
x0 = _mm_mul_ps(glmm_load(a), glmm_load(b));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 3, 2));
|
||||
return _mm_cvtss_f32(_mm_add_ss(x0, glmm_shuff1(x0, 0, 1, 0, 1)));
|
||||
#else
|
||||
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -117,63 +218,133 @@ glm_vec4_dot(vec4 a, vec4 b) {
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec4_norm2(vec4 v) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
__m128 x0;
|
||||
x0 = glmm_load(v);
|
||||
x0 = _mm_mul_ps(x0, x0);
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 3, 2));
|
||||
return _mm_cvtss_f32(_mm_add_ss(x0, glmm_shuff1(x0, 0, 1, 0, 1)));
|
||||
#else
|
||||
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + v[3] * v[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief norm (magnitude) of vec4
|
||||
*
|
||||
* @param[in] vec vector
|
||||
* @param[in] v vector
|
||||
*
|
||||
* @return norm
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec4_norm(vec4 vec) {
|
||||
return sqrtf(glm_vec4_norm2(vec));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add v2 vector to v1 vector store result in dest
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_add(vec4 v1, vec4 v2, vec4 dest) {
|
||||
glm_vec4_norm(vec4 v) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest,
|
||||
_mm_add_ps(_mm_load_ps(v1),
|
||||
_mm_load_ps(v2)));
|
||||
__m128 x0;
|
||||
x0 = glmm_load(v);
|
||||
return _mm_cvtss_f32(_mm_sqrt_ss(glmm_dot(x0, x0)));
|
||||
#else
|
||||
dest[0] = v1[0] + v2[0];
|
||||
dest[1] = v1[1] + v2[1];
|
||||
dest[2] = v1[2] + v2[2];
|
||||
dest[3] = v1[3] + v2[3];
|
||||
return sqrtf(glm_vec4_norm2(v));
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract v2 vector from v1 vector store result in dest
|
||||
* @brief add b vector to a vector store result in dest
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_sub(vec4 v1, vec4 v2, vec4 dest) {
|
||||
glm_vec4_add(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest,
|
||||
_mm_sub_ps(_mm_load_ps(v1),
|
||||
_mm_load_ps(v2)));
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(a), glmm_load(b)));
|
||||
#else
|
||||
dest[0] = v1[0] - v2[0];
|
||||
dest[1] = v1[1] - v2[1];
|
||||
dest[2] = v1[2] - v2[2];
|
||||
dest[3] = v1[3] - v2[3];
|
||||
dest[0] = a[0] + b[0];
|
||||
dest[1] = a[1] + b[1];
|
||||
dest[2] = a[2] + b[2];
|
||||
dest[3] = a[3] + b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add scalar to v vector store result in dest (d = v + vec(s))
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_adds(vec4 v, float s, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(v), _mm_set1_ps(s)));
|
||||
#else
|
||||
dest[0] = v[0] + s;
|
||||
dest[1] = v[1] + s;
|
||||
dest[2] = v[2] + s;
|
||||
dest[3] = v[3] + s;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract b vector from a vector store result in dest (d = a - b)
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_sub(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_sub_ps(glmm_load(a), glmm_load(b)));
|
||||
#else
|
||||
dest[0] = a[0] - b[0];
|
||||
dest[1] = a[1] - b[1];
|
||||
dest[2] = a[2] - b[2];
|
||||
dest[3] = a[3] - b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract scalar from v vector store result in dest (d = v - vec(s))
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_subs(vec4 v, float s, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_sub_ps(glmm_load(v), _mm_set1_ps(s)));
|
||||
#else
|
||||
dest[0] = v[0] - s;
|
||||
dest[1] = v[1] - s;
|
||||
dest[2] = v[2] - s;
|
||||
dest[3] = v[3] - s;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply two vector (component-wise multiplication)
|
||||
*
|
||||
* @param a vector1
|
||||
* @param b vector2
|
||||
* @param dest dest = (a[0] * b[0], a[1] * b[1], a[2] * b[2], a[3] * b[3])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_mul(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_mul_ps(glmm_load(a), glmm_load(b)));
|
||||
#else
|
||||
dest[0] = a[0] * b[0];
|
||||
dest[1] = a[1] * b[1];
|
||||
dest[2] = a[2] * b[2];
|
||||
dest[3] = a[3] * b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -188,9 +359,7 @@ CGLM_INLINE
|
||||
void
|
||||
glm_vec4_scale(vec4 v, float s, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest,
|
||||
_mm_mul_ps(_mm_load_ps(v),
|
||||
_mm_set1_ps(s)));
|
||||
glmm_store(dest, _mm_mul_ps(glmm_load(v), _mm_set1_ps(s)));
|
||||
#else
|
||||
dest[0] = v[0] * s;
|
||||
dest[1] = v[1] * s;
|
||||
@@ -212,14 +381,214 @@ glm_vec4_scale_as(vec4 v, float s, vec4 dest) {
|
||||
float norm;
|
||||
norm = glm_vec4_norm(v);
|
||||
|
||||
if (norm == 0) {
|
||||
glm_vec4_copy(v, dest);
|
||||
if (norm == 0.0f) {
|
||||
glm_vec4_zero(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec4_scale(v, s / norm, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief div vector with another component-wise division: d = a / b
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2], a[3]/b[3])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_div(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_div_ps(glmm_load(a), glmm_load(b)));
|
||||
#else
|
||||
dest[0] = a[0] / b[0];
|
||||
dest[1] = a[1] / b[1];
|
||||
dest[2] = a[2] / b[2];
|
||||
dest[3] = a[3] / b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief div vec4 vector with scalar: d = v / s
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_divs(vec4 v, float s, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_div_ps(glmm_load(v), _mm_set1_ps(s)));
|
||||
#else
|
||||
glm_vec4_scale(v, 1.0f / s, dest);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add two vectors and add result to sum
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += (a + b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_addadd(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(dest),
|
||||
_mm_add_ps(glmm_load(a),
|
||||
glmm_load(b))));
|
||||
#else
|
||||
dest[0] += a[0] + b[0];
|
||||
dest[1] += a[1] + b[1];
|
||||
dest[2] += a[2] + b[2];
|
||||
dest[3] += a[3] + b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief sub two vectors and add result to dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += (a - b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_subadd(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(dest),
|
||||
_mm_sub_ps(glmm_load(a),
|
||||
glmm_load(b))));
|
||||
#else
|
||||
dest[0] += a[0] - b[0];
|
||||
dest[1] += a[1] - b[1];
|
||||
dest[2] += a[2] - b[2];
|
||||
dest[3] += a[3] - b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mul two vectors and add result to dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += (a * b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_muladd(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(dest),
|
||||
_mm_mul_ps(glmm_load(a),
|
||||
glmm_load(b))));
|
||||
#else
|
||||
dest[0] += a[0] * b[0];
|
||||
dest[1] += a[1] * b[1];
|
||||
dest[2] += a[2] * b[2];
|
||||
dest[3] += a[3] * b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mul vector with scalar and add result to sum
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector
|
||||
* @param[in] s scalar
|
||||
* @param[out] dest dest += (a * b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_muladds(vec4 a, float s, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(dest),
|
||||
_mm_mul_ps(glmm_load(a),
|
||||
_mm_set1_ps(s))));
|
||||
#else
|
||||
dest[0] += a[0] * s;
|
||||
dest[1] += a[1] * s;
|
||||
dest[2] += a[2] * s;
|
||||
dest[3] += a[3] * s;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add max of two vector to result/dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += max(a, b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_maxadd(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(dest),
|
||||
_mm_max_ps(glmm_load(a),
|
||||
glmm_load(b))));
|
||||
#else
|
||||
dest[0] += glm_max(a[0], b[0]);
|
||||
dest[1] += glm_max(a[1], b[1]);
|
||||
dest[2] += glm_max(a[2], b[2]);
|
||||
dest[3] += glm_max(a[3], b[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add min of two vector to result/dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector
|
||||
* @param[in] b scalar
|
||||
* @param[out] dest dest += min(a, b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_minadd(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(dest),
|
||||
_mm_min_ps(glmm_load(a),
|
||||
glmm_load(b))));
|
||||
#else
|
||||
dest[0] += glm_min(a[0], b[0]);
|
||||
dest[1] += glm_min(a[1], b[1]);
|
||||
dest[2] += glm_min(a[2], b[2]);
|
||||
dest[3] += glm_min(a[3], b[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief negate vector components and store result in dest
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[out] dest result vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_negate_to(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_xor_ps(glmm_load(v), _mm_set1_ps(-0.0f)));
|
||||
#else
|
||||
dest[0] = -v[0];
|
||||
dest[1] = -v[1];
|
||||
dest[2] = -v[2];
|
||||
dest[3] = -v[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief flip sign of all vec4 members
|
||||
*
|
||||
@@ -227,40 +596,45 @@ glm_vec4_scale_as(vec4 v, float s, vec4 dest) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_flipsign(vec4 v) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(v, _mm_xor_ps(_mm_load_ps(v),
|
||||
_mm_set1_ps(-0.0f)));
|
||||
#else
|
||||
v[0] = -v[0];
|
||||
v[1] = -v[1];
|
||||
v[2] = -v[2];
|
||||
v[3] = -v[3];
|
||||
#endif
|
||||
glm_vec4_negate(vec4 v) {
|
||||
glm_vec4_negate_to(v, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector as inverse/opposite of itself
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_inv(vec4 v) {
|
||||
glm_vec4_flipsign(v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inverse/opposite vector
|
||||
* @brief normalize vec4 to dest
|
||||
*
|
||||
* @param[in] v source
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_inv_to(vec4 v, vec4 dest) {
|
||||
glm_vec4_copy(v, dest);
|
||||
glm_vec4_flipsign(dest);
|
||||
glm_vec4_normalize_to(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
__m128 xdot, x0;
|
||||
float dot;
|
||||
|
||||
x0 = glmm_load(v);
|
||||
xdot = glmm_dot(x0, x0);
|
||||
dot = _mm_cvtss_f32(xdot);
|
||||
|
||||
if (dot == 0.0f) {
|
||||
glmm_store(dest, _mm_setzero_ps());
|
||||
return;
|
||||
}
|
||||
|
||||
glmm_store(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
|
||||
#else
|
||||
float norm;
|
||||
|
||||
norm = glm_vec4_norm(v);
|
||||
|
||||
if (norm == 0.0f) {
|
||||
glm_vec4_zero(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec4_scale(v, 1.0f / norm, dest);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -271,115 +645,106 @@ glm_vec4_inv_to(vec4 v, vec4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_normalize(vec4 v) {
|
||||
float norm;
|
||||
|
||||
norm = glm_vec4_norm(v);
|
||||
|
||||
if (norm == 0.0f) {
|
||||
v[0] = v[1] = v[2] = v[3] = 0.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec4_scale(v, 1.0f / norm, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize vec4 to dest
|
||||
*
|
||||
* @param[in] vec source
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_normalize_to(vec4 vec, vec4 dest) {
|
||||
float norm;
|
||||
|
||||
norm = glm_vec4_norm(vec);
|
||||
|
||||
if (norm == 0.0f) {
|
||||
dest[0] = dest[1] = dest[2] = dest[3] = 0.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec4_scale(vec, 1.0f / norm, dest);
|
||||
glm_vec4_normalize_to(v, v);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief distance between two vectors
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @return returns distance
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec4_distance(vec4 v1, vec4 v2) {
|
||||
return sqrtf(glm_pow2(v2[0] - v1[0])
|
||||
+ glm_pow2(v2[1] - v1[1])
|
||||
+ glm_pow2(v2[2] - v1[2])
|
||||
+ glm_pow2(v2[3] - v1[3]));
|
||||
glm_vec4_distance(vec4 a, vec4 b) {
|
||||
return sqrtf(glm_pow2(b[0] - a[0])
|
||||
+ glm_pow2(b[1] - a[1])
|
||||
+ glm_pow2(b[2] - a[2])
|
||||
+ glm_pow2(b[3] - a[3]));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief max values of vectors
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest) {
|
||||
if (v1[0] > v2[0])
|
||||
dest[0] = v1[0];
|
||||
else
|
||||
dest[0] = v2[0];
|
||||
|
||||
if (v1[1] > v2[1])
|
||||
dest[1] = v1[1];
|
||||
else
|
||||
dest[1] = v2[1];
|
||||
|
||||
if (v1[2] > v2[2])
|
||||
dest[2] = v1[2];
|
||||
else
|
||||
dest[2] = v2[2];
|
||||
|
||||
if (v1[3] > v2[3])
|
||||
dest[3] = v1[3];
|
||||
else
|
||||
dest[3] = v2[3];
|
||||
glm_vec4_maxv(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_max_ps(glmm_load(a), glmm_load(b)));
|
||||
#else
|
||||
dest[0] = glm_max(a[0], b[0]);
|
||||
dest[1] = glm_max(a[1], b[1]);
|
||||
dest[2] = glm_max(a[2], b[2]);
|
||||
dest[3] = glm_max(a[3], b[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief min values of vectors
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest) {
|
||||
if (v1[0] < v2[0])
|
||||
dest[0] = v1[0];
|
||||
else
|
||||
dest[0] = v2[0];
|
||||
glm_vec4_minv(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_min_ps(glmm_load(a), glmm_load(b)));
|
||||
#else
|
||||
dest[0] = glm_min(a[0], b[0]);
|
||||
dest[1] = glm_min(a[1], b[1]);
|
||||
dest[2] = glm_min(a[2], b[2]);
|
||||
dest[3] = glm_min(a[3], b[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (v1[1] < v2[1])
|
||||
dest[1] = v1[1];
|
||||
else
|
||||
dest[1] = v2[1];
|
||||
/*!
|
||||
* @brief clamp vector's individual members between min and max values
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
* @param[in] minVal minimum value
|
||||
* @param[in] maxVal maximum value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_clamp(vec4 v, float minVal, float maxVal) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(v, _mm_min_ps(_mm_max_ps(glmm_load(v), _mm_set1_ps(minVal)),
|
||||
_mm_set1_ps(maxVal)));
|
||||
#else
|
||||
v[0] = glm_clamp(v[0], minVal, maxVal);
|
||||
v[1] = glm_clamp(v[1], minVal, maxVal);
|
||||
v[2] = glm_clamp(v[2], minVal, maxVal);
|
||||
v[3] = glm_clamp(v[3], minVal, maxVal);
|
||||
#endif
|
||||
}
|
||||
|
||||
if (v1[2] < v2[2])
|
||||
dest[2] = v1[2];
|
||||
else
|
||||
dest[2] = v2[2];
|
||||
/*!
|
||||
* @brief linear interpolation between two vector
|
||||
*
|
||||
* formula: from + s * (to - from)
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest) {
|
||||
vec4 s, v;
|
||||
|
||||
if (v1[3] < v2[3])
|
||||
dest[3] = v1[3];
|
||||
else
|
||||
dest[3] = v2[3];
|
||||
/* from + s * (to - from) */
|
||||
glm_vec4_broadcast(glm_clamp_zo(t), s);
|
||||
glm_vec4_sub(to, from, v);
|
||||
glm_vec4_mul(s, v, v);
|
||||
glm_vec4_add(from, v, dest);
|
||||
}
|
||||
|
||||
#endif /* cglm_vec4_h */
|
||||
|
||||
@@ -9,7 +9,7 @@
|
||||
#define cglm_version_h
|
||||
|
||||
#define CGLM_VERSION_MAJOR 0
|
||||
#define CGLM_VERSION_MINOR 3
|
||||
#define CGLM_VERSION_PATCH 3
|
||||
#define CGLM_VERSION_MINOR 5
|
||||
#define CGLM_VERSION_PATCH 2
|
||||
|
||||
#endif /* cglm_version_h */
|
||||
|
||||
38
makefile.am
38
makefile.am
@@ -13,7 +13,7 @@ AM_CFLAGS = -Wall \
|
||||
-O3 \
|
||||
-Wstrict-aliasing=2 \
|
||||
-fstrict-aliasing \
|
||||
-Wpedantic
|
||||
-pedantic
|
||||
|
||||
lib_LTLIBRARIES = libcglm.la
|
||||
libcglm_la_LDFLAGS = -no-undefined -version-info 0:1:0
|
||||
@@ -50,7 +50,14 @@ cglm_HEADERS = include/cglm/version.h \
|
||||
include/cglm/euler.h \
|
||||
include/cglm/util.h \
|
||||
include/cglm/quat.h \
|
||||
include/cglm/affine-mat.h
|
||||
include/cglm/affine-mat.h \
|
||||
include/cglm/plane.h \
|
||||
include/cglm/frustum.h \
|
||||
include/cglm/box.h \
|
||||
include/cglm/color.h \
|
||||
include/cglm/project.h \
|
||||
include/cglm/sphere.h \
|
||||
include/cglm/ease.h
|
||||
|
||||
cglm_calldir=$(includedir)/cglm/call
|
||||
cglm_call_HEADERS = include/cglm/call/mat4.h \
|
||||
@@ -61,7 +68,13 @@ cglm_call_HEADERS = include/cglm/call/mat4.h \
|
||||
include/cglm/call/io.h \
|
||||
include/cglm/call/cam.h \
|
||||
include/cglm/call/quat.h \
|
||||
include/cglm/call/euler.h
|
||||
include/cglm/call/euler.h \
|
||||
include/cglm/call/plane.h \
|
||||
include/cglm/call/frustum.h \
|
||||
include/cglm/call/box.h \
|
||||
include/cglm/call/project.h \
|
||||
include/cglm/call/sphere.h \
|
||||
include/cglm/call/ease.h
|
||||
|
||||
cglm_simddir=$(includedir)/cglm/simd
|
||||
cglm_simd_HEADERS = include/cglm/simd/intrin.h
|
||||
@@ -88,12 +101,27 @@ libcglm_la_SOURCES=\
|
||||
src/vec3.c \
|
||||
src/vec4.c \
|
||||
src/mat3.c \
|
||||
src/mat4.c
|
||||
src/mat4.c \
|
||||
src/plane.c \
|
||||
src/frustum.c \
|
||||
src/box.c \
|
||||
src/project.c \
|
||||
src/sphere.c \
|
||||
src/ease.c
|
||||
|
||||
test_tests_SOURCES=\
|
||||
test/src/test_common.c \
|
||||
test/src/test_main.c \
|
||||
test/src/test_mat4.c
|
||||
test/src/test_mat4.c \
|
||||
test/src/test_cam.c \
|
||||
test/src/test_project.c \
|
||||
test/src/test_clamp.c \
|
||||
test/src/test_euler.c \
|
||||
test/src/test_quat.c \
|
||||
test/src/test_vec4.c \
|
||||
test/src/test_vec3.c \
|
||||
test/src/test_mat3.c \
|
||||
test/src/test_affine.c
|
||||
|
||||
all-local:
|
||||
sh ./post-build.sh
|
||||
|
||||
64
src/affine.c
64
src/affine.c
@@ -8,6 +8,12 @@
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_translate_make(mat4 m, vec3 v) {
|
||||
glm_translate_make(m, v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_translate_to(mat4 m, vec3 v, mat4 dest) {
|
||||
@@ -38,6 +44,12 @@ glmc_translate_z(mat4 m, float to) {
|
||||
glm_translate_z(m, to);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_scale_make(mat4 m, vec3 v) {
|
||||
glm_scale_make(m, v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_scale_to(mat4 m, vec3 v, mat4 dest) {
|
||||
@@ -52,8 +64,8 @@ glmc_scale(mat4 m, vec3 v) {
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_scale1(mat4 m, float s) {
|
||||
glm_scale1(m, s);
|
||||
glmc_scale_uni(mat4 m, float s) {
|
||||
glm_scale_uni(m, s);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
@@ -74,36 +86,42 @@ glmc_rotate_z(mat4 m, float rad, mat4 dest) {
|
||||
glm_rotate_z(m, rad, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc) {
|
||||
glm_rotate_ndc_make(m, angle, axis_ndc);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_make(mat4 m, float angle, vec3 axis) {
|
||||
glm_rotate_make(m, angle, axis);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_ndc(mat4 m, float angle, vec3 axis_ndc) {
|
||||
glm_rotate_ndc(m, angle, axis_ndc);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate(mat4 m, float angle, vec3 axis) {
|
||||
glm_rotate(m, angle, axis);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis) {
|
||||
glm_rotate_at(m, pivot, angle, axis);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis) {
|
||||
glm_rotate_atm(m, pivot, angle, axis);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_decompose_scalev(mat4 m, vec3 s) {
|
||||
glm_decompose_scalev(m, s);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_uniscaled(mat4 m) {
|
||||
return glm_uniscaled(m);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_decompose_rs(mat4 m, mat4 r, vec3 s) {
|
||||
@@ -115,3 +133,21 @@ void
|
||||
glmc_decompose(mat4 m, vec4 t, mat4 r, vec3 s) {
|
||||
glm_decompose(m, t, r, s);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mul(mat4 m1, mat4 m2, mat4 dest) {
|
||||
glm_mul(m1, m2, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mul_rot(mat4 m1, mat4 m2, mat4 dest) {
|
||||
glm_mul_rot(m1, m2, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_inv_tr(mat4 mat) {
|
||||
glm_inv_tr(mat);
|
||||
}
|
||||
|
||||
96
src/box.c
Normal file
96
src/box.c
Normal file
@@ -0,0 +1,96 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]) {
|
||||
glm_aabb_transform(box, m, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_merge(vec3 box1[2], vec3 box2[2], vec3 dest[2]) {
|
||||
glm_aabb_merge(box1, box2, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_crop(vec3 box[2], vec3 cropBox[2], vec3 dest[2]) {
|
||||
glm_aabb_crop(box, cropBox, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_crop_until(vec3 box[2],
|
||||
vec3 cropBox[2],
|
||||
vec3 clampBox[2],
|
||||
vec3 dest[2]) {
|
||||
glm_aabb_crop_until(box, cropBox, clampBox, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_frustum(vec3 box[2], vec4 planes[6]) {
|
||||
return glm_aabb_frustum(box, planes);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_invalidate(vec3 box[2]) {
|
||||
glm_aabb_invalidate(box);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_isvalid(vec3 box[2]) {
|
||||
return glm_aabb_isvalid(box);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_aabb_size(vec3 box[2]) {
|
||||
return glm_aabb_size(box);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_aabb_radius(vec3 box[2]) {
|
||||
return glm_aabb_radius(box);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_center(vec3 box[2], vec3 dest) {
|
||||
glm_aabb_center(box, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_aabb(vec3 box[2], vec3 other[2]) {
|
||||
return glm_aabb_aabb(box, other);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_point(vec3 box[2], vec3 point) {
|
||||
return glm_aabb_point(box, point);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_contains(vec3 box[2], vec3 other[2]) {
|
||||
return glm_aabb_contains(box, other);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_sphere(vec3 box[2], vec4 s) {
|
||||
return glm_aabb_sphere(box, s);
|
||||
}
|
||||
132
src/cam.c
132
src/cam.c
@@ -44,6 +44,36 @@ glmc_ortho(float left,
|
||||
dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_aabb(vec3 box[2], mat4 dest) {
|
||||
glm_ortho_aabb(box, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_aabb_p(vec3 box[2], float padding, mat4 dest) {
|
||||
glm_ortho_aabb_p(box, padding, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest) {
|
||||
glm_ortho_aabb_pz(box, padding, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_default(float aspect, mat4 dest) {
|
||||
glm_ortho_default(aspect, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_default_s(float aspect, float size, mat4 dest) {
|
||||
glm_ortho_default_s(aspect, size, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_perspective(float fovy,
|
||||
@@ -58,6 +88,24 @@ glmc_perspective(float fovy,
|
||||
dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_move_far(mat4 proj, float deltaFar) {
|
||||
glm_persp_move_far(proj, deltaFar);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_perspective_default(float aspect, mat4 dest) {
|
||||
glm_perspective_default(aspect, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_perspective_resize(float aspect, mat4 proj) {
|
||||
glm_perspective_resize(aspect, proj);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_lookat(vec3 eye,
|
||||
@@ -66,3 +114,87 @@ glmc_lookat(vec3 eye,
|
||||
mat4 dest) {
|
||||
glm_lookat(eye, center, up, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
|
||||
glm_look(eye, dir, up, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
|
||||
glm_look_anyup(eye, dir, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom,
|
||||
float * __restrict left,
|
||||
float * __restrict right) {
|
||||
glm_persp_decomp(proj, nearVal, farVal, top, bottom, left, right);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decompv(mat4 proj, float dest[6]) {
|
||||
glm_persp_decompv(proj, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_x(mat4 proj,
|
||||
float * __restrict left,
|
||||
float * __restrict right) {
|
||||
glm_persp_decomp_x(proj, left, right);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_y(mat4 proj,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom) {
|
||||
glm_persp_decomp_y(proj, top, bottom);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_z(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal) {
|
||||
glm_persp_decomp_z(proj, nearVal, farVal);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_far(mat4 proj, float * __restrict farVal) {
|
||||
glm_persp_decomp_far(proj, farVal);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_near(mat4 proj, float * __restrict nearVal) {
|
||||
glm_persp_decomp_near(proj, nearVal);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_persp_fovy(mat4 proj) {
|
||||
return glm_persp_fovy(proj);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_persp_aspect(mat4 proj) {
|
||||
return glm_persp_aspect(proj);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_sizes(mat4 proj, float fovy, vec4 dest) {
|
||||
glm_persp_sizes(proj, fovy, dest);
|
||||
}
|
||||
|
||||
195
src/ease.c
Normal file
195
src/ease.c
Normal file
@@ -0,0 +1,195 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_linear(float t) {
|
||||
return glm_ease_linear(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_sine_in(float t) {
|
||||
return glm_ease_sine_in(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_sine_out(float t) {
|
||||
return glm_ease_sine_out(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_sine_inout(float t) {
|
||||
return glm_ease_sine_inout(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quad_in(float t) {
|
||||
return glm_ease_quad_in(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quad_out(float t) {
|
||||
return glm_ease_quad_out(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quad_inout(float t) {
|
||||
return glm_ease_quad_inout(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_cubic_in(float t) {
|
||||
return glm_ease_cubic_in(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_cubic_out(float t) {
|
||||
return glm_ease_cubic_out(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_cubic_inout(float t) {
|
||||
return glm_ease_cubic_inout(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quart_in(float t) {
|
||||
return glm_ease_quart_in(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quart_out(float t) {
|
||||
return glm_ease_quart_out(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quart_inout(float t) {
|
||||
return glm_ease_quart_inout(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quint_in(float t) {
|
||||
return glm_ease_quint_in(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quint_out(float t) {
|
||||
return glm_ease_quint_out(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quint_inout(float t) {
|
||||
return glm_ease_quint_inout(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_exp_in(float t) {
|
||||
return glm_ease_exp_in(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_exp_out(float t) {
|
||||
return glm_ease_exp_out(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_exp_inout(float t) {
|
||||
return glm_ease_exp_inout(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_circ_in(float t) {
|
||||
return glm_ease_circ_in(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_circ_out(float t) {
|
||||
return glm_ease_circ_out(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_circ_inout(float t) {
|
||||
return glm_ease_circ_inout(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_back_in(float t) {
|
||||
return glm_ease_back_in(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_back_out(float t) {
|
||||
return glm_ease_back_out(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_back_inout(float t) {
|
||||
return glm_ease_back_inout(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_elast_in(float t) {
|
||||
return glm_ease_elast_in(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_elast_out(float t) {
|
||||
return glm_ease_elast_out(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_elast_inout(float t) {
|
||||
return glm_ease_elast_inout(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_bounce_out(float t) {
|
||||
return glm_ease_bounce_out(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_bounce_in(float t) {
|
||||
return glm_ease_bounce_in(t);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_bounce_inout(float t) {
|
||||
return glm_ease_bounce_inout(t);
|
||||
}
|
||||
@@ -20,6 +20,12 @@ glmc_euler(vec3 angles, mat4 dest) {
|
||||
glm_euler(angles, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xyz(vec3 angles, mat4 dest) {
|
||||
glm_euler_xyz(angles, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zyx(vec3 angles, mat4 dest) {
|
||||
|
||||
42
src/frustum.c
Normal file
42
src/frustum.c
Normal file
@@ -0,0 +1,42 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_planes(mat4 m, vec4 dest[6]) {
|
||||
glm_frustum_planes(m, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_corners(mat4 invMat, vec4 dest[8]) {
|
||||
glm_frustum_corners(invMat, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_center(vec4 corners[8], vec4 dest) {
|
||||
glm_frustum_center(corners, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]) {
|
||||
glm_frustum_box(corners, m, box);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_frustum_corners_at(vec4 corners[8],
|
||||
float splitDist,
|
||||
float farDist,
|
||||
vec4 planeCorners[4]) {
|
||||
glm_frustum_corners_at(corners, splitDist, farDist, planeCorners);
|
||||
}
|
||||
18
src/mat3.c
18
src/mat3.c
@@ -20,6 +20,12 @@ glmc_mat3_identity(mat3 mat) {
|
||||
glm_mat3_identity(mat);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_identity_array(mat3 * __restrict mat, size_t count) {
|
||||
glm_mat3_identity_array(mat, count);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_mul(mat3 m1, mat3 m2, mat3 dest) {
|
||||
@@ -44,6 +50,18 @@ glmc_mat3_mulv(mat3 m, vec3 v, vec3 dest) {
|
||||
glm_mat3_mulv(m, v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_mat3_trace(mat3 m) {
|
||||
return glm_mat3_trace(m);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_quat(mat3 m, versor dest) {
|
||||
glm_mat3_quat(m, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_scale(mat3 m, float s) {
|
||||
|
||||
38
src/mat4.c
38
src/mat4.c
@@ -26,6 +26,12 @@ glmc_mat4_identity(mat4 mat) {
|
||||
glm_mat4_identity(mat);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_identity_array(mat4 * __restrict mat, size_t count) {
|
||||
glm_mat4_identity_array(mat, count);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_pick3(mat4 mat, mat3 dest) {
|
||||
@@ -52,7 +58,7 @@ glmc_mat4_mul(mat4 m1, mat4 m2, mat4 dest) {
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest) {
|
||||
glmc_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest) {
|
||||
glm_mat4_mulN(matrices, len, dest);
|
||||
}
|
||||
|
||||
@@ -62,6 +68,30 @@ glmc_mat4_mulv(mat4 m, vec4 v, vec4 dest) {
|
||||
glm_mat4_mulv(m, v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest) {
|
||||
glm_mat4_mulv3(m, v, last, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_mat4_trace(mat4 m) {
|
||||
return glm_mat4_trace(m);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_mat4_trace3(mat4 m) {
|
||||
return glm_mat4_trace3(m);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_quat(mat4 m, versor dest) {
|
||||
glm_mat4_quat(m, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_transpose_to(mat4 m, mat4 dest) {
|
||||
@@ -104,6 +134,12 @@ glmc_mat4_inv_precise(mat4 mat, mat4 dest) {
|
||||
glm_mat4_inv_precise(mat, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_inv_fast(mat4 mat, mat4 dest) {
|
||||
glm_mat4_inv_fast(mat, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_swap_col(mat4 mat, int col1, int col2) {
|
||||
|
||||
15
src/plane.c
Normal file
15
src/plane.c
Normal file
@@ -0,0 +1,15 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_plane_normalize(vec4 plane) {
|
||||
glm_plane_normalize(plane);
|
||||
}
|
||||
27
src/project.c
Normal file
27
src/project.c
Normal file
@@ -0,0 +1,27 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
|
||||
glm_unprojecti(pos, invMat, vp, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
|
||||
glm_unproject(pos, m, vp, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_project(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
|
||||
glm_project(pos, m, vp, dest);
|
||||
}
|
||||
189
src/quat.c
189
src/quat.c
@@ -16,20 +16,32 @@ glmc_quat_identity(versor q) {
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat(versor q,
|
||||
float angle,
|
||||
float x,
|
||||
float y,
|
||||
float z) {
|
||||
glmc_quat_identity_array(versor * __restrict q, size_t count) {
|
||||
glm_quat_identity_array(q, count);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_init(versor q, float x, float y, float z, float w) {
|
||||
glm_quat_init(q, x, y, z, w);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat(versor q, float angle, float x, float y, float z) {
|
||||
glm_quat(q, angle, x, y, z);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quatv(versor q,
|
||||
float angle,
|
||||
vec3 v) {
|
||||
glm_quatv(q, angle, v);
|
||||
glmc_quatv(versor q, float angle, vec3 axis) {
|
||||
glm_quatv(q, angle, axis);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_copy(versor q, versor dest) {
|
||||
glm_quat_copy(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
@@ -40,20 +52,86 @@ glmc_quat_norm(versor q) {
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_normalize(versor q) {
|
||||
glm_quat_normalize(q);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_dot(versor q, versor r) {
|
||||
return glm_quat_dot(q, r);
|
||||
glmc_quat_normalize_to(versor q, versor dest) {
|
||||
glm_quat_normalize_to(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mulv(versor q1, versor q2, versor dest) {
|
||||
glm_quat_mulv(q1, q2, dest);
|
||||
glmc_quat_normalize(versor q) {
|
||||
glm_quat_norm(q);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_dot(versor p, versor q) {
|
||||
return glm_quat_dot(p, q);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_conjugate(versor q, versor dest) {
|
||||
glm_quat_conjugate(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_inv(versor q, versor dest) {
|
||||
glm_quat_inv(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_add(versor p, versor q, versor dest) {
|
||||
glm_quat_add(p, q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_sub(versor p, versor q, versor dest) {
|
||||
glm_quat_sub(p, q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_real(versor q) {
|
||||
return glm_quat_real(q);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_imag(versor q, vec3 dest) {
|
||||
glm_quat_imag(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_imagn(versor q, vec3 dest) {
|
||||
glm_quat_imagn(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_imaglen(versor q) {
|
||||
return glm_quat_imaglen(q);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_angle(versor q) {
|
||||
return glm_quat_angle(q);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_axis(versor q, versor dest) {
|
||||
glm_quat_axis(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mul(versor p, versor q, versor dest) {
|
||||
glm_quat_mul(p, q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
@@ -64,9 +142,72 @@ glmc_quat_mat4(versor q, mat4 dest) {
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_slerp(versor q,
|
||||
versor r,
|
||||
float t,
|
||||
versor dest) {
|
||||
glm_quat_slerp(q, r, t, dest);
|
||||
glmc_quat_mat4t(versor q, mat4 dest) {
|
||||
glm_quat_mat4t(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mat3(versor q, mat3 dest) {
|
||||
glm_quat_mat3(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mat3t(versor q, mat3 dest) {
|
||||
glm_quat_mat3t(q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_lerp(versor from, versor to, float t, versor dest) {
|
||||
glm_quat_lerp(from, to, t, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_slerp(versor from, versor to, float t, versor dest) {
|
||||
glm_quat_slerp(from, to, t, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_look(vec3 eye, versor ori, mat4 dest) {
|
||||
glm_quat_look(eye, ori, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest) {
|
||||
glm_quat_for(dir, fwd, up, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest) {
|
||||
glm_quat_forp(from, to, fwd, up, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotatev(versor q, vec3 v, vec3 dest) {
|
||||
glm_quat_rotatev(q, v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotate(mat4 m, versor q, mat4 dest) {
|
||||
glm_quat_rotate(m, q, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotate_at(mat4 model, versor q, vec3 pivot) {
|
||||
glm_quat_rotate_at(model, q, pivot);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotate_atm(mat4 m, versor q, vec3 pivot) {
|
||||
glm_quat_rotate_atm(m, q, pivot);
|
||||
}
|
||||
|
||||
39
src/sphere.c
Normal file
39
src/sphere.c
Normal file
@@ -0,0 +1,39 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "../include/cglm/cglm.h"
|
||||
#include "../include/cglm/call.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_sphere_radii(vec4 s) {
|
||||
return glm_sphere_radii(s);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_sphere_transform(vec4 s, mat4 m, vec4 dest) {
|
||||
glm_sphere_transform(s, m, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_sphere_merge(vec4 s1, vec4 s2, vec4 dest) {
|
||||
glm_sphere_merge(s1, s2, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_sphere_sphere(vec4 s1, vec4 s2) {
|
||||
return glm_sphere_sphere(s1, s2);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_sphere_point(vec4 s, vec3 point) {
|
||||
return glm_sphere_point(s, point);
|
||||
}
|
||||
288
src/vec3.c
288
src/vec3.c
@@ -10,132 +10,332 @@
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_copy(vec3 a, vec3 dest) {
|
||||
glm_vec_copy(a, dest);
|
||||
glmc_vec3(vec4 v4, vec3 dest) {
|
||||
glm_vec3(v4, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_copy(vec3 a, vec3 dest) {
|
||||
glm_vec3_copy(a, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_zero(vec3 v) {
|
||||
glm_vec3_zero(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_one(vec3 v) {
|
||||
glm_vec3_one(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_dot(vec3 a, vec3 b) {
|
||||
return glm_vec_dot(a, b);
|
||||
glmc_vec3_dot(vec3 a, vec3 b) {
|
||||
return glm_vec3_dot(a, b);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_cross(vec3 a, vec3 b, vec3 d) {
|
||||
glm_vec_cross(a, b, d);
|
||||
glmc_vec3_cross(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_cross(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_crossn(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_crossn(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_norm(vec3 vec) {
|
||||
return glm_vec_norm(vec);
|
||||
glmc_vec3_norm(vec3 v) {
|
||||
return glm_vec3_norm(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_normalize_to(vec3 vec, vec3 dest) {
|
||||
glm_vec_normalize_to(vec, dest);
|
||||
glmc_vec3_normalize_to(vec3 v, vec3 dest) {
|
||||
glm_vec3_normalize_to(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_normalize(vec3 v) {
|
||||
glm_vec_normalize(v);
|
||||
glmc_vec3_normalize(vec3 v) {
|
||||
glm_vec3_normalize(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_norm2(vec3 vec) {
|
||||
return glm_vec_norm2(vec);
|
||||
glmc_vec3_norm2(vec3 v) {
|
||||
return glm_vec3_norm2(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_add(vec3 v1, vec3 v2, vec3 dest) {
|
||||
glm_vec_add(v1, v2, dest);
|
||||
glmc_vec3_add(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_add(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_sub(vec3 v1, vec3 v2, vec3 dest) {
|
||||
glm_vec_sub(v1, v2, dest);
|
||||
glmc_vec3_adds(vec3 v, float s, vec3 dest) {
|
||||
glm_vec3_adds(v, s, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_scale(vec3 v, float s, vec3 dest) {
|
||||
glm_vec_scale(v, s, dest);
|
||||
glmc_vec3_sub(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_sub(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_scale_as(vec3 v, float s, vec3 dest) {
|
||||
glm_vec_scale_as(v, s, dest);
|
||||
glmc_vec3_subs(vec3 v, float s, vec3 dest) {
|
||||
glm_vec3_subs(v, s, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_flipsign(vec3 v) {
|
||||
glm_vec_flipsign(v);
|
||||
glmc_vec3_mul(vec3 a, vec3 b, vec3 d) {
|
||||
glm_vec3_mul(a, b, d);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_inv(vec3 v) {
|
||||
glm_vec_inv(v);
|
||||
glmc_vec3_scale(vec3 v, float s, vec3 dest) {
|
||||
glm_vec3_scale(v, s, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_inv_to(vec3 v, vec3 dest) {
|
||||
glm_vec_inv_to(v, dest);
|
||||
glmc_vec3_scale_as(vec3 v, float s, vec3 dest) {
|
||||
glm_vec3_scale_as(v, s, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_div(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_div(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_divs(vec3 a, float s, vec3 dest) {
|
||||
glm_vec3_divs(a, s, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_addadd(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_addadd(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_subadd(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_subadd(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_muladd(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_muladd(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_muladds(vec3 a, float s, vec3 dest) {
|
||||
glm_vec3_muladds(a, s, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_maxadd(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_maxadd(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_minadd(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_minadd(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_negate(vec3 v) {
|
||||
glm_vec3_negate(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_negate_to(vec3 v, vec3 dest) {
|
||||
glm_vec3_negate_to(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_angle(vec3 v1, vec3 v2) {
|
||||
return glm_vec_angle(v1, v2);
|
||||
glmc_vec3_angle(vec3 a, vec3 b) {
|
||||
return glm_vec3_angle(a, b);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_rotate(vec3 v, float angle, vec3 axis) {
|
||||
glm_vec_rotate(v, angle, axis);
|
||||
glmc_vec3_rotate(vec3 v, float angle, vec3 axis) {
|
||||
glm_vec3_rotate(v, angle, axis);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_rotate_m4(mat4 m, vec3 v, vec3 dest) {
|
||||
glm_vec_rotate_m4(m, v, dest);
|
||||
glmc_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest) {
|
||||
glm_vec3_rotate_m4(m, v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_proj(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec_proj(a, b, dest);
|
||||
glmc_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest) {
|
||||
glm_vec3_rotate_m3(m, v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_center(vec3 v1, vec3 v2, vec3 dest) {
|
||||
glm_vec_center(v1, v2, dest);
|
||||
glmc_vec3_proj(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_proj(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_center(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_center(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_distance(vec3 v1, vec3 v2) {
|
||||
return glm_vec_distance(v1, v2);
|
||||
glmc_vec3_distance2(vec3 a, vec3 b) {
|
||||
return glm_vec3_distance2(a, b);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec3_distance(vec3 a, vec3 b) {
|
||||
return glm_vec3_distance(a, b);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_maxv(vec3 v1, vec3 v2, vec3 dest) {
|
||||
glm_vec_minv(v1, v2, dest);
|
||||
glmc_vec3_maxv(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_minv(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_minv(vec3 v1, vec3 v2, vec3 dest) {
|
||||
glm_vec_maxv(v1, v2, dest);
|
||||
glmc_vec3_minv(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_maxv(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_clamp(vec3 v, float minVal, float maxVal) {
|
||||
glm_vec3_clamp(v, minVal, maxVal);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_ortho(vec3 v, vec3 dest) {
|
||||
glm_vec3_ortho(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest) {
|
||||
glm_vec3_lerp(from, to, t, dest);
|
||||
}
|
||||
|
||||
/* ext */
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_mulv(vec3 a, vec3 b, vec3 d) {
|
||||
glm_vec3_mulv(a, b, d);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_broadcast(float val, vec3 d) {
|
||||
glm_vec3_broadcast(val, d);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eq(vec3 v, float val) {
|
||||
return glm_vec3_eq(v, val);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eq_eps(vec3 v, float val) {
|
||||
return glm_vec3_eq_eps(v, val);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eq_all(vec3 v) {
|
||||
return glm_vec3_eq_all(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eqv(vec3 a, vec3 b) {
|
||||
return glm_vec3_eqv(a, b);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eqv_eps(vec3 a, vec3 b) {
|
||||
return glm_vec3_eqv_eps(a, b);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec3_max(vec3 v) {
|
||||
return glm_vec3_max(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec3_min(vec3 v) {
|
||||
return glm_vec3_min(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_isnan(vec3 v) {
|
||||
return glm_vec3_isnan(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_isinf(vec3 v) {
|
||||
return glm_vec3_isinf(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_isvalid(vec3 v) {
|
||||
return glm_vec3_isvalid(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_sign(vec3 v, vec3 dest) {
|
||||
glm_vec3_sign(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_sqrt(vec3 v, vec3 dest) {
|
||||
glm_vec3_sqrt(v, dest);
|
||||
}
|
||||
|
||||
232
src/vec4.c
232
src/vec4.c
@@ -10,8 +10,26 @@
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_copy3(vec4 a, vec3 dest) {
|
||||
glm_vec4_copy3(a, dest);
|
||||
glmc_vec4(vec3 v3, float last, vec4 dest) {
|
||||
glm_vec4(v3, last, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_zero(vec4 v) {
|
||||
glm_vec4_zero(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_one(vec4 v) {
|
||||
glm_vec4_one(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_copy3(vec4 v, vec3 dest) {
|
||||
glm_vec4_copy3(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
@@ -20,6 +38,12 @@ glmc_vec4_copy(vec4 v, vec4 dest) {
|
||||
glm_vec4_copy(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_ucopy(vec4 v, vec4 dest) {
|
||||
glm_vec4_ucopy(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_dot(vec4 a, vec4 b) {
|
||||
@@ -28,14 +52,14 @@ glmc_vec4_dot(vec4 a, vec4 b) {
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_norm(vec4 vec) {
|
||||
return glm_vec4_norm(vec);
|
||||
glmc_vec4_norm(vec4 v) {
|
||||
return glm_vec4_norm(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_normalize_to(vec4 vec, vec4 dest) {
|
||||
glm_vec4_normalize_to(vec, dest);
|
||||
glmc_vec4_normalize_to(vec4 v, vec4 dest) {
|
||||
glm_vec4_normalize_to(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
@@ -46,20 +70,38 @@ glmc_vec4_normalize(vec4 v) {
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_norm2(vec4 vec) {
|
||||
return glm_vec4_norm2(vec);
|
||||
glmc_vec4_norm2(vec4 v) {
|
||||
return glm_vec4_norm2(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_add(vec4 v1, vec4 v2, vec4 dest) {
|
||||
glm_vec4_add(v1, v2, dest);
|
||||
glmc_vec4_add(vec4 a, vec4 b, vec4 dest) {
|
||||
glm_vec4_add(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sub(vec4 v1, vec4 v2, vec4 dest) {
|
||||
glm_vec4_sub(v1, v2, dest);
|
||||
glmc_vec4_adds(vec4 v, float s, vec4 dest) {
|
||||
glm_vec4_adds(v, s, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sub(vec4 a, vec4 b, vec4 dest) {
|
||||
glm_vec4_sub(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_subs(vec4 v, float s, vec4 dest) {
|
||||
glm_vec4_subs(v, s, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_mul(vec4 a, vec4 b, vec4 d) {
|
||||
glm_vec4_mul(a, b, d);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
@@ -70,42 +112,182 @@ glmc_vec4_scale(vec4 v, float s, vec4 dest) {
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_scale_as(vec3 v, float s, vec3 dest) {
|
||||
glmc_vec4_scale_as(vec4 v, float s, vec4 dest) {
|
||||
glm_vec4_scale_as(v, s, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_flipsign(vec4 v) {
|
||||
glm_vec4_flipsign(v);
|
||||
glmc_vec4_div(vec4 a, vec4 b, vec4 dest) {
|
||||
glm_vec4_div(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_inv(vec4 v) {
|
||||
glm_vec4_inv(v);
|
||||
glmc_vec4_divs(vec4 v, float s, vec4 dest) {
|
||||
glm_vec4_divs(v, s, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_inv_to(vec4 v, vec4 dest) {
|
||||
glm_vec4_inv_to(v, dest);
|
||||
glmc_vec4_addadd(vec4 a, vec4 b, vec4 dest) {
|
||||
glm_vec4_addadd(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_subadd(vec4 a, vec4 b, vec4 dest) {
|
||||
glm_vec4_subadd(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_muladd(vec4 a, vec4 b, vec4 dest) {
|
||||
glm_vec4_muladd(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_muladds(vec4 a, float s, vec4 dest) {
|
||||
glm_vec4_muladds(a, s, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_maxadd(vec4 a, vec4 b, vec4 dest) {
|
||||
glm_vec4_maxadd(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_minadd(vec4 a, vec4 b, vec4 dest) {
|
||||
glm_vec4_minadd(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_negate(vec4 v) {
|
||||
glm_vec4_negate(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_negate_to(vec4 v, vec4 dest) {
|
||||
glm_vec4_negate_to(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_distance(vec4 v1, vec4 v2) {
|
||||
return glm_vec4_distance(v1, v2);
|
||||
glmc_vec4_distance(vec4 a, vec4 b) {
|
||||
return glm_vec4_distance(a, b);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_maxv(vec4 v1, vec4 v2, vec4 dest) {
|
||||
glm_vec4_minv(v1, v2, dest);
|
||||
glmc_vec4_maxv(vec4 a, vec4 b, vec4 dest) {
|
||||
glm_vec4_minv(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_minv(vec4 v1, vec4 v2, vec4 dest) {
|
||||
glm_vec4_maxv(v1, v2, dest);
|
||||
glmc_vec4_minv(vec4 a, vec4 b, vec4 dest) {
|
||||
glm_vec4_maxv(a, b, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_clamp(vec4 v, float minVal, float maxVal) {
|
||||
glm_vec4_clamp(v, minVal, maxVal);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest) {
|
||||
glm_vec4_lerp(from, to, t, dest);
|
||||
}
|
||||
|
||||
/* ext */
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_mulv(vec4 a, vec4 b, vec4 d) {
|
||||
glm_vec4_mulv(a, b, d);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_broadcast(float val, vec4 d) {
|
||||
glm_vec4_broadcast(val, d);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq(vec4 v, float val) {
|
||||
return glm_vec4_eq(v, val);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq_eps(vec4 v, float val) {
|
||||
return glm_vec4_eq_eps(v, val);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq_all(vec4 v) {
|
||||
return glm_vec4_eq_all(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eqv(vec4 a, vec4 b) {
|
||||
return glm_vec4_eqv(a, b);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eqv_eps(vec4 a, vec4 b) {
|
||||
return glm_vec4_eqv_eps(a, b);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_max(vec4 v) {
|
||||
return glm_vec4_max(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_min(vec4 v) {
|
||||
return glm_vec4_min(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isnan(vec4 v) {
|
||||
return glm_vec4_isnan(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isinf(vec4 v) {
|
||||
return glm_vec4_isinf(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isvalid(vec4 v) {
|
||||
return glm_vec4_isvalid(v);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sign(vec4 v, vec4 dest) {
|
||||
glm_vec4_sign(v, dest);
|
||||
}
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sqrt(vec4 v, vec4 dest) {
|
||||
glm_vec4_sqrt(v, dest);
|
||||
}
|
||||
|
||||
113
test/src/test_affine.c
Normal file
113
test/src/test_affine.c
Normal file
@@ -0,0 +1,113 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "test_common.h"
|
||||
|
||||
void
|
||||
test_affine(void **state) {
|
||||
mat4 t1, t2, t3, t4, t5;
|
||||
|
||||
/* test translate is postmultiplied */
|
||||
glmc_rotate_make(t1, GLM_PI_4f, GLM_YUP);
|
||||
glm_translate_make(t2, (vec3){34, 57, 36});
|
||||
|
||||
glmc_mat4_mul(t1, t2, t3); /* R * T */
|
||||
|
||||
glm_translate(t1, (vec3){34, 57, 36});
|
||||
test_assert_mat4_eq(t1, t3);
|
||||
|
||||
/* test rotate is postmultiplied */
|
||||
glmc_rotate_make(t1, GLM_PI_4f, GLM_YUP);
|
||||
glm_translate_make(t2, (vec3){34, 57, 36});
|
||||
|
||||
glmc_mat4_mul(t2, t1, t3); /* T * R */
|
||||
|
||||
glm_rotate(t2, GLM_PI_4f, GLM_YUP);
|
||||
test_assert_mat4_eq(t2, t3);
|
||||
|
||||
/* test scale is postmultiplied */
|
||||
glmc_rotate_make(t1, GLM_PI_4f, GLM_YUP);
|
||||
glm_translate_make(t2, (vec3){34, 57, 36});
|
||||
glm_scale_make(t4, (vec3){3, 5, 6});
|
||||
|
||||
glmc_mat4_mul(t2, t1, t3); /* T * R */
|
||||
glmc_mat4_mul(t3, t4, t5); /* T * R * S */
|
||||
|
||||
glm_scale(t3, (vec3){3, 5, 6});
|
||||
test_assert_mat4_eq(t3, t5);
|
||||
|
||||
/* test translate_x */
|
||||
glmc_rotate_make(t1, GLM_PI_4f, GLM_YUP);
|
||||
glm_translate_make(t2, (vec3){34, 0, 0});
|
||||
|
||||
glmc_mat4_mul(t1, t2, t3); /* R * T */
|
||||
glm_translate_x(t1, 34);
|
||||
test_assert_mat4_eq(t1, t3);
|
||||
|
||||
/* test translate_y */
|
||||
glmc_rotate_make(t1, GLM_PI_4f, GLM_YUP);
|
||||
glm_translate_make(t2, (vec3){0, 57, 0});
|
||||
|
||||
glmc_mat4_mul(t1, t2, t3); /* R * T */
|
||||
glm_translate_y(t1, 57);
|
||||
test_assert_mat4_eq(t1, t3);
|
||||
|
||||
/* test translate_z */
|
||||
glmc_rotate_make(t1, GLM_PI_4f, GLM_YUP);
|
||||
glm_translate_make(t2, (vec3){0, 0, 36});
|
||||
|
||||
glmc_mat4_mul(t1, t2, t3); /* R * T */
|
||||
glm_translate_z(t1, 36);
|
||||
test_assert_mat4_eq(t1, t3);
|
||||
|
||||
/* test rotate_x */
|
||||
glmc_rotate_make(t1, GLM_PI_4f, (vec3){1, 0, 0});
|
||||
glm_translate_make(t2, (vec3){34, 57, 36});
|
||||
|
||||
glmc_mat4_mul(t2, t1, t3); /* T * R */
|
||||
|
||||
glm_rotate_x(t2, GLM_PI_4f, t2);
|
||||
test_assert_mat4_eq(t2, t3);
|
||||
|
||||
/* test rotate_y */
|
||||
glmc_rotate_make(t1, GLM_PI_4f, (vec3){0, 1, 0});
|
||||
glm_translate_make(t2, (vec3){34, 57, 36});
|
||||
|
||||
glmc_mat4_mul(t2, t1, t3); /* T * R */
|
||||
|
||||
glm_rotate_y(t2, GLM_PI_4f, t2);
|
||||
test_assert_mat4_eq(t2, t3);
|
||||
|
||||
/* test rotate_z */
|
||||
glmc_rotate_make(t1, GLM_PI_4f, (vec3){0, 0, 1});
|
||||
glm_translate_make(t2, (vec3){34, 57, 36});
|
||||
|
||||
glmc_mat4_mul(t2, t1, t3); /* T * R */
|
||||
|
||||
glm_rotate_z(t2, GLM_PI_4f, t2);
|
||||
test_assert_mat4_eq(t2, t3);
|
||||
|
||||
/* test rotate */
|
||||
glmc_rotate_make(t1, GLM_PI_4f, (vec3){0, 0, 1});
|
||||
glm_translate_make(t2, (vec3){34, 57, 36});
|
||||
|
||||
glmc_mat4_mul(t2, t1, t3); /* T * R */
|
||||
glmc_rotate(t2, GLM_PI_4f, (vec3){0, 0, 1});
|
||||
|
||||
test_assert_mat4_eq(t3, t2);
|
||||
|
||||
/* test scale_uni */
|
||||
glmc_rotate_make(t1, GLM_PI_4f, GLM_YUP);
|
||||
glm_translate_make(t2, (vec3){34, 57, 36});
|
||||
glm_scale_make(t4, (vec3){3, 3, 3});
|
||||
|
||||
glmc_mat4_mul(t2, t1, t3); /* T * R */
|
||||
glmc_mat4_mul(t3, t4, t5); /* T * R * S */
|
||||
|
||||
glm_scale_uni(t3, 3);
|
||||
test_assert_mat4_eq(t3, t5);
|
||||
}
|
||||
54
test/src/test_cam.c
Normal file
54
test/src/test_cam.c
Normal file
@@ -0,0 +1,54 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#include "test_common.h"
|
||||
|
||||
void
|
||||
test_camera_lookat(void **state) {
|
||||
mat4 view1, view2;
|
||||
vec3 center,
|
||||
eye = {0.024f, 14.6f, 67.04f},
|
||||
dir = {0.0f, 0.0f, -1.0f},
|
||||
up = {0.0f, 1.0f, 0.0f}
|
||||
;
|
||||
|
||||
glm_vec3_add(eye, dir, center);
|
||||
glm_lookat(eye, center, up, view1);
|
||||
|
||||
glm_look(eye, dir, up, view2);
|
||||
|
||||
test_assert_mat4_eq(view1, view2);
|
||||
}
|
||||
|
||||
void
|
||||
test_camera_decomp(void **state) {
|
||||
mat4 proj, proj2;
|
||||
vec4 sizes;
|
||||
float aspect, fovy, nearVal, farVal;
|
||||
|
||||
aspect = 0.782f;
|
||||
fovy = glm_rad(49.984f);
|
||||
nearVal = 0.1f;
|
||||
farVal = 100.0f;
|
||||
|
||||
glm_perspective(fovy, aspect, nearVal, farVal, proj);
|
||||
assert_true(fabsf(aspect - glm_persp_aspect(proj)) < FLT_EPSILON);
|
||||
assert_true(fabsf(fovy - glm_persp_fovy(proj)) < FLT_EPSILON);
|
||||
assert_true(fabsf(49.984f - glm_deg(glm_persp_fovy(proj))) < FLT_EPSILON);
|
||||
|
||||
glm_persp_sizes(proj, fovy, sizes);
|
||||
|
||||
glm_frustum(-sizes[0] * 0.5,
|
||||
sizes[0] * 0.5,
|
||||
-sizes[1] * 0.5,
|
||||
sizes[1] * 0.5,
|
||||
nearVal,
|
||||
farVal,
|
||||
proj2);
|
||||
|
||||
test_assert_mat4_eq(proj, proj2);
|
||||
}
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user