Compare commits

..

4 Commits

Author SHA1 Message Date
Recep Aslantas
6626d2b74f Update affine.h 2020-11-22 01:25:34 +03:00
Recep Aslantas
5bda762df6 use epsilon to compare results in glm_uniscaled() 2020-11-22 01:14:18 +03:00
Recep Aslantas
f9824a8dc6 test: use custom epsilon to compare 2020-11-22 00:59:48 +03:00
Recep Aslantas
ccd3058adc remove CGLM_USE_DEFAULT_EPSILON
* to override float epsilon we just need to define GLM_FLT_EPSILON
* CGLM_USE_DEFAULT_EPSILON was redundant, also it forces to override system default epsilon which may not be good idea, because not all systems may support smaller epsilon values
2020-11-22 00:38:57 +03:00
136 changed files with 911 additions and 9778 deletions

3
.gitignore vendored
View File

@@ -76,6 +76,3 @@ build/
conftest.dir/*
confdefs.h
*.xcuserdatad
.idea
cmake-build-debug
*.o.tmp

View File

@@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 3.8.2)
project(cglm VERSION 0.8.5 LANGUAGES C)
project(cglm VERSION 0.8.0 LANGUAGES C)
set(CMAKE_C_STANDARD 11)
set(CMAKE_C_STANDARD_REQUIRED YES)
@@ -18,7 +18,7 @@ else(CGLM_STATIC)
endif()
if(CGLM_USE_C99)
set(CMAKE_C_STANDARD 99)
set(C_STANDARD 99)
endif()
if(MSVC)
@@ -47,10 +47,7 @@ include(GNUInstallDirs)
set(CPACK_PROJECT_NAME ${PROJECT_NAME})
set(CPACK_PROJECT_VERSION ${PROJECT_VERSION})
if(NOT CPack_CMake_INCLUDED)
include(CPack)
endif()
include(CPack)
# Target Start
add_library(${PROJECT_NAME}
@@ -76,18 +73,6 @@ add_library(${PROJECT_NAME}
src/bezier.c
src/ray.c
src/affine2d.c
src/clipspace/persp_lh_zo.c
src/clipspace/persp_rh_zo.c
src/clipspace/persp_lh_no.c
src/clipspace/persp_rh_no.c
src/clipspace/ortho_lh_zo.c
src/clipspace/ortho_rh_zo.c
src/clipspace/ortho_lh_no.c
src/clipspace/ortho_rh_no.c
src/clipspace/view_lh_zo.c
src/clipspace/view_rh_zo.c
src/clipspace/view_lh_no.c
src/clipspace/view_rh_no.c
)
if(CGLM_SHARED)
@@ -100,12 +85,6 @@ set_target_properties(${PROJECT_NAME} PROPERTIES
VERSION ${PROJECT_VERSION}
SOVERSION ${PROJECT_VERSION_MAJOR})
if(WIN32)
# Because SOVERSION has no effect to file naming on Windows
set_target_properties(${PROJECT_NAME} PROPERTIES
RUNTIME_OUTPUT_NAME ${PROJECT_NAME}-${PROJECT_VERSION_MAJOR})
endif()
target_include_directories(${PROJECT_NAME}
PUBLIC
$<INSTALL_INTERFACE:include>
@@ -114,11 +93,6 @@ target_include_directories(${PROJECT_NAME}
${CMAKE_CURRENT_SOURCE_DIR}/src
)
# Target for header-only usage
add_library(${PROJECT_NAME}_headers INTERFACE)
target_include_directories(${PROJECT_NAME}_headers INTERFACE
${CMAKE_CURRENT_SOURCE_DIR}/include)
# Test Configuration
if(CGLM_USE_TEST)
include(CTest)
@@ -131,7 +105,7 @@ install(TARGETS ${PROJECT_NAME}
EXPORT ${PROJECT_NAME}
LIBRARY DESTINATION ${CMAKE_INSTALL_LIBDIR}
ARCHIVE DESTINATION ${CMAKE_INSTALL_LIBDIR}
RUNTIME DESTINATION ${CMAKE_INSTALL_BINDIR})
RUNTIME DESTINATION ${CMAKE_INSTALL_LIBDIR})
install(DIRECTORY include/${PROJECT_NAME} DESTINATION ${CMAKE_INSTALL_INCLUDEDIR}
PATTERN ".*" EXCLUDE)
@@ -143,17 +117,6 @@ export(TARGETS ${PROJECT_NAME}
)
install(EXPORT ${PROJECT_NAME}
FILE "${PROJECT_NAME}Config.cmake"
NAMESPACE ${PROJECT_NAME}::
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/${PROJECT_NAME})
DESTINATION ${CMAKE_INSTALL_LIBDIR}/${PROJECT_NAME}/cmake)
set(PACKAGE_NAME ${PROJECT_NAME})
set(prefix ${CMAKE_INSTALL_PREFIX})
set(exec_prefix ${CMAKE_INSTALL_PREFIX})
set(includedir "\${prefix}/${CMAKE_INSTALL_INCLUDEDIR}")
set(libdir "\${prefix}/${CMAKE_INSTALL_LIBDIR}")
set(PACKAGE_VERSION "${PROJECT_VERSION}")
configure_file(${CMAKE_CURRENT_LIST_DIR}/cglm.pc.in ${CMAKE_BINARY_DIR}/cglm.pc @ONLY)
install(FILES ${CMAKE_BINARY_DIR}/cglm.pc
DESTINATION ${CMAKE_INSTALL_LIBDIR}/pkgconfig)

View File

@@ -74,11 +74,3 @@ Link to paper: http://webserver2.tecgraf.puc-rio.br/~mgattass/cg/trbRR/Fast%20Mi
14. ARM NEON: Matrix Vector Multiplication
https://stackoverflow.com/a/57793352/2676533
16. ARM NEON Div
http://github.com/microsoft/DirectXMath
17. Pick Matrix
glu project -> project.c

View File

@@ -69,25 +69,6 @@ cglm_HEADERS = include/cglm/version.h \
include/cglm/ray.h \
include/cglm/affine2d.h
cglm_clipspacedir=$(includedir)/cglm/clipspace
cglm_clipspace_HEADERS = include/cglm/clipspace/persp.h \
include/cglm/clipspace/persp_lh_zo.h \
include/cglm/clipspace/persp_rh_zo.h \
include/cglm/clipspace/persp_lh_no.h \
include/cglm/clipspace/persp_rh_no.h \
include/cglm/clipspace/ortho_lh_zo.h \
include/cglm/clipspace/ortho_rh_zo.h \
include/cglm/clipspace/ortho_lh_no.h \
include/cglm/clipspace/ortho_rh_no.h \
include/cglm/clipspace/view_lh.h \
include/cglm/clipspace/view_rh.h \
include/cglm/clipspace/view_lh_zo.h \
include/cglm/clipspace/view_rh_zo.h \
include/cglm/clipspace/view_lh_no.h \
include/cglm/clipspace/view_rh_no.h \
include/cglm/clipspace/project_zo.h \
include/cglm/clipspace/project_no.h
cglm_calldir=$(includedir)/cglm/call
cglm_call_HEADERS = include/cglm/call/mat4.h \
include/cglm/call/mat3.h \
@@ -111,22 +92,6 @@ cglm_call_HEADERS = include/cglm/call/mat4.h \
include/cglm/call/ray.h \
include/cglm/call/affine2d.h
cglm_call_clipspacedir=$(includedir)/cglm/call/clipspace
cglm_call_clipspace_HEADERS = include/cglm/call/clipspace/persp_lh_zo.h \
include/cglm/call/clipspace/persp_rh_zo.h \
include/cglm/call/clipspace/persp_lh_no.h \
include/cglm/call/clipspace/persp_rh_no.h \
include/cglm/call/clipspace/ortho_lh_zo.h \
include/cglm/call/clipspace/ortho_rh_zo.h \
include/cglm/call/clipspace/ortho_lh_no.h \
include/cglm/call/clipspace/ortho_rh_no.h \
include/cglm/call/clipspace/view_lh_zo.h \
include/cglm/call/clipspace/view_rh_zo.h \
include/cglm/call/clipspace/view_lh_no.h \
include/cglm/call/clipspace/view_rh_no.h \
include/cglm/call/clipspace/project_no.h \
include/cglm/call/clipspace/project_zo.h
cglm_simddir=$(includedir)/cglm/simd
cglm_simd_HEADERS = include/cglm/simd/intrin.h \
include/cglm/simd/x86.h \
@@ -144,10 +109,7 @@ cglm_simd_avx_HEADERS = include/cglm/simd/avx/mat4.h \
include/cglm/simd/avx/affine.h
cglm_simd_neondir=$(includedir)/cglm/simd/neon
cglm_simd_neon_HEADERS = include/cglm/simd/neon/mat4.h \
include/cglm/simd/neon/mat2.h \
include/cglm/simd/neon/affine.h \
include/cglm/simd/neon/quat.h
cglm_simd_neon_HEADERS = include/cglm/simd/neon/mat4.h
cglm_structdir=$(includedir)/cglm/struct
cglm_struct_HEADERS = include/cglm/struct/mat4.h \
@@ -172,21 +134,7 @@ cglm_struct_HEADERS = include/cglm/struct/mat4.h \
include/cglm/struct/color.h \
include/cglm/struct/curve.h \
include/cglm/struct/affine2d.h
cglm_struct_clipspacedir=$(includedir)/cglm/struct/clipspace
cglm_struct_clipspace_HEADERS = include/cglm/struct/clipspace/persp_lh_zo.h \
include/cglm/struct/clipspace/persp_rh_zo.h \
include/cglm/struct/clipspace/persp_lh_no.h \
include/cglm/struct/clipspace/persp_rh_no.h \
include/cglm/struct/clipspace/ortho_lh_zo.h \
include/cglm/struct/clipspace/ortho_rh_zo.h \
include/cglm/struct/clipspace/ortho_lh_no.h \
include/cglm/struct/clipspace/ortho_rh_no.h \
include/cglm/struct/clipspace/view_lh_zo.h \
include/cglm/struct/clipspace/view_rh_zo.h \
include/cglm/struct/clipspace/view_lh_no.h \
include/cglm/struct/clipspace/view_rh_no.h
libcglm_la_SOURCES=\
src/euler.c \
src/affine.c \
@@ -208,31 +156,13 @@ libcglm_la_SOURCES=\
src/curve.c \
src/bezier.c \
src/ray.c \
src/affine2d.c \
src/clipspace/ortho_lh_no.c \
src/clipspace/ortho_lh_zo.c \
src/clipspace/ortho_rh_no.c \
src/clipspace/ortho_rh_zo.c \
src/clipspace/persp_lh_no.c \
src/clipspace/persp_lh_zo.c \
src/clipspace/persp_rh_no.c \
src/clipspace/persp_rh_zo.c \
src/clipspace/view_lh_no.c \
src/clipspace/view_lh_zo.c \
src/clipspace/view_rh_no.c \
src/clipspace/view_rh_zo.c \
src/clipspace/project_no.c \
src/clipspace/project_zo.c
src/affine2d.c
test_tests_SOURCES=\
test/runner.c \
test/src/test_common.c \
test/src/tests.c \
test/src/test_cam.c \
test/src/test_cam_lh_zo.c \
test/src/test_cam_rh_zo.c \
test/src/test_cam_lh_no.c \
test/src/test_cam_rh_no.c \
test/src/test_clamp.c \
test/src/test_euler.c \
test/src/test_bezier.c \

106
README.md
View File

@@ -1,59 +1,19 @@
# 🎥 OpenGL Mathematics (glm) for `C`
[![Build Status](https://travis-ci.org/recp/cglm.svg?branch=master)](https://travis-ci.org/recp/cglm)
[![Build status](https://ci.appveyor.com/api/projects/status/av7l3gc0yhfex8y4/branch/master?svg=true)](https://ci.appveyor.com/project/recp/cglm/branch/master)
[![Documentation Status](https://readthedocs.org/projects/cglm/badge/?version=latest)](http://cglm.readthedocs.io/en/latest/?badge=latest)
[![Coverage Status](https://coveralls.io/repos/github/recp/cglm/badge.svg?branch=master)](https://coveralls.io/github/recp/cglm?branch=master)
[![codecov](https://codecov.io/gh/recp/cglm/branch/master/graph/badge.svg)](https://codecov.io/gh/recp/cglm)
[![Codacy Badge](https://api.codacy.com/project/badge/Grade/6a62b37d5f214f178ebef269dc4a6bf1)](https://www.codacy.com/app/recp/cglm?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=recp/cglm&amp;utm_campaign=Badge_Grade)
[![Backers on Open Collective](https://opencollective.com/cglm/backers/badge.svg)](#backers)
[![Sponsors on Open Collective](https://opencollective.com/cglm/sponsors/badge.svg)](#sponsors)
<p align="center">
<img alt="" src="cglm.png" width="550" />
</p>
<br>
<p align="center">
<a href="https://travis-ci.com/recp/cglm">
<img src="https://travis-ci.com/recp/cglm.svg?branch=master"
alt="Build Status">
</a>
<a href="https://ci.appveyor.com/project/recp/cglm/branch/master">
<img src="https://ci.appveyor.com/api/projects/status/av7l3gc0yhfex8y4/branch/master?svg=true"
alt="Windows Build Status">
</a>
<a href="http://cglm.readthedocs.io/en/latest/?badge=latest">
<img src="https://readthedocs.org/projects/cglm/badge/?version=latest"
alt="Documentation Status">
</a>
<a href="https://www.codacy.com/app/recp/cglm?utm_source=github.com&amp;utm_medium=referral&amp;utm_content=recp/cglm&amp;utm_campaign=Badge_Grade">
<img src="https://api.codacy.com/project/badge/Grade/6a62b37d5f214f178ebef269dc4a6bf1"
alt="Codacy Badge"/>
</a>
<a href="https://coveralls.io/github/recp/cglm?branch=master">
<img src="https://coveralls.io/repos/github/recp/cglm/badge.svg?branch=master"
alt="Coverage Status"/>
</a>
<a href="https://codecov.io/gh/recp/cglm">
<img src="https://codecov.io/gh/recp/cglm/branch/master/graph/badge.svg"
alt="Coverage Status"/>
</a>
<br /><br />
<a href="#sponsors">
<img src="https://opencollective.com/cglm/sponsors/badge.svg"
alt="Sponsors on Open Collective"/>
</a>
<a href="#backers">
<img src="https://opencollective.com/cglm/backers/badge.svg"
alt="Backers on Open Collective"/>
</a>
</p>
<br>
<p align="center">
Highly optimized 2D|3D math library, also known as <b>OpenGL Mathematics (glm) for `C`</b>. <b>cglm</b> provides lot of utils to help math operations to be fast and quick to write. It is community friendly, feel free to bring any issues, bugs you faced.
</p>
---
#### 📚 Documentation
#### Documentation
Almost all functions (inline versions) and parameters are documented inside the corresponding headers. <br />
Complete documentation: http://cglm.readthedocs.io
#### 📌 Note for previous versions:
#### Note for previous versions:
- _dup (duplicate) is changed to _copy. For instance `glm_vec_dup -> glm_vec3_copy`
- OpenGL related functions are dropped to make this lib platform/third-party independent
@@ -66,29 +26,31 @@ you have the latest version
- **[major change]** by starting v0.5.0, vec3 functions use **glm_vec3_** namespace, it was **glm_vec_** until v0.5.0
- **[major change]** by starting v0.5.1, built-in alignment is removed from **vec3** and **mat3** types
- **[major change]** by starting v0.7.3, inline print functions are disabled in release/production mode to eliminate print costs (see options in documentation). Print output also improved. You can disable colors if you need (see documentation)
- **[major change]** by starting v0.8.3, **cglm** supports alternative clipspace configuations e.g. Left Handed, Zero-to-One (_zo)... `CGLM_FORCE_DEPTH_ZERO_TO_ONE` and `CGLM_FORCE_LEFT_HANDED` is provided to control clipspace. You should be able to use **cglm** with Vulkan, DirectX and Metal now... see https://cglm.readthedocs.io/en/latest/opt.html#clipspace-option-s
#### 📌 Note for C++ developers:
#### Note for C++ developers:
If you are not aware of the original GLM library yet, you may also want to look at:
https://github.com/g-truc/glm
#### 📌 Note for new comers (Important):
#### Note for new comers (Important):
- `vec4` and `mat4` variables must be aligned. (There will be unaligned versions later)
- **in** and **[in, out]** parameters must be initialized (please). But **[out]** parameters not, initializing out param is also redundant
- All functions are inline if you don't want to use pre-compiled versions with glmc_ prefix, you can ignore build process. Just include headers.
- if your debugger takes you to cglm headers then make sure you are not trying to copy vec4 to vec3 or alig issues...
- Welcome!
#### 📌 Note for experienced developers:
#### Note for experienced developers:
- Since I'm testing this library in my projects, sometimes bugs occurs; finding that bug[s] and making improvements would be more easy with multiple developer/contributor and their projects or knowledge. Consider to make some tests if you suspect something is wrong and any feedbacks, contributions and bug reports are always welcome.
#### 📌 Allocations?
#### Allocations?
`cglm` doesn't alloc any memory on heap. So it doesn't provide any allocator. You should alloc memory for **out** parameters too if you pass pointer of memory location. Don't forget that **vec4** (also quat/**versor**) and **mat4** must be aligned (16-bytes), because *cglm* uses SIMD instructions to optimize most operations if available.
#### 📌 Returning vector or matrix... ?
#### Returning vector or matrix... ?
**cglm** supports both *ARRAY API* and *STRUCT API*, so you can return structs if you utilize struct api (`glms_`).
#### Other APIs like Vulkan, Metal, Dx?
Currently *cglm* uses default clip space configuration (-1, 1) for camera functions (perspective, extract corners...), in the future other clip space configurations will be supported
<hr/>
<table>
@@ -106,9 +68,7 @@ https://github.com/g-truc/glm
</tbody>
</table>
## 🚀 Features
- **scalar** and **simd** (sse, avx, neon...) optimizations
- option to use different clipspaces e.g. Left Handed, Zero-to-One... (currrently right handed negative-one is default)
## Features
- array api and struct api, you can use arrays or structs.
- general purpose matrix operations (mat4, mat3)
- chain matrix multiplication (square only)
@@ -123,7 +83,7 @@ https://github.com/g-truc/glm
- extract euler angles
- inline or pre-compiled function call
- frustum (extract view frustum planes, corners...)
- bounding box (AABB in Frustum (culling), crop, merge...)
- bounding box (AABB in Frustum (culling), crop, merge...)
- bounding sphere
- project, unproject
- easing functions
@@ -135,9 +95,9 @@ https://github.com/g-truc/glm
<hr />
You have two options to call a function/operation: inline or library call (link)
You have two option to call a function/operation: inline or library call (link)
Almost all functions are marked inline (always_inline) so compiler will probably inline.
To call pre-compiled versions, just use `glmc_` (c stands for 'call') instead of `glm_`.
To call pre-compiled version, just use `glmc_` (c stands for 'call') instead of `glm_`.
```C
#include <cglm/cglm.h> /* for inline */
@@ -188,7 +148,7 @@ Struct functions generally take their parameters as *values* and *return* their
The types used are actually unions that allow access to the same data multiple ways. One of those ways involves anonymous structures, available since C11. MSVC also supports it for earlier C versions out of the box and GCC/Clang do if you enable `-fms-extensions`. To explicitly enable these anonymous structures, `#define CGLM_USE_ANONYMOUS_STRUCT` to `1`, to disable them, to `0`. For backward compatibility, you can also `#define CGLM_NO_ANONYMOUS_STRUCT` (value is irrelevant) to disable them. If you don't specify explicitly, cglm will do a best guess based on your compiler and the C version you're using.
## 🔨 Build
## Build
### CMake (All platforms)
```bash
@@ -208,24 +168,6 @@ option(CGLM_USE_C99 "" OFF) # C11
option(CGLM_USE_TEST "Enable Tests" OFF) # for make check - make test
```
#### Use as header-only library with your CMake project
This requires no building or installation of cglm.
* Example:
``` cmake
cmake_minimum_required(VERSION 3.8.2)
project(<Your Project Name>)
add_executable(${PROJECT_NAME} src/main.c)
target_link_libraries(${LIBRARY_NAME} PRIVATE
cglm_headers)
add_subdirectory(external/cglm/ EXCLUDE_FROM_ALL)
```
#### Use with your CMake project
* Example:
```cmake
@@ -440,7 +382,7 @@ You can pass matrices the same way to other APIs e.g. Vulkan, DX...
- [x] Add version info
- [ ] Unaligned operations (e.g. `glm_umat4_mul`)
- [x] Extra documentation
- [x] ARM Neon Arch
- [ ] ARM Neon Arch (In Progress)
## Contributors

BIN
cglm.png

Binary file not shown.

Before

Width:  |  Height:  |  Size: 378 KiB

View File

@@ -2,7 +2,7 @@ Pod::Spec.new do |s|
# Description
s.name = "cglm"
s.version = "0.8.4"
s.version = "0.7.9"
s.summary = "📽 Highly Optimized Graphics Math (glm) for C"
s.description = <<-DESC
cglm is math library for graphics programming for C. See the documentation or README for all features.

View File

@@ -7,7 +7,7 @@
#*****************************************************************************
AC_PREREQ([2.69])
AC_INIT([cglm], [0.8.5], [info@recp.me])
AC_INIT([cglm], [0.8.0], [info@recp.me])
AM_INIT_AUTOMAKE([-Wall -Werror foreign subdir-objects serial-tests])
# Don't use the default cflags (-O2 -g), we set ours manually in Makefile.am.

View File

@@ -32,22 +32,6 @@ If you don't want to install **cglm** to your system's folder you can get static
option(CGLM_USE_C99 "" OFF) # C11
option(CGLM_USE_TEST "Enable Tests" OFF) # for make check - make test
**Use as header-only library with your CMake project example**
This requires no building or installation of cglm.
.. code-block:: CMake
:linenos:
cmake_minimum_required(VERSION 3.8.2)
project(<Your Project Name>)
add_executable(${PROJECT_NAME} src/main.c)
target_link_libraries(${LIBRARY_NAME} PRIVATE
cglm_headers)
add_subdirectory(external/cglm/ EXCLUDE_FROM_ALL)
**Use with your CMake project example**
.. code-block:: CMake

View File

@@ -140,7 +140,7 @@ Functions documentation
| set up perspective projection matrix
Parameters:
| *[in]* **fovy** field of view angle (in radians)
| *[in]* **fovy** field of view angle
| *[in]* **aspect** aspect ratio ( width / height )
| *[in]* **nearVal** near clipping plane
| *[in]* **farVal** far clipping planes

View File

@@ -62,9 +62,9 @@ author = u'Recep Aslantas'
# built documents.
#
# The short X.Y version.
version = u'0.8.5'
version = u'0.8.0'
# The full version, including alpha/beta/rc tags.
release = u'0.8.5'
release = u'0.8.0'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.

View File

@@ -1,8 +1,6 @@
Features
================================================================================
* **scalar** and **simd** (sse, avx, neon...) optimizations
* option to use different clipspaces e.g. Left Handed, Zero-to-One... (currrently right handed negative-one is default)
* array api and struct api, you can use arrays or structs.
* general purpose matrix operations (mat4, mat3)
* chain matrix multiplication (square only)

View File

@@ -2,7 +2,7 @@ How to send vector or matrix to OpenGL like API
==================================================
*cglm*'s vector and matrix types are arrays. So you can send them directly to a
function which accepts pointer. But you may got warnings for matrix because it is
function which accecpts pointer. But you may got warnings for matrix because it is
two dimensional array.
Passing / Uniforming Matrix to OpenGL:

View File

@@ -35,45 +35,6 @@ have to compile cglm with **CGLM_ALL_UNALIGNED** macro.
For instance if you set CGLM_ALL_UNALIGNED in a project then set it in other projects too
Clipspace Option[s]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
By starting **v0.8.3** cglm provides options to switch between clipspace configurations.
Clipspace related files are located at `include/cglm/[struct]/clipspace.h` but
these are included in related files like `cam.h`. If you don't want to change your existing
clipspace configuration and want to use different clipspace function like `glm_lookat_zo` or `glm_lookat_lh_zo`...
then you can include individual headers or just define `CGLM_CLIPSPACE_INCLUDE_ALL` which will iclude all headers for you.
1. **CGLM_CLIPSPACE_INCLUDE_ALL**
2. **CGLM_FORCE_DEPTH_ZERO_TO_ONE**
3. **CGLM_FORCE_LEFT_HANDED**
1. **CGLM_CLIPSPACE_INCLUDE_ALL**:
By defining this macro, **cglm** will include all clipspace functions for you by just using
`#include cglm/cglm.h` or `#include cglm/struct.h` or `#include cglm/call.h`
Otherwise you need to include header you want manually e.g. `#include cglm/clipspace/view_rh_zo.h`
2. **CGLM_FORCE_DEPTH_ZERO_TO_ONE**
This is similar to **GLM**'s **GLM_FORCE_DEPTH_ZERO_TO_ONE** option.
This will set clip space between 0 to 1 which makes **cglm** Vulkan, Metal friendly.
You can use functions like `glm_lookat_lh_zo()` individually. By setting **CGLM_FORCE_DEPTH_ZERO_TO_ONE**
functions in cam.h for instance will use `_zo` versions.
3. **CGLM_FORCE_LEFT_HANDED**
Force **cglm** to use the left handed coordinate system by default, currently **cglm** uses right handed coordinate system as default,
you can change this behavior with this option.
**VERY VERY IMPORTANT:**
Be careful if you include **cglm** in multiple projects.
SSE and SSE2 Shuffle Option
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
**_mm_shuffle_ps** generates **shufps** instruction even if registers are same.

View File

@@ -32,7 +32,6 @@ Functions:
#. :c:func:`glm_quat`
#. :c:func:`glm_quatv`
#. :c:func:`glm_quat_copy`
#. :c:func:`glm_quat_from_vecs`
#. :c:func:`glm_quat_norm`
#. :c:func:`glm_quat_normalize`
#. :c:func:`glm_quat_normalize_to`
@@ -53,7 +52,6 @@ Functions:
#. :c:func:`glm_quat_mat3`
#. :c:func:`glm_quat_mat3t`
#. :c:func:`glm_quat_lerp`
#. :c:func:`glm_quat_nlerp`
#. :c:func:`glm_quat_slerp`
#. :c:func:`glm_quat_look`
#. :c:func:`glm_quat_for`
@@ -124,20 +122,6 @@ Functions documentation
| *[in]* **q** source quaternion
| *[out]* **dest** destination quaternion
.. c:function:: void glm_quat_from_vecs(vec3 a, vec3 b, versor dest)
| compute unit quaternion needed to rotate a into b
References:
* `Finding quaternion representing the rotation from one vector to another <https://stackoverflow.com/a/11741520/183120>`_
* `Quaternion from two vectors <http://lolengine.net/blog/2014/02/24/quaternion-from-two-vectors-final>`_
* `Angle between vectors <http://www.euclideanspace.com/maths/algebra/vectors/angleBetween/minorlogic.htm>`_
Parameters:
| *[in]* **a** unit vector
| *[in]* **b** unit vector
| *[in]* **dest** unit quaternion
.. c:function:: float glm_quat_norm(versor q)
| returns norm (magnitude) of quaternion
@@ -320,25 +304,6 @@ Functions documentation
| *[in]* **t** interpolant (amount) clamped between 0 and 1
| *[out]* **dest** result quaternion
.. c:function:: void glm_quat_nlerp(versor q, versor r, float t, versor dest)
| interpolates between two quaternions
| taking the shortest rotation path using
| normalized linear interpolation (NLERP)
| This is a cheaper alternative to slerp; most games use nlerp
| for animations as it visually makes little difference.
References:
* `Understanding Slerp, Then Not Using it <http://number-none.com/product/Understanding%20Slerp,%20Then%20Not%20Using%20It>`_
* `Lerp, Slerp and Nlerp <https://keithmaggio.wordpress.com/2011/02/15/math-magician-lerp-slerp-and-nlerp/>`_
Parameters:
| *[in]* **from** from
| *[in]* **to** to
| *[in]* **t** interpolant (amount) clamped between 0 and 1
| *[out]* **dest** result quaternion
.. c:function:: void glm_quat_slerp(versor q, versor r, float t, versor dest)
| interpolates between two quaternions

View File

@@ -474,9 +474,6 @@ Functions documentation
possible orthogonal/perpendicular vector
References:
* `On picking an orthogonal vector (and combing coconuts) <http://lolengine.net/blog/2013/09/21/picking-orthogonal-vector-combing-coconuts>`_
Parameters:
| *[in]* **v** vector
| *[out]* **dest** orthogonal/perpendicular vector

View File

@@ -26,10 +26,6 @@
# include "simd/avx/affine.h"
#endif
#ifdef CGLM_NEON_FP
# include "simd/neon/affine.h"
#endif
/*!
* @brief this is similar to glm_mat4_mul but specialized to affine transform
*
@@ -53,8 +49,6 @@ glm_mul(mat4 m1, mat4 m2, mat4 dest) {
glm_mul_avx(m1, m2, dest);
#elif defined( __SSE__ ) || defined( __SSE2__ )
glm_mul_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
glm_mul_neon(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
@@ -109,8 +103,6 @@ void
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mul_rot_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
glm_mul_rot_neon(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
@@ -158,8 +150,6 @@ void
glm_inv_tr(mat4 mat) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_inv_tr_sse2(mat);
#elif defined(CGLM_NEON_FP)
glm_inv_tr_neon(mat);
#else
CGLM_ALIGN_MAT mat3 r;
CGLM_ALIGN(8) vec3 t;

View File

@@ -50,22 +50,26 @@
CGLM_INLINE
void
glm_translate(mat4 m, vec3 v) {
#if defined(CGLM_SIMD)
glmm_128 m0, m1, m2, m3;
m0 = glmm_load(m[0]);
m1 = glmm_load(m[1]);
m2 = glmm_load(m[2]);
m3 = glmm_load(m[3]);
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(m[3],
glmm_fmadd(m0, glmm_set1(v[0]),
glmm_fmadd(m1, glmm_set1(v[1]),
glmm_fmadd(m2, glmm_set1(v[2]), m3))));
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_load(m[0]),
_mm_set1_ps(v[0])),
_mm_mul_ps(glmm_load(m[1]),
_mm_set1_ps(v[1]))),
_mm_add_ps(_mm_mul_ps(glmm_load(m[2]),
_mm_set1_ps(v[2])),
glmm_load(m[3]))))
;
#else
glm_vec4_muladds(m[0], v[0], m[3]);
glm_vec4_muladds(m[1], v[1], m[3]);
glm_vec4_muladds(m[2], v[2], m[3]);
vec4 v1, v2, v3;
glm_vec4_scale(m[0], v[0], v1);
glm_vec4_scale(m[1], v[1], v2);
glm_vec4_scale(m[2], v[2], v3);
glm_vec4_add(v1, m[3], m[3]);
glm_vec4_add(v2, m[3], m[3]);
glm_vec4_add(v3, m[3], m[3]);
#endif
}
@@ -95,8 +99,12 @@ glm_translate_to(mat4 m, vec3 v, mat4 dest) {
CGLM_INLINE
void
glm_translate_x(mat4 m, float x) {
#if defined(CGLM_SIMD)
glmm_store(m[3], glmm_fmadd(glmm_load(m[0]), glmm_set1(x), glmm_load(m[3])));
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(m[3],
_mm_add_ps(_mm_mul_ps(glmm_load(m[0]),
_mm_set1_ps(x)),
glmm_load(m[3])))
;
#else
vec4 v1;
glm_vec4_scale(m[0], x, v1);
@@ -113,8 +121,12 @@ glm_translate_x(mat4 m, float x) {
CGLM_INLINE
void
glm_translate_y(mat4 m, float y) {
#if defined(CGLM_SIMD)
glmm_store(m[3], glmm_fmadd(glmm_load(m[1]), glmm_set1(y), glmm_load(m[3])));
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(m[3],
_mm_add_ps(_mm_mul_ps(glmm_load(m[1]),
_mm_set1_ps(y)),
glmm_load(m[3])))
;
#else
vec4 v1;
glm_vec4_scale(m[1], y, v1);
@@ -131,8 +143,12 @@ glm_translate_y(mat4 m, float y) {
CGLM_INLINE
void
glm_translate_z(mat4 m, float z) {
#if defined(CGLM_SIMD)
glmm_store(m[3], glmm_fmadd(glmm_load(m[2]), glmm_set1(z), glmm_load(m[3])));
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(m[3],
_mm_add_ps(_mm_mul_ps(glmm_load(m[2]),
_mm_set1_ps(z)),
glmm_load(m[3])))
;
#else
vec4 v1;
glm_vec4_scale(m[2], z, v1);
@@ -409,7 +425,7 @@ bool
glm_uniscaled(mat4 m) {
CGLM_ALIGN(8) vec3 s;
glm_decompose_scalev(m, s);
return glm_vec3_eq_all(s);
return glm_vec3_eq_eps(s, s[0]);
}
/*!
@@ -439,7 +455,7 @@ glm_decompose_rs(mat4 m, mat4 r, vec3 s) {
glm_vec4_scale(r[1], 1.0f/s[1], r[1]);
glm_vec4_scale(r[2], 1.0f/s[2], r[2]);
/* Note from Apple Open Source (assume that the matrix is orthonormal):
/* Note from Apple Open Source (asume that the matrix is orthonormal):
check for a coordinate system flip. If the determinant
is -1, then negate the matrix and the scaling factors. */
glm_vec3_cross(m[0], m[1], v);

View File

@@ -228,8 +228,6 @@ glm_aabb_aabb(vec3 box[2], vec3 other[2]) {
* https://github.com/erich666/GraphicsGems/blob/master/gems/BoxSphere.c
* Solid Box - Solid Sphere test.
*
* Sphere Representation in cglm: [center.x, center.y, center.z, radii]
*
* @param[in] box solid bounding box
* @param[in] s solid sphere
*/
@@ -239,13 +237,13 @@ glm_aabb_sphere(vec3 box[2], vec4 s) {
float dmin;
int a, b, c;
a = (s[0] < box[0][0]) + (s[0] > box[1][0]);
b = (s[1] < box[0][1]) + (s[1] > box[1][1]);
c = (s[2] < box[0][2]) + (s[2] > box[1][2]);
a = s[0] >= box[0][0];
b = s[1] >= box[0][1];
c = s[2] >= box[0][2];
dmin = glm_pow2((s[0] - box[!(a - 1)][0]) * (a != 0))
+ glm_pow2((s[1] - box[!(b - 1)][1]) * (b != 0))
+ glm_pow2((s[2] - box[!(c - 1)][2]) * (c != 0));
dmin = glm_pow2(s[0] - box[a][0])
+ glm_pow2(s[1] - box[b][1])
+ glm_pow2(s[2] - box[c][2]);
return dmin <= glm_pow2(s[3]);
}

View File

@@ -15,17 +15,23 @@ extern "C" {
CGLM_EXPORT
void
glmc_frustum(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
glmc_frustum(float left,
float right,
float bottom,
float top,
float nearVal,
float farVal,
mat4 dest);
CGLM_EXPORT
void
glmc_ortho(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
glmc_ortho(float left,
float right,
float bottom,
float top,
float nearVal,
float farVal,
mat4 dest);
CGLM_EXPORT
void
@@ -49,7 +55,11 @@ glmc_ortho_default_s(float aspect, float size, mat4 dest);
CGLM_EXPORT
void
glmc_perspective(float fovy, float aspect, float nearZ, float farZ, mat4 dest);
glmc_perspective(float fovy,
float aspect,
float nearVal,
float farVal,
mat4 dest);
CGLM_EXPORT
void
@@ -78,8 +88,8 @@ glmc_look_anyup(vec3 eye, vec3 dir, mat4 dest);
CGLM_EXPORT
void
glmc_persp_decomp(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ,
float * __restrict nearVal,
float * __restrict farVal,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
@@ -104,16 +114,16 @@ glmc_persp_decomp_y(mat4 proj,
CGLM_EXPORT
void
glmc_persp_decomp_z(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ);
float * __restrict nearVal,
float * __restrict farVal);
CGLM_EXPORT
void
glmc_persp_decomp_far(mat4 proj, float * __restrict farZ);
glmc_persp_decomp_far(mat4 proj, float * __restrict farVal);
CGLM_EXPORT
void
glmc_persp_decomp_near(mat4 proj, float * __restrict nearZ);
glmc_persp_decomp_near(mat4 proj, float * __restrict nearVal);
CGLM_EXPORT
float

View File

@@ -1,46 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ortho_lh_no_h
#define cglmc_ortho_lh_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_ortho_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_lh_no(vec3 box[2], mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_p_lh_no(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_pz_lh_no(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_lh_no(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_s_lh_no(float aspect, float size, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ortho_lh_no_h */

View File

@@ -1,46 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ortho_lh_zo_h
#define cglmc_ortho_lh_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_ortho_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_lh_zo(vec3 box[2], mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_p_lh_zo(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_pz_lh_zo(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_lh_zo(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_s_lh_zo(float aspect, float size, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ortho_lh_zo_h */

View File

@@ -1,46 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ortho_rh_no_h
#define cglmc_ortho_rh_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_ortho_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_rh_no(vec3 box[2], mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_p_rh_no(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_pz_rh_no(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_rh_no(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_s_rh_no(float aspect, float size, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ortho_rh_no_h */

View File

@@ -1,46 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ortho_rh_zo_h
#define cglmc_ortho_rh_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_ortho_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_rh_zo(vec3 box[2], mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_p_rh_zo(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_pz_rh_zo(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_rh_zo(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_s_rh_zo(float aspect, float size, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ortho_rh_zo_h */

View File

@@ -1,87 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_persp_lh_no_h
#define cglmc_persp_lh_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_frustum_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_perspective_lh_no(float fovy,
float aspect,
float nearVal,
float farVal,
mat4 dest);
CGLM_EXPORT
void
glmc_persp_move_far_lh_no(mat4 proj, float deltaFar);
CGLM_EXPORT
void
glmc_persp_decomp_lh_no(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decompv_lh_no(mat4 proj, float dest[6]);
CGLM_EXPORT
void
glmc_persp_decomp_x_lh_no(mat4 proj,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decomp_y_lh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom);
CGLM_EXPORT
void
glmc_persp_decomp_z_lh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_far_lh_no(mat4 proj, float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_near_lh_no(mat4 proj, float * __restrict nearZ);
CGLM_EXPORT
void
glmc_persp_sizes_lh_no(mat4 proj, float fovy, vec4 dest);
CGLM_EXPORT
float
glmc_persp_fovy_lh_no(mat4 proj);
CGLM_EXPORT
float
glmc_persp_aspect_lh_no(mat4 proj);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_persp_lh_no_h */

View File

@@ -1,87 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_persp_lh_zo_h
#define cglmc_persp_lh_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_frustum_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_perspective_lh_zo(float fovy,
float aspect,
float nearVal,
float farVal,
mat4 dest);
CGLM_EXPORT
void
glmc_persp_move_far_lh_zo(mat4 proj, float deltaFar);
CGLM_EXPORT
void
glmc_persp_decomp_lh_zo(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decompv_lh_zo(mat4 proj, float dest[6]);
CGLM_EXPORT
void
glmc_persp_decomp_x_lh_zo(mat4 proj,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decomp_y_lh_zo(mat4 proj,
float * __restrict top,
float * __restrict bottom);
CGLM_EXPORT
void
glmc_persp_decomp_z_lh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_far_lh_zo(mat4 proj, float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_near_lh_zo(mat4 proj, float * __restrict nearZ);
CGLM_EXPORT
void
glmc_persp_sizes_lh_zo(mat4 proj, float fovy, vec4 dest);
CGLM_EXPORT
float
glmc_persp_fovy_lh_zo(mat4 proj);
CGLM_EXPORT
float
glmc_persp_aspect_lh_zo(mat4 proj);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_persp_lh_zo_h */

View File

@@ -1,87 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_persp_rh_no_h
#define cglmc_persp_rh_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_frustum_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_perspective_rh_no(float fovy,
float aspect,
float nearVal,
float farVal,
mat4 dest);
CGLM_EXPORT
void
glmc_persp_move_far_rh_no(mat4 proj, float deltaFar);
CGLM_EXPORT
void
glmc_persp_decomp_rh_no(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decompv_rh_no(mat4 proj, float dest[6]);
CGLM_EXPORT
void
glmc_persp_decomp_x_rh_no(mat4 proj,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decomp_y_rh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom);
CGLM_EXPORT
void
glmc_persp_decomp_z_rh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_far_rh_no(mat4 proj, float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_near_rh_no(mat4 proj, float * __restrict nearZ);
CGLM_EXPORT
void
glmc_persp_sizes_rh_no(mat4 proj, float fovy, vec4 dest);
CGLM_EXPORT
float
glmc_persp_fovy_rh_no(mat4 proj);
CGLM_EXPORT
float
glmc_persp_aspect_rh_no(mat4 proj);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_persp_rh_no_h */

View File

@@ -1,87 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_persp_rh_zo_h
#define cglmc_persp_rh_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_frustum_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest);
CGLM_EXPORT
void
glmc_perspective_rh_zo(float fovy,
float aspect,
float nearVal,
float farVal,
mat4 dest);
CGLM_EXPORT
void
glmc_persp_move_far_rh_zo(mat4 proj, float deltaFar);
CGLM_EXPORT
void
glmc_persp_decomp_rh_zo(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decompv_rh_zo(mat4 proj, float dest[6]);
CGLM_EXPORT
void
glmc_persp_decomp_x_rh_zo(mat4 proj,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decomp_y_rh_zo(mat4 proj,
float * __restrict top,
float * __restrict bottom);
CGLM_EXPORT
void
glmc_persp_decomp_z_rh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_far_rh_zo(mat4 proj, float * __restrict farZ);
CGLM_EXPORT
void
glmc_persp_decomp_near_rh_zo(mat4 proj, float * __restrict nearZ);
CGLM_EXPORT
void
glmc_persp_sizes_rh_zo(mat4 proj, float fovy, vec4 dest);
CGLM_EXPORT
float
glmc_persp_fovy_rh_zo(mat4 proj);
CGLM_EXPORT
float
glmc_persp_aspect_rh_zo(mat4 proj);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_persp_rh_zo_h */

View File

@@ -1,27 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_project_no_h
#define cglmc_project_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_unprojecti_no(vec3 pos, mat4 invMat, vec4 vp, vec3 dest);
CGLM_EXPORT
void
glmc_project_no(vec3 pos, mat4 m, vec4 vp, vec3 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_project_no_h */

View File

@@ -1,27 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_project_zo_h
#define cglmc_project_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_unprojecti_zo(vec3 pos, mat4 invMat, vec4 vp, vec3 dest);
CGLM_EXPORT
void
glmc_project_zo(vec3 pos, mat4 m, vec4 vp, vec3 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_project_zo_h */

View File

@@ -1,31 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_view_lh_no_h
#define cglmc_view_lh_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_lookat_lh_no(vec3 eye, vec3 center, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_lh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_anyup_lh_no(vec3 eye, vec3 dir, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_view_lh_no_h */

View File

@@ -1,31 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_view_lh_zo_h
#define cglmc_view_lh_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_lookat_lh_zo(vec3 eye, vec3 center, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_lh_zo(vec3 eye, vec3 dir, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_anyup_lh_zo(vec3 eye, vec3 dir, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_view_lh_zo_h */

View File

@@ -1,31 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_view_rh_no_h
#define cglmc_view_rh_no_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_lookat_rh_no(vec3 eye, vec3 center, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_rh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_anyup_rh_no(vec3 eye, vec3 dir, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_view_rh_no_h */

View File

@@ -1,31 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_view_rh_zo_h
#define cglmc_view_rh_zo_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../../cglm.h"
CGLM_EXPORT
void
glmc_lookat_rh_zo(vec3 eye, vec3 center, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_rh_zo(vec3 eye, vec3 dir, vec3 up, mat4 dest);
CGLM_EXPORT
void
glmc_look_anyup_rh_zo(vec3 eye, vec3 dir, mat4 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_view_rh_zo_h */

View File

@@ -25,10 +25,6 @@ CGLM_EXPORT
void
glmc_project(vec3 pos, mat4 m, vec4 vp, vec3 dest);
CGLM_EXPORT
void
glmc_pickmatrix(vec2 center, vec2 size, vec4 vp, mat4 dest);
#ifdef __cplusplus
}
#endif

View File

@@ -37,10 +37,6 @@ CGLM_EXPORT
void
glmc_quat_copy(versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_from_vecs(vec3 a, vec3 b, versor dest);
CGLM_EXPORT
float
glmc_quat_norm(versor q);
@@ -120,15 +116,11 @@ glmc_quat_mat3t(versor q, mat3 dest);
CGLM_EXPORT
void
glmc_quat_lerp(versor from, versor to, float t, versor dest);
CGLM_EXPORT
void
glmc_quat_lerpc(versor from, versor to, float t, versor dest);
CGLM_EXPORT
void
glmc_quat_nlerp(versor q, versor r, float t, versor dest);
CGLM_EXPORT
void
glmc_quat_slerp(versor q, versor r, float t, versor dest);

View File

@@ -149,18 +149,6 @@ CGLM_EXPORT
void
glmc_vec2_lerp(vec2 from, vec2 to, float t, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_complex_mul(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_complex_div(vec2 a, vec2 b, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_complex_conjugate(vec2 a, vec2 dest);
#ifdef __cplusplus
}
#endif

View File

@@ -99,7 +99,7 @@ glmc_vec4_scale(vec4 v, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_scale_as(vec4 v, float s, vec4 dest);
glmc_vec4_scale_as(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void

View File

@@ -7,13 +7,13 @@
/*
Functions:
CGLM_INLINE void glm_frustum(float left, float right,
float bottom, float top,
float nearZ, float farZ,
CGLM_INLINE void glm_frustum(float left, float right,
float bottom, float top,
float nearVal, float farVal,
mat4 dest)
CGLM_INLINE void glm_ortho(float left, float right,
float bottom, float top,
float nearZ, float farZ,
CGLM_INLINE void glm_ortho(float left, float right,
float bottom, float top,
float nearVal, float farVal,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb(vec3 box[2], mat4 dest)
CGLM_INLINE void glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest)
@@ -22,8 +22,8 @@
CGLM_INLINE void glm_ortho_default_s(float aspect, float size, mat4 dest)
CGLM_INLINE void glm_perspective(float fovy,
float aspect,
float nearZ,
float farZ,
float nearVal,
float farVal,
mat4 dest)
CGLM_INLINE void glm_perspective_default(float aspect, mat4 dest)
CGLM_INLINE void glm_perspective_resize(float aspect, mat4 proj)
@@ -31,61 +31,26 @@
CGLM_INLINE void glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup(vec3 eye, vec3 dir, mat4 dest)
CGLM_INLINE void glm_persp_decomp(mat4 proj,
float *nearZ, float *farZ,
float *top, float *bottom,
float *left, float *right)
float *nearVal, float *farVal,
float *top, float *bottom,
float *left, float *right)
CGLM_INLINE void glm_persp_decompv(mat4 proj, float dest[6])
CGLM_INLINE void glm_persp_decomp_x(mat4 proj, float *left, float *right)
CGLM_INLINE void glm_persp_decomp_y(mat4 proj, float *top, float *bottom)
CGLM_INLINE void glm_persp_decomp_z(mat4 proj, float *nearv, float *farv)
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float *farZ)
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *nearZ)
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float *farVal)
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *nearVal)
CGLM_INLINE float glm_persp_fovy(mat4 proj)
CGLM_INLINE float glm_persp_aspect(mat4 proj)
CGLM_INLINE void glm_persp_sizes(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_cam_h
#define cglm_cam_h
#ifndef cglm_vcam_h
#define cglm_vcam_h
#include "common.h"
#include "plane.h"
#include "clipspace/persp.h"
#ifndef CGLM_CLIPSPACE_INCLUDE_ALL
# if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
# include "clipspace/ortho_lh_zo.h"
# include "clipspace/persp_lh_zo.h"
# include "clipspace/view_lh_zo.h"
# elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
# include "clipspace/ortho_lh_no.h"
# include "clipspace/persp_lh_no.h"
# include "clipspace/view_lh_no.h"
# elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
# include "clipspace/ortho_rh_zo.h"
# include "clipspace/persp_rh_zo.h"
# include "clipspace/view_rh_zo.h"
# elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
# include "clipspace/ortho_rh_no.h"
# include "clipspace/persp_rh_no.h"
# include "clipspace/view_rh_no.h"
# endif
#else
# include "clipspace/ortho_lh_zo.h"
# include "clipspace/persp_lh_zo.h"
# include "clipspace/ortho_lh_no.h"
# include "clipspace/persp_lh_no.h"
# include "clipspace/ortho_rh_zo.h"
# include "clipspace/persp_rh_zo.h"
# include "clipspace/ortho_rh_no.h"
# include "clipspace/persp_rh_no.h"
# include "clipspace/view_lh_zo.h"
# include "clipspace/view_lh_no.h"
# include "clipspace/view_rh_zo.h"
# include "clipspace/view_rh_no.h"
#endif
/*!
* @brief set up perspective peprojection matrix
*
@@ -93,25 +58,32 @@
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[in] nearVal near clipping plane
* @param[in] farVal far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_frustum(float left, float right,
float bottom, float top,
float nearZ, float farZ,
float nearVal, float farVal,
mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_frustum_lh_zo(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_frustum_lh_no(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_frustum_rh_zo(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_frustum_rh_no(left, right, bottom, top, nearZ, farZ, dest);
#endif
float rl, tb, fn, nv;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farVal - nearVal);
nv = 2.0f * nearVal;
dest[0][0] = nv * rl;
dest[1][1] = nv * tb;
dest[2][0] = (right + left) * rl;
dest[2][1] = (top + bottom) * tb;
dest[2][2] = (farVal + nearVal) * fn;
dest[2][3] =-1.0f;
dest[3][2] = farVal * nv * fn;
}
/*!
@@ -121,25 +93,31 @@ glm_frustum(float left, float right,
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[in] nearVal near clipping plane
* @param[in] farVal far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho(float left, float right,
float bottom, float top,
float nearZ, float farZ,
float nearVal, float farVal,
mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_lh_zo(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_lh_no(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_rh_zo(left, right, bottom, top, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_rh_no(left, right, bottom, top, nearZ, farZ, dest);
#endif
float rl, tb, fn;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farVal - nearVal);
dest[0][0] = 2.0f * rl;
dest[1][1] = 2.0f * tb;
dest[2][2] = 2.0f * fn;
dest[3][0] =-(right + left) * rl;
dest[3][1] =-(top + bottom) * tb;
dest[3][2] = (farVal + nearVal) * fn;
dest[3][3] = 1.0f;
}
/*!
@@ -153,15 +131,10 @@ glm_ortho(float left, float right,
CGLM_INLINE
void
glm_ortho_aabb(vec3 box[2], mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_aabb_lh_zo(box, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_aabb_lh_no(box, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_aabb_rh_zo(box, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_aabb_rh_no(box, dest);
#endif
glm_ortho(box[0][0], box[1][0],
box[0][1], box[1][1],
-box[1][2], -box[0][2],
dest);
}
/*!
@@ -176,15 +149,10 @@ glm_ortho_aabb(vec3 box[2], mat4 dest) {
CGLM_INLINE
void
glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_aabb_p_lh_zo(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_aabb_p_lh_no(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_aabb_p_rh_zo(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_aabb_p_rh_no(box, padding, dest);
#endif
glm_ortho(box[0][0] - padding, box[1][0] + padding,
box[0][1] - padding, box[1][1] + padding,
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
@@ -199,15 +167,10 @@ glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest) {
CGLM_INLINE
void
glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_aabb_pz_lh_zo(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_aabb_pz_lh_no(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_aabb_pz_rh_zo(box, padding, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_aabb_pz_rh_no(box, padding, dest);
#endif
glm_ortho(box[0][0], box[1][0],
box[0][1], box[1][1],
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
@@ -219,15 +182,14 @@ glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest) {
CGLM_INLINE
void
glm_ortho_default(float aspect, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_default_lh_zo(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_default_lh_no(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_default_rh_zo(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_default_rh_no(aspect, dest);
#endif
if (aspect >= 1.0f) {
glm_ortho(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
return;
}
aspect = 1.0f / aspect;
glm_ortho(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
}
/*!
@@ -240,15 +202,24 @@ glm_ortho_default(float aspect, mat4 dest) {
CGLM_INLINE
void
glm_ortho_default_s(float aspect, float size, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_ortho_default_s_lh_zo(aspect, size, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_ortho_default_s_lh_no(aspect, size, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_ortho_default_s_rh_zo(aspect, size, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_ortho_default_s_rh_no(aspect, size, dest);
#endif
if (aspect >= 1.0f) {
glm_ortho(-size * aspect,
size * aspect,
-size,
size,
-size - 100.0f,
size + 100.0f,
dest);
return;
}
glm_ortho(-size,
size,
-size / aspect,
size / aspect,
-size - 100.0f,
size + 100.0f,
dest);
}
/*!
@@ -256,22 +227,29 @@ glm_ortho_default_s(float aspect, float size, mat4 dest) {
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[in] nearVal near clipping plane
* @param[in] farVal far clipping planes
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective(float fovy, float aspect, float nearZ, float farZ, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_perspective_lh_zo(fovy, aspect, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_perspective_lh_no(fovy, aspect, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_perspective_rh_zo(fovy, aspect, nearZ, farZ, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_perspective_rh_no(fovy, aspect, nearZ, farZ, dest);
#endif
glm_perspective(float fovy,
float aspect,
float nearVal,
float farVal,
mat4 dest) {
float f, fn;
glm_mat4_zero(dest);
f = 1.0f / tanf(fovy * 0.5f);
fn = 1.0f / (nearVal - farVal);
dest[0][0] = f / aspect;
dest[1][1] = f;
dest[2][2] = (nearVal + farVal) * fn;
dest[2][3] =-1.0f;
dest[3][2] = 2.0f * nearVal * farVal * fn;
}
/*!
@@ -285,15 +263,17 @@ glm_perspective(float fovy, float aspect, float nearZ, float farZ, mat4 dest) {
CGLM_INLINE
void
glm_persp_move_far(mat4 proj, float deltaFar) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_move_far_lh_zo(proj, deltaFar);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_move_far_lh_no(proj, deltaFar);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_move_far_rh_zo(proj, deltaFar);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_move_far_rh_no(proj, deltaFar);
#endif
float fn, farVal, nearVal, p22, p32;
p22 = proj[2][2];
p32 = proj[3][2];
nearVal = p32 / (p22 - 1.0f);
farVal = p32 / (p22 + 1.0f) + deltaFar;
fn = 1.0f / (nearVal - farVal);
proj[2][2] = (nearVal + farVal) * fn;
proj[3][2] = 2.0f * nearVal * farVal * fn;
}
/*!
@@ -306,15 +286,7 @@ glm_persp_move_far(mat4 proj, float deltaFar) {
CGLM_INLINE
void
glm_perspective_default(float aspect, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_perspective_default_lh_zo(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_perspective_default_lh_no(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_perspective_default_rh_zo(aspect, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_perspective_default_rh_no(aspect, dest);
#endif
glm_perspective(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
}
/*!
@@ -348,11 +320,28 @@ glm_perspective_resize(float aspect, mat4 proj) {
CGLM_INLINE
void
glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_LH_BIT
glm_lookat_lh(eye, center, up, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_RH_BIT
glm_lookat_rh(eye, center, up, dest);
#endif
CGLM_ALIGN(8) vec3 f, u, s;
glm_vec3_sub(center, eye, f);
glm_vec3_normalize(f);
glm_vec3_crossn(f, up, s);
glm_vec3_cross(s, f, u);
dest[0][0] = s[0];
dest[0][1] = u[0];
dest[0][2] =-f[0];
dest[1][0] = s[1];
dest[1][1] = u[1];
dest[1][2] =-f[1];
dest[2][0] = s[2];
dest[2][1] = u[2];
dest[2][2] =-f[2];
dest[3][0] =-glm_vec3_dot(s, eye);
dest[3][1] =-glm_vec3_dot(u, eye);
dest[3][2] = glm_vec3_dot(f, eye);
dest[0][3] = dest[1][3] = dest[2][3] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
@@ -372,11 +361,9 @@ glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest) {
CGLM_INLINE
void
glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_LH_BIT
glm_look_lh(eye, dir, up, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_RH_BIT
glm_look_rh(eye, dir, up, dest);
#endif
CGLM_ALIGN(8) vec3 target;
glm_vec3_add(eye, dir, target);
glm_lookat(eye, target, up, dest);
}
/*!
@@ -392,19 +379,17 @@ glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
CGLM_INLINE
void
glm_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_LH_BIT
glm_look_anyup_lh(eye, dir, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_RH_BIT
glm_look_anyup_rh(eye, dir, dest);
#endif
CGLM_ALIGN(8) vec3 up;
glm_vec3_ortho(dir, up);
glm_look(eye, dir, up, dest);
}
/*!
* @brief decomposes frustum values of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] nearVal near
* @param[out] farVal far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
@@ -413,18 +398,31 @@ glm_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
CGLM_INLINE
void
glm_persp_decomp(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_lh_zo(proj, nearZ, farZ, top, bottom, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_lh_no(proj, nearZ, farZ, top, bottom, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_rh_zo(proj, nearZ, farZ, top, bottom, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_rh_no(proj, nearZ, farZ, top, bottom, left, right);
#endif
float * __restrict nearVal, float * __restrict farVal,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
float m00, m11, m20, m21, m22, m32, n, f;
float n_m11, n_m00;
m00 = proj[0][0];
m11 = proj[1][1];
m20 = proj[2][0];
m21 = proj[2][1];
m22 = proj[2][2];
m32 = proj[3][2];
n = m32 / (m22 - 1.0f);
f = m32 / (m22 + 1.0f);
n_m11 = n / m11;
n_m00 = n / m00;
*nearVal = n;
*farVal = f;
*bottom = n_m11 * (m21 - 1.0f);
*top = n_m11 * (m21 + 1.0f);
*left = n_m00 * (m20 - 1.0f);
*right = n_m00 * (m20 + 1.0f);
}
/*!
@@ -437,15 +435,8 @@ glm_persp_decomp(mat4 proj,
CGLM_INLINE
void
glm_persp_decompv(mat4 proj, float dest[6]) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decompv_lh_zo(proj, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decompv_lh_no(proj, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decompv_rh_zo(proj, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decompv_rh_no(proj, dest);
#endif
glm_persp_decomp(proj, &dest[0], &dest[1], &dest[2],
&dest[3], &dest[4], &dest[5]);
}
/*!
@@ -461,15 +452,14 @@ void
glm_persp_decomp_x(mat4 proj,
float * __restrict left,
float * __restrict right) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_x_lh_zo(proj, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_x_lh_no(proj, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_x_rh_zo(proj, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_x_rh_no(proj, left, right);
#endif
float nearVal, m20, m00;
m00 = proj[0][0];
m20 = proj[2][0];
nearVal = proj[3][2] / (proj[3][3] - 1.0f);
*left = nearVal * (m20 - 1.0f) / m00;
*right = nearVal * (m20 + 1.0f) / m00;
}
/*!
@@ -485,15 +475,14 @@ void
glm_persp_decomp_y(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_y_lh_zo(proj, top, bottom);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_y_lh_no(proj, top, bottom);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_y_rh_zo(proj, top, bottom);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_y_rh_no(proj, top, bottom);
#endif
float nearVal, m21, m11;
m21 = proj[2][1];
m11 = proj[1][1];
nearVal = proj[3][2] / (proj[3][3] - 1.0f);
*bottom = nearVal * (m21 - 1) / m11;
*top = nearVal * (m21 + 1) / m11;
}
/*!
@@ -501,61 +490,70 @@ glm_persp_decomp_y(mat4 proj,
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] nearVal near
* @param[out] farVal far
*/
CGLM_INLINE
void
glm_persp_decomp_z(mat4 proj, float * __restrict nearZ, float * __restrict farZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_z_lh_zo(proj, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_z_lh_no(proj, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_z_rh_zo(proj, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_z_rh_no(proj, nearZ, farZ);
#endif
glm_persp_decomp_z(mat4 proj,
float * __restrict nearVal,
float * __restrict farVal) {
float m32, m22;
m32 = proj[3][2];
m22 = proj[2][2];
*nearVal = m32 / (m22 - 1.0f);
*farVal = m32 / (m22 + 1.0f);
}
/*!
* @brief decomposes far value of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
* @param[out] farVal far
*/
CGLM_INLINE
void
glm_persp_decomp_far(mat4 proj, float * __restrict farZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_far_lh_zo(proj, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_far_lh_no(proj, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_far_rh_zo(proj, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_far_rh_no(proj, farZ);
#endif
glm_persp_decomp_far(mat4 proj, float * __restrict farVal) {
*farVal = proj[3][2] / (proj[2][2] + 1.0f);
}
/*!
* @brief decomposes near value of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[in] proj perspective projection matrix
* @param[out] nearVal near
*/
CGLM_INLINE
void
glm_persp_decomp_near(mat4 proj, float * __restrict nearZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_decomp_near_lh_zo(proj, nearZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_decomp_near_lh_no(proj, nearZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_decomp_near_rh_zo(proj, nearZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_decomp_near_rh_no(proj, nearZ);
#endif
glm_persp_decomp_near(mat4 proj, float * __restrict nearVal) {
*nearVal = proj[3][2] / (proj[2][2] - 1.0f);
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_fovy(mat4 proj) {
return 2.0f * atanf(1.0f / proj[1][1]);
}
/*!
* @brief returns aspect ratio of perspective projection
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_aspect(mat4 proj) {
return proj[1][1] / proj[0][0];
}
/*!
@@ -568,15 +566,17 @@ glm_persp_decomp_near(mat4 proj, float * __restrict nearZ) {
CGLM_INLINE
void
glm_persp_sizes(mat4 proj, float fovy, vec4 dest) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glm_persp_sizes_lh_zo(proj, fovy, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glm_persp_sizes_lh_no(proj, fovy, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glm_persp_sizes_rh_zo(proj, fovy, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glm_persp_sizes_rh_no(proj, fovy, dest);
#endif
float t, a, nearVal, farVal;
t = 2.0f * tanf(fovy * 0.5f);
a = glm_persp_aspect(proj);
glm_persp_decomp_z(proj, &nearVal, &farVal);
dest[1] = t * nearVal;
dest[3] = t * farVal;
dest[0] = a * dest[1];
dest[2] = a * dest[3];
}
#endif /* cglm_cam_h */
#endif /* cglm_vcam_h */

View File

@@ -1,183 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_ortho_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_lh_no(vec3 box[2], mat4 dest)
CGLM_INLINE void glm_ortho_aabb_p_lh_no(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_pz_lh_no(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_default_lh_no(float aspect,
mat4 dest)
CGLM_INLINE void glm_ortho_default_s_lh_no(float aspect,
float size,
mat4 dest)
*/
#ifndef cglm_ortho_lh_no_h
#define cglm_ortho_lh_no_h
#include "../common.h"
#include "../plane.h"
#include "../mat4.h"
/*!
* @brief set up orthographic projection matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
dest[0][0] = 2.0f * rl;
dest[1][1] = 2.0f * tb;
dest[2][2] =-2.0f * fn;
dest[3][0] =-(right + left) * rl;
dest[3][1] =-(top + bottom) * tb;
dest[3][2] = (farZ + nearZ) * fn;
dest[3][3] = 1.0f;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_lh_no(vec3 box[2], mat4 dest) {
glm_ortho_lh_no(box[0][0], box[1][0],
box[0][1], box[1][1],
-box[1][2], -box[0][2],
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_p_lh_no(vec3 box[2], float padding, mat4 dest) {
glm_ortho_lh_no(box[0][0] - padding, box[1][0] + padding,
box[0][1] - padding, box[1][1] + padding,
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_pz_lh_no(vec3 box[2], float padding, mat4 dest) {
glm_ortho_lh_no(box[0][0], box[1][0],
box[0][1], box[1][1],
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up unit orthographic projection matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_lh_no(float aspect, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_lh_no(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
return;
}
aspect = 1.0f / aspect;
glm_ortho_lh_no(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_s_lh_no(float aspect, float size, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_lh_no(-size * aspect,
size * aspect,
-size,
size,
-size - 100.0f,
size + 100.0f,
dest);
return;
}
glm_ortho_lh_no(-size,
size,
-size / aspect,
size / aspect,
-size - 100.0f,
size + 100.0f,
dest);
}
#endif /*cglm_ortho_lh_no_h*/

View File

@@ -1,177 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_ortho_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_lh_zo(vec3 box[2], mat4 dest)
CGLM_INLINE void glm_ortho_aabb_p_lh_zo(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_pz_lh_zo(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_default_lh_zo(float aspect,
mat4 dest)
CGLM_INLINE void glm_ortho_default_s_lh_zo(float aspect,
float size,
mat4 dest)
*/
#ifndef cglm_ortho_lh_zo_h
#define cglm_ortho_lh_zo_h
#include "../common.h"
#include "../plane.h"
#include "../mat4.h"
/*!
* @brief set up orthographic projection matrix with a left-hand coordinate
* system and a clip-space of [0, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
dest[0][0] = 2.0f * rl;
dest[1][1] = 2.0f * tb;
dest[2][2] =-fn;
dest[3][0] =-(right + left) * rl;
dest[3][1] =-(top + bottom) * tb;
dest[3][2] = nearZ * fn;
dest[3][3] = 1.0f;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_lh_zo(vec3 box[2], mat4 dest) {
glm_ortho_lh_zo(box[0][0], box[1][0],
box[0][1], box[1][1],
-box[1][2], -box[0][2],
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_p_lh_zo(vec3 box[2], float padding, mat4 dest) {
glm_ortho_lh_zo(box[0][0] - padding, box[1][0] + padding,
box[0][1] - padding, box[1][1] + padding,
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_pz_lh_zo(vec3 box[2], float padding, mat4 dest) {
glm_ortho_lh_zo(box[0][0], box[1][0],
box[0][1], box[1][1],
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up unit orthographic projection matrix
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_lh_zo(float aspect, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_lh_zo(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
return;
}
aspect = 1.0f / aspect;
glm_ortho_lh_zo(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_s_lh_zo(float aspect, float size, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_lh_zo(-size * aspect,
size * aspect,
-size,
size,
-size - 100.0f,
size + 100.0f,
dest);
return;
}
glm_ortho_lh_zo(-size,
size,
-size / aspect,
size / aspect,
-size - 100.0f,
size + 100.0f,
dest);
}
#endif /*cglm_ortho_lh_zo_h*/

View File

@@ -1,183 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_ortho_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_rh_no(vec3 box[2], mat4 dest)
CGLM_INLINE void glm_ortho_aabb_p_rh_no(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_pz_rh_no(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_default_rh_no(float aspect,
mat4 dest)
CGLM_INLINE void glm_ortho_default_s_rh_no(float aspect,
float size,
mat4 dest)
*/
#ifndef cglm_ortho_rh_no_h
#define cglm_ortho_rh_no_h
#include "../common.h"
#include "../plane.h"
#include "../mat4.h"
/*!
* @brief set up orthographic projection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
dest[0][0] = 2.0f * rl;
dest[1][1] = 2.0f * tb;
dest[2][2] = 2.0f * fn;
dest[3][0] =-(right + left) * rl;
dest[3][1] =-(top + bottom) * tb;
dest[3][2] = (farZ + nearZ) * fn;
dest[3][3] = 1.0f;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_rh_no(vec3 box[2], mat4 dest) {
glm_ortho_rh_no(box[0][0], box[1][0],
box[0][1], box[1][1],
-box[1][2], -box[0][2],
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_p_rh_no(vec3 box[2], float padding, mat4 dest) {
glm_ortho_rh_no(box[0][0] - padding, box[1][0] + padding,
box[0][1] - padding, box[1][1] + padding,
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_pz_rh_no(vec3 box[2], float padding, mat4 dest) {
glm_ortho_rh_no(box[0][0], box[1][0],
box[0][1], box[1][1],
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up unit orthographic projection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_rh_no(float aspect, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_rh_no(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
return;
}
aspect = 1.0f / aspect;
glm_ortho_rh_no(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_s_rh_no(float aspect, float size, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_rh_no(-size * aspect,
size * aspect,
-size,
size,
-size - 100.0f,
size + 100.0f,
dest);
return;
}
glm_ortho_rh_no(-size,
size,
-size / aspect,
size / aspect,
-size - 100.0f,
size + 100.0f,
dest);
}
#endif /*cglm_ortho_rh_no_h*/

View File

@@ -1,181 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_ortho_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_rh_zo(vec3 box[2], mat4 dest)
CGLM_INLINE void glm_ortho_aabb_p_rh_zo(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb_pz_rh_zo(vec3 box[2],
float padding,
mat4 dest)
CGLM_INLINE void glm_ortho_default_rh_zo(float aspect,
mat4 dest)
CGLM_INLINE void glm_ortho_default_s_rh_zo(float aspect,
float size,
mat4 dest)
*/
#ifndef cglm_ortho_rh_zo_h
#define cglm_ortho_rh_zo_h
#include "../common.h"
#include "../plane.h"
#include "../mat4.h"
/*!
* @brief set up orthographic projection matrix with a right-hand coordinate
* system and a clip-space of [0, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
dest[0][0] = 2.0f * rl;
dest[1][1] = 2.0f * tb;
dest[2][2] = fn;
dest[3][0] =-(right + left) * rl;
dest[3][1] =-(top + bottom) * tb;
dest[3][2] = nearZ * fn;
dest[3][3] = 1.0f;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a clip-space with depth
* values from zero to one.
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_rh_zo(vec3 box[2], mat4 dest) {
glm_ortho_rh_zo(box[0][0], box[1][0],
box[0][1], box[1][1],
-box[1][2], -box[0][2],
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a clip-space with depth
* values from zero to one.
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_p_rh_zo(vec3 box[2], float padding, mat4 dest) {
glm_ortho_rh_zo(box[0][0] - padding, box[1][0] + padding,
box[0][1] - padding, box[1][1] + padding,
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a clip-space with depth
* values from zero to one.
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_aabb_pz_rh_zo(vec3 box[2], float padding, mat4 dest) {
glm_ortho_rh_zo(box[0][0], box[1][0],
box[0][1], box[1][1],
-(box[1][2] + padding), -(box[0][2] - padding),
dest);
}
/*!
* @brief set up unit orthographic projection matrix with a right-hand
* coordinate system and a clip-space of [0, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_rh_zo(float aspect, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_rh_zo(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
return;
}
aspect = 1.0f / aspect;
glm_ortho_rh_zo(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a right-hand coordinate system and a clip-space with depth
* values from zero to one.
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_ortho_default_s_rh_zo(float aspect, float size, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho_rh_zo(-size * aspect,
size * aspect,
-size,
size,
-size - 100.0f,
size + 100.0f,
dest);
return;
}
glm_ortho_rh_zo(-size,
size,
-size / aspect,
size / aspect,
-size - 100.0f,
size + 100.0f,
dest);
}
#endif /*cglm_ortho_rh_zo_h*/

View File

@@ -1,48 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float *farZ)
CGLM_INLINE float glm_persp_fovy(mat4 proj)
CGLM_INLINE float glm_persp_aspect(mat4 proj)
CGLM_INLINE void glm_persp_sizes(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_persp_h
#define cglm_persp_h
#include "../common.h"
#include "../plane.h"
#include "../mat4.h"
/*!
* @brief returns field of view angle along the Y-axis (in radians)
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_fovy(mat4 proj) {
return 2.0f * atanf(1.0f / proj[1][1]);
}
/*!
* @brief returns aspect ratio of perspective projection
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_aspect(mat4 proj) {
return proj[1][1] / proj[0][0];
}
#endif /* cglm_persp_h */

View File

@@ -1,395 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_frustum_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_lh_no(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_default_lh_no(float aspect, mat4 dest)
CGLM_INLINE void glm_perspective_resize_lh_no(float aspect, mat4 proj)
CGLM_INLINE void glm_persp_move_far_lh_no(mat4 proj,
float deltaFar)
CGLM_INLINE void glm_persp_decomp_lh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decompv_lh_no(mat4 proj,
float dest[6])
CGLM_INLINE void glm_persp_decomp_x_lh_no(mat4 proj,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decomp_y_lh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom)
CGLM_INLINE void glm_persp_decomp_z_lh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_far_lh_no(mat4 proj, float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_near_lh_no(mat4 proj, float * __restrict nearZ)
CGLM_INLINE void glm_persp_sizes_lh_no(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_persp_lh_no_h
#define cglm_persp_lh_no_h
#include "../common.h"
#include "persp.h"
/*!
* @brief set up perspective peprojection matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_frustum_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn, nv;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
nv = 2.0f * nearZ;
dest[0][0] = nv * rl;
dest[1][1] = nv * tb;
dest[2][0] = (right + left) * rl;
dest[2][1] = (top + bottom) * tb;
dest[2][2] =-(farZ + nearZ) * fn;
dest[2][3] = 1.0f;
dest[3][2] = farZ * nv * fn;
}
/*!
* @brief set up perspective projection matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_lh_no(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest) {
float f, fn;
glm_mat4_zero(dest);
f = 1.0f / tanf(fovy * 0.5f);
fn = 1.0f / (nearZ - farZ);
dest[0][0] = f / aspect;
dest[1][1] = f;
dest[2][2] =-(nearZ + farZ) * fn;
dest[2][3] = 1.0f;
dest[3][2] = 2.0f * nearZ * farZ * fn;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_default_lh_no(float aspect, mat4 dest) {
glm_perspective_lh_no(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* resized with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in, out] proj perspective projection matrix
*/
CGLM_INLINE
void
glm_perspective_resize_lh_no(float aspect, mat4 proj) {
if (proj[0][0] == 0.0f)
return;
proj[0][0] = proj[1][1] / aspect;
}
/*!
* @brief extend perspective projection matrix's far distance
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
void
glm_persp_move_far_lh_no(mat4 proj, float deltaFar) {
float fn, farZ, nearZ, p22, p32;
p22 = -proj[2][2];
p32 = proj[3][2];
nearZ = p32 / (p22 - 1.0f);
farZ = p32 / (p22 + 1.0f) + deltaFar;
fn = 1.0f / (nearZ - farZ);
proj[2][2] = -(farZ + nearZ) * fn;
proj[3][2] = 2.0f * nearZ * farZ * fn;
}
/*!
* @brief decomposes frustum values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_lh_no(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
float m00, m11, m20, m21, m22, m32, n, f;
float n_m11, n_m00;
m00 = proj[0][0];
m11 = proj[1][1];
m20 = proj[2][0];
m21 = proj[2][1];
m22 =-proj[2][2];
m32 = proj[3][2];
n = m32 / (m22 - 1.0f);
f = m32 / (m22 + 1.0f);
n_m11 = n / m11;
n_m00 = n / m00;
*nearZ = n;
*farZ = f;
*bottom = n_m11 * (m21 - 1.0f);
*top = n_m11 * (m21 + 1.0f);
*left = n_m00 * (m20 - 1.0f);
*right = n_m00 * (m20 + 1.0f);
}
/*!
* @brief decomposes frustum values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
* this makes easy to get all values at once
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glm_persp_decompv_lh_no(mat4 proj, float dest[6]) {
glm_persp_decomp_lh_no(proj, &dest[0], &dest[1], &dest[2],
&dest[3], &dest[4], &dest[5]);
}
/*!
* @brief decomposes left and right values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_x_lh_no(mat4 proj,
float * __restrict left,
float * __restrict right) {
float nearZ, m20, m00, m22;
m00 = proj[0][0];
m20 = proj[2][0];
m22 =-proj[2][2];
nearZ = proj[3][2] / (m22 - 1.0f);
*left = nearZ * (m20 - 1.0f) / m00;
*right = nearZ * (m20 + 1.0f) / m00;
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
* y stands for y axis (top / botom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glm_persp_decomp_y_lh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
float nearZ, m21, m11, m22;
m21 = proj[2][1];
m11 = proj[1][1];
m22 =-proj[2][2];
nearZ = proj[3][2] / (m22 - 1.0f);
*bottom = nearZ * (m21 - 1.0f) / m11;
*top = nearZ * (m21 + 1.0f) / m11;
}
/*!
* @brief decomposes near and far values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_z_lh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ) {
float m32, m22;
m32 = proj[3][2];
m22 =-proj[2][2];
*nearZ = m32 / (m22 - 1.0f);
*farZ = m32 / (m22 + 1.0f);
}
/*!
* @brief decomposes far value of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_far_lh_no(mat4 proj, float * __restrict farZ) {
*farZ = proj[3][2] / (-proj[2][2] + 1.0f);
}
/*!
* @brief decomposes near value of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glm_persp_decomp_near_lh_no(mat4 proj, float * __restrict nearZ) {
*nearZ = proj[3][2] / (-proj[2][2] - 1.0f);
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
void
glm_persp_sizes_lh_no(mat4 proj, float fovy, vec4 dest) {
float t, a, nearZ, farZ;
t = 2.0f * tanf(fovy * 0.5f);
a = glm_persp_aspect(proj);
glm_persp_decomp_z_lh_no(proj, &nearZ, &farZ);
dest[1] = t * nearZ;
dest[3] = t * farZ;
dest[0] = a * dest[1];
dest[2] = a * dest[3];
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a left-hand coordinate system and a clip-space of [-1, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_fovy_lh_no(mat4 proj) {
return glm_persp_fovy(proj);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a left-hand coordinate system and a clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_aspect_lh_no(mat4 proj) {
return glm_persp_aspect(proj);
}
#endif /*cglm_cam_lh_no_h*/

View File

@@ -1,387 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_frustum_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_lh_zo(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_default_lh_zo(float aspect, mat4 dest)
CGLM_INLINE void glm_perspective_resize_lh_zo(float aspect, mat4 proj)
CGLM_INLINE void glm_persp_move_far_lh_zo(mat4 proj,
float deltaFar)
CGLM_INLINE void glm_persp_decomp_lh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decompv_lh_zo(mat4 proj,
float dest[6])
CGLM_INLINE void glm_persp_decomp_x_lh_zo(mat4 proj,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decomp_y_lh_zo(mat4 proj,
float * __restrict top,
float * __restrict bottom)
CGLM_INLINE void glm_persp_decomp_z_lh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_far_lh_zo(mat4 proj, float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_near_lh_zo(mat4 proj, float * __restrict nearZ)
CGLM_INLINE void glm_persp_sizes_lh_zo(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_persp_lh_zo_h
#define cglm_persp_lh_zo_h
#include "../common.h"
#include "persp.h"
/*!
* @brief set up perspective peprojection matrix with a left-hand coordinate
* system and a clip-space of [0, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_frustum_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn, nv;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
nv = 2.0f * nearZ;
dest[0][0] = nv * rl;
dest[1][1] = nv * tb;
dest[2][0] = (right + left) * rl;
dest[2][1] = (top + bottom) * tb;
dest[2][2] =-farZ * fn;
dest[2][3] = 1.0f;
dest[3][2] = farZ * nearZ * fn;
}
/*!
* @brief set up perspective projection matrix with a left-hand coordinate
* system and a clip-space of [0, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_lh_zo(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest) {
float f, fn;
glm_mat4_zero(dest);
f = 1.0f / tanf(fovy * 0.5f);
fn = 1.0f / (nearZ - farZ);
dest[0][0] = f / aspect;
dest[1][1] = f;
dest[2][2] =-farZ * fn;
dest[2][3] = 1.0f;
dest[3][2] = nearZ * farZ * fn;
}
/*!
* @brief extend perspective projection matrix's far distance with a
* left-hand coordinate system and a clip-space with depth values
* from zero to one.
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
void
glm_persp_move_far_lh_zo(mat4 proj, float deltaFar) {
float fn, farZ, nearZ, p22, p32;
p22 = -proj[2][2];
p32 = proj[3][2];
nearZ = p32 / p22;
farZ = p32 / (p22 + 1.0f) + deltaFar;
fn = 1.0f / (nearZ - farZ);
proj[2][2] = -farZ * fn;
proj[3][2] = nearZ * farZ * fn;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_default_lh_zo(float aspect, mat4 dest) {
glm_perspective_lh_zo(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* reized
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in, out] proj perspective projection matrix
*/
CGLM_INLINE
void
glm_perspective_resize_lh_zo(float aspect, mat4 proj) {
if (proj[0][0] == 0.0f)
return;
proj[0][0] = proj[1][1] / aspect;
}
/*!
* @brief decomposes frustum values of perspective projection
* with angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_lh_zo(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
float m00, m11, m20, m21, m22, m32, n, f;
float n_m11, n_m00;
m00 = proj[0][0];
m11 = proj[1][1];
m20 = proj[2][0];
m21 = proj[2][1];
m22 =-proj[2][2];
m32 = proj[3][2];
n = m32 / m22;
f = m32 / (m22 + 1.0f);
n_m11 = n / m11;
n_m00 = n / m00;
*nearZ = n;
*farZ = f;
*bottom = n_m11 * (m21 - 1.0f);
*top = n_m11 * (m21 + 1.0f);
*left = n_m00 * (m20 - 1.0f);
*right = n_m00 * (m20 + 1.0f);
}
/*!
* @brief decomposes frustum values of perspective projection
* with angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
* this makes easy to get all values at once
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glm_persp_decompv_lh_zo(mat4 proj, float dest[6]) {
glm_persp_decomp_lh_zo(proj, &dest[0], &dest[1], &dest[2],
&dest[3], &dest[4], &dest[5]);
}
/*!
* @brief decomposes left and right values of perspective projection (ZO).
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_x_lh_zo(mat4 proj,
float * __restrict left,
float * __restrict right) {
float nearZ, m20, m00;
m00 = proj[0][0];
m20 = proj[2][0];
nearZ = proj[3][2] / (proj[3][3]);
*left = nearZ * (m20 - 1.0f) / m00;
*right = nearZ * (m20 + 1.0f) / m00;
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
* y stands for y axis (top / bottom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glm_persp_decomp_y_lh_zo(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
float nearZ, m21, m11;
m21 = proj[2][1];
m11 = proj[1][1];
nearZ = proj[3][2] / (proj[3][3]);
*bottom = nearZ * (m21 - 1) / m11;
*top = nearZ * (m21 + 1) / m11;
}
/*!
* @brief decomposes near and far values of perspective projection
* with angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_z_lh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ) {
float m32, m22;
m32 = proj[3][2];
m22 = -proj[2][2];
*nearZ = m32 / m22;
*farZ = m32 / (m22 + 1.0f);
}
/*!
* @brief decomposes far value of perspective projection
* with angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_far_lh_zo(mat4 proj, float * __restrict farZ) {
*farZ = proj[3][2] / (-proj[2][2] + 1.0f);
}
/*!
* @brief decomposes near value of perspective projection
* with angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glm_persp_decomp_near_lh_zo(mat4 proj, float * __restrict nearZ) {
*nearZ = proj[3][2] / -proj[2][2];
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
void
glm_persp_sizes_lh_zo(mat4 proj, float fovy, vec4 dest) {
float t, a, nearZ, farZ;
t = 2.0f * tanf(fovy * 0.5f);
a = glm_persp_aspect(proj);
glm_persp_decomp_z_lh_zo(proj, &nearZ, &farZ);
dest[1] = t * nearZ;
dest[3] = t * farZ;
dest[0] = a * dest[1];
dest[2] = a * dest[3];
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_fovy_lh_zo(mat4 proj) {
return glm_persp_fovy(proj);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a left-hand coordinate system and a clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_aspect_lh_zo(mat4 proj) {
return glm_persp_aspect(proj);
}
#endif /*cglm_persp_lh_zo_h*/

View File

@@ -1,395 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_frustum_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_rh_no(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_default_rh_no(float aspect, mat4 dest)
CGLM_INLINE void glm_perspective_resize_rh_no(float aspect, mat4 proj)
CGLM_INLINE void glm_persp_move_far_rh_no(mat4 proj,
float deltaFar)
CGLM_INLINE void glm_persp_decomp_rh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decompv_rh_no(mat4 proj,
float dest[6])
CGLM_INLINE void glm_persp_decomp_x_rh_no(mat4 proj,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decomp_y_rh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom)
CGLM_INLINE void glm_persp_decomp_z_rh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_far_rh_no(mat4 proj, float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_near_rh_no(mat4 proj, float * __restrict nearZ)
CGLM_INLINE void glm_persp_sizes_rh_no(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_persp_rh_no_h
#define cglm_persp_rh_no_h
#include "../common.h"
#include "persp.h"
/*!
* @brief set up perspective peprojection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_frustum_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn, nv;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
nv = 2.0f * nearZ;
dest[0][0] = nv * rl;
dest[1][1] = nv * tb;
dest[2][0] = (right + left) * rl;
dest[2][1] = (top + bottom) * tb;
dest[2][2] = (farZ + nearZ) * fn;
dest[2][3] =-1.0f;
dest[3][2] = farZ * nv * fn;
}
/*!
* @brief set up perspective projection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_rh_no(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest) {
float f, fn;
glm_mat4_zero(dest);
f = 1.0f / tanf(fovy * 0.5f);
fn = 1.0f / (nearZ - farZ);
dest[0][0] = f / aspect;
dest[1][1] = f;
dest[2][2] = (nearZ + farZ) * fn;
dest[2][3] =-1.0f;
dest[3][2] = 2.0f * nearZ * farZ * fn;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_default_rh_no(float aspect, mat4 dest) {
glm_perspective_rh_no(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* resized with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in, out] proj perspective projection matrix
*/
CGLM_INLINE
void
glm_perspective_resize_rh_no(float aspect, mat4 proj) {
if (proj[0][0] == 0.0f)
return;
proj[0][0] = proj[1][1] / aspect;
}
/*!
* @brief extend perspective projection matrix's far distance
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
void
glm_persp_move_far_rh_no(mat4 proj, float deltaFar) {
float fn, farZ, nearZ, p22, p32;
p22 = proj[2][2];
p32 = proj[3][2];
nearZ = p32 / (p22 - 1.0f);
farZ = p32 / (p22 + 1.0f) + deltaFar;
fn = 1.0f / (nearZ - farZ);
proj[2][2] = (farZ + nearZ) * fn;
proj[3][2] = 2.0f * nearZ * farZ * fn;
}
/*!
* @brief decomposes frustum values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_rh_no(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
float m00, m11, m20, m21, m22, m32, n, f;
float n_m11, n_m00;
m00 = proj[0][0];
m11 = proj[1][1];
m20 = proj[2][0];
m21 = proj[2][1];
m22 = proj[2][2];
m32 = proj[3][2];
n = m32 / (m22 - 1.0f);
f = m32 / (m22 + 1.0f);
n_m11 = n / m11;
n_m00 = n / m00;
*nearZ = n;
*farZ = f;
*bottom = n_m11 * (m21 - 1.0f);
*top = n_m11 * (m21 + 1.0f);
*left = n_m00 * (m20 - 1.0f);
*right = n_m00 * (m20 + 1.0f);
}
/*!
* @brief decomposes frustum values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* this makes easy to get all values at once
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glm_persp_decompv_rh_no(mat4 proj, float dest[6]) {
glm_persp_decomp_rh_no(proj, &dest[0], &dest[1], &dest[2],
&dest[3], &dest[4], &dest[5]);
}
/*!
* @brief decomposes left and right values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_x_rh_no(mat4 proj,
float * __restrict left,
float * __restrict right) {
float nearZ, m20, m00, m22;
m00 = proj[0][0];
m20 = proj[2][0];
m22 = proj[2][2];
nearZ = proj[3][2] / (m22 - 1.0f);
*left = nearZ * (m20 - 1.0f) / m00;
*right = nearZ * (m20 + 1.0f) / m00;
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* y stands for y axis (top / botom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glm_persp_decomp_y_rh_no(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
float nearZ, m21, m11, m22;
m21 = proj[2][1];
m11 = proj[1][1];
m22 = proj[2][2];
nearZ = proj[3][2] / (m22 - 1.0f);
*bottom = nearZ * (m21 - 1.0f) / m11;
*top = nearZ * (m21 + 1.0f) / m11;
}
/*!
* @brief decomposes near and far values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_z_rh_no(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ) {
float m32, m22;
m32 = proj[3][2];
m22 = proj[2][2];
*nearZ = m32 / (m22 - 1.0f);
*farZ = m32 / (m22 + 1.0f);
}
/*!
* @brief decomposes far value of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_far_rh_no(mat4 proj, float * __restrict farZ) {
*farZ = proj[3][2] / (proj[2][2] + 1.0f);
}
/*!
* @brief decomposes near value of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glm_persp_decomp_near_rh_no(mat4 proj, float * __restrict nearZ) {
*nearZ = proj[3][2] / (proj[2][2] - 1.0f);
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
void
glm_persp_sizes_rh_no(mat4 proj, float fovy, vec4 dest) {
float t, a, nearZ, farZ;
t = 2.0f * tanf(fovy * 0.5f);
a = glm_persp_aspect(proj);
glm_persp_decomp_z_rh_no(proj, &nearZ, &farZ);
dest[1] = t * nearZ;
dest[3] = t * farZ;
dest[0] = a * dest[1];
dest[2] = a * dest[3];
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a right-hand coordinate system and a clip-space of [-1, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_fovy_rh_no(mat4 proj) {
return glm_persp_fovy(proj);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a right-hand coordinate system and a clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_aspect_rh_no(mat4 proj) {
return glm_persp_aspect(proj);
}
#endif /*cglm_cam_rh_no_h*/

View File

@@ -1,389 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_frustum_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_rh_zo(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest)
CGLM_INLINE void glm_perspective_default_rh_zo(float aspect, mat4 dest)
CGLM_INLINE void glm_perspective_resize_rh_zo(float aspect, mat4 proj)
CGLM_INLINE void glm_persp_move_far_rh_zo(mat4 proj,
float deltaFar)
CGLM_INLINE void glm_persp_decomp_rh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decompv_rh_zo(mat4 proj,
float dest[6])
CGLM_INLINE void glm_persp_decomp_x_rh_zo(mat4 proj,
float * __restrict left,
float * __restrict right)
CGLM_INLINE void glm_persp_decomp_y_rh_zo(mat4 proj,
float * __restrict top,
float * __restrict bottom)
CGLM_INLINE void glm_persp_decomp_z_rh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_far_rh_zo(mat4 proj, float * __restrict farZ)
CGLM_INLINE void glm_persp_decomp_near_rh_zo(mat4 proj, float * __restrict nearZ)
CGLM_INLINE void glm_persp_sizes_rh_zo(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_persp_rh_zo_h
#define cglm_persp_rh_zo_h
#include "../common.h"
#include "persp.h"
/*!
* @brief set up perspective peprojection matrix with a right-hand coordinate
* system and a clip-space of [0, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_frustum_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ,
mat4 dest) {
float rl, tb, fn, nv;
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
fn =-1.0f / (farZ - nearZ);
nv = 2.0f * nearZ;
dest[0][0] = nv * rl;
dest[1][1] = nv * tb;
dest[2][0] = (right + left) * rl;
dest[2][1] = (top + bottom) * tb;
dest[2][2] = farZ * fn;
dest[2][3] =-1.0f;
dest[3][2] = farZ * nearZ * fn;
}
/*!
* @brief set up perspective projection matrix with a right-hand coordinate
* system and a clip-space of [0, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_rh_zo(float fovy,
float aspect,
float nearZ,
float farZ,
mat4 dest) {
float f, fn;
glm_mat4_zero(dest);
f = 1.0f / tanf(fovy * 0.5f);
fn = 1.0f / (nearZ - farZ);
dest[0][0] = f / aspect;
dest[1][1] = f;
dest[2][2] = farZ * fn;
dest[2][3] =-1.0f;
dest[3][2] = nearZ * farZ * fn;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_perspective_default_rh_zo(float aspect, mat4 dest) {
glm_perspective_rh_zo(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* resized with a right-hand coordinate system and a clip-space of
* [0, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in, out] proj perspective projection matrix
*/
CGLM_INLINE
void
glm_perspective_resize_rh_zo(float aspect, mat4 proj) {
if (proj[0][0] == 0.0f)
return;
proj[0][0] = proj[1][1] / aspect;
}
/*!
* @brief extend perspective projection matrix's far distance with a
* right-hand coordinate system and a clip-space of [0, 1].
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
void
glm_persp_move_far_rh_zo(mat4 proj, float deltaFar) {
float fn, farZ, nearZ, p22, p32;
p22 = proj[2][2];
p32 = proj[3][2];
nearZ = p32 / p22;
farZ = p32 / (p22 + 1.0f) + deltaFar;
fn = 1.0f / (nearZ - farZ);
proj[2][2] = farZ * fn;
proj[3][2] = nearZ * farZ * fn;
}
/*!
* @brief decomposes frustum values of perspective projection
* with angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_rh_zo(mat4 proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
float m00, m11, m20, m21, m22, m32, n, f;
float n_m11, n_m00;
m00 = proj[0][0];
m11 = proj[1][1];
m20 = proj[2][0];
m21 = proj[2][1];
m22 = proj[2][2];
m32 = proj[3][2];
n = m32 / m22;
f = m32 / (m22 + 1.0f);
n_m11 = n / m11;
n_m00 = n / m00;
*nearZ = n;
*farZ = f;
*bottom = n_m11 * (m21 - 1.0f);
*top = n_m11 * (m21 + 1.0f);
*left = n_m00 * (m20 - 1.0f);
*right = n_m00 * (m20 + 1.0f);
}
/*!
* @brief decomposes frustum values of perspective projection
* with angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
* this makes easy to get all values at once
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glm_persp_decompv_rh_zo(mat4 proj, float dest[6]) {
glm_persp_decomp_rh_zo(proj, &dest[0], &dest[1], &dest[2],
&dest[3], &dest[4], &dest[5]);
}
/*!
* @brief decomposes left and right values of perspective projection (ZO).
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glm_persp_decomp_x_rh_zo(mat4 proj,
float * __restrict left,
float * __restrict right) {
float nearZ, m20, m00, m22;
m00 = proj[0][0];
m20 = proj[2][0];
m22 = proj[2][2];
nearZ = proj[3][2] / m22;
*left = nearZ * (m20 - 1.0f) / m00;
*right = nearZ * (m20 + 1.0f) / m00;
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
* y stands for y axis (top / bottom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glm_persp_decomp_y_rh_zo(mat4 proj,
float * __restrict top,
float * __restrict bottom) {
float nearZ, m21, m11, m22;
m21 = proj[2][1];
m11 = proj[1][1];
m22 = proj[2][2];
nearZ = proj[3][2] / m22;
*bottom = nearZ * (m21 - 1) / m11;
*top = nearZ * (m21 + 1) / m11;
}
/*!
* @brief decomposes near and far values of perspective projection
* with angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_z_rh_zo(mat4 proj,
float * __restrict nearZ,
float * __restrict farZ) {
float m32, m22;
m32 = proj[3][2];
m22 = proj[2][2];
*nearZ = m32 / m22;
*farZ = m32 / (m22 + 1.0f);
}
/*!
* @brief decomposes far value of perspective projection
* with angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glm_persp_decomp_far_rh_zo(mat4 proj, float * __restrict farZ) {
*farZ = proj[3][2] / (proj[2][2] + 1.0f);
}
/*!
* @brief decomposes near value of perspective projection
* with angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glm_persp_decomp_near_rh_zo(mat4 proj, float * __restrict nearZ) {
*nearZ = proj[3][2] / proj[2][2];
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @param[out] dest sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
void
glm_persp_sizes_rh_zo(mat4 proj, float fovy, vec4 dest) {
float t, a, nearZ, farZ;
t = 2.0f * tanf(fovy * 0.5f);
a = glm_persp_aspect(proj);
glm_persp_decomp_z_rh_zo(proj, &nearZ, &farZ);
dest[1] = t * nearZ;
dest[3] = t * farZ;
dest[0] = a * dest[1];
dest[2] = a * dest[3];
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a right-hand coordinate system and a clip-space of [0, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_fovy_rh_zo(mat4 proj) {
return glm_persp_fovy(proj);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a right-hand coordinate system and a clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glm_persp_aspect_rh_zo(mat4 proj) {
return glm_persp_aspect(proj);
}
#endif /*cglm_persp_rh_zo_h*/

View File

@@ -1,86 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_project_no_h
#define cglm_project_no_h
#include "../common.h"
#include "../vec3.h"
#include "../vec4.h"
#include "../mat4.h"
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* if you don't have ( and don't want to have ) an inverse matrix then use
* glm_unproject version. You may use existing inverse of matrix in somewhere
* else, this is why glm_unprojecti exists to save save inversion cost
*
* [1] space:
* 1- if m = invProj: View Space
* 2- if m = invViewProj: World Space
* 3- if m = invMVP: Object Space
*
* You probably want to map the coordinates into object space
* so use invMVP as m
*
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
* glm_mat4_inv(viewProj, invMVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] invMat matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
CGLM_INLINE
void
glm_unprojecti_no(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
vec4 v;
v[0] = 2.0f * (pos[0] - vp[0]) / vp[2] - 1.0f;
v[1] = 2.0f * (pos[1] - vp[1]) / vp[3] - 1.0f;
v[2] = 2.0f * pos[2] - 1.0f;
v[3] = 1.0f;
glm_mat4_mulv(invMat, v, v);
glm_vec4_scale(v, 1.0f / v[3], v);
glm_vec3(v, dest);
}
/*!
* @brief map object coordinates to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos object coordinates
* @param[in] m MVP matrix
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest projected coordinates
*/
CGLM_INLINE
void
glm_project_no(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
CGLM_ALIGN(16) vec4 pos4;
glm_vec4(pos, 1.0f, pos4);
glm_mat4_mulv(m, pos4, pos4);
glm_vec4_scale(pos4, 1.0f / pos4[3], pos4); /* pos = pos / pos.w */
glm_vec4_scale(pos4, 0.5f, pos4);
glm_vec4_adds(pos4, 0.5f, pos4);
dest[0] = pos4[0] * vp[2] + vp[0];
dest[1] = pos4[1] * vp[3] + vp[1];
dest[2] = pos4[2];
}
#endif /* cglm_project_no_h */

View File

@@ -1,88 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_project_zo_h
#define cglm_project_zo_h
#include "../common.h"
#include "../vec3.h"
#include "../vec4.h"
#include "../mat4.h"
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* if you don't have ( and don't want to have ) an inverse matrix then use
* glm_unproject version. You may use existing inverse of matrix in somewhere
* else, this is why glm_unprojecti exists to save save inversion cost
*
* [1] space:
* 1- if m = invProj: View Space
* 2- if m = invViewProj: World Space
* 3- if m = invMVP: Object Space
*
* You probably want to map the coordinates into object space
* so use invMVP as m
*
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
* glm_mat4_inv(viewProj, invMVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] invMat matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
CGLM_INLINE
void
glm_unprojecti_zo(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
vec4 v;
v[0] = 2.0f * (pos[0] - vp[0]) / vp[2] - 1.0f;
v[1] = 2.0f * (pos[1] - vp[1]) / vp[3] - 1.0f;
v[2] = pos[2];
v[3] = 1.0f;
glm_mat4_mulv(invMat, v, v);
glm_vec4_scale(v, 1.0f / v[3], v);
glm_vec3(v, dest);
}
/*!
* @brief map object coordinates to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos object coordinates
* @param[in] m MVP matrix
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest projected coordinates
*/
CGLM_INLINE
void
glm_project_zo(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
CGLM_ALIGN(16) vec4 pos4;
glm_vec4(pos, 1.0f, pos4);
glm_mat4_mulv(m, pos4, pos4);
glm_vec4_scale(pos4, 1.0f / pos4[3], pos4); /* pos = pos / pos.w */
dest[2] = pos4[2];
glm_vec4_scale(pos4, 0.5f, pos4);
glm_vec4_adds(pos4, 0.5f, pos4);
dest[0] = pos4[0] * vp[2] + vp[0];
dest[1] = pos4[1] * vp[3] + vp[1];
}
#endif /* cglm_project_zo_h */

View File

@@ -1,99 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_lookat_lh(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_lh(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup_lh(vec3 eye, vec3 dir, mat4 dest)
*/
#ifndef cglm_view_lh_h
#define cglm_view_lh_h
#include "../common.h"
#include "../plane.h"
/*!
* @brief set up view matrix (LH)
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat_lh(vec3 eye, vec3 center, vec3 up, mat4 dest) {
CGLM_ALIGN(8) vec3 f, u, s;
glm_vec3_sub(center, eye, f);
glm_vec3_normalize(f);
glm_vec3_crossn(up, f, s);
glm_vec3_cross(f, s, u);
dest[0][0] = s[0];
dest[0][1] = u[0];
dest[0][2] = f[0];
dest[1][0] = s[1];
dest[1][1] = u[1];
dest[1][2] = f[1];
dest[2][0] = s[2];
dest[2][1] = u[2];
dest[2][2] = f[2];
dest[3][0] =-glm_vec3_dot(s, eye);
dest[3][1] =-glm_vec3_dot(u, eye);
dest[3][2] =-glm_vec3_dot(f, eye);
dest[0][3] = dest[1][3] = dest[2][3] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief set up view matrix with left handed coordinate system
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_lh(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
CGLM_ALIGN(8) vec3 target;
glm_vec3_add(eye, dir, target);
glm_lookat_lh(eye, target, up, dest);
}
/*!
* @brief set up view matrix with left handed coordinate system
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup_lh(vec3 eye, vec3 dir, mat4 dest) {
CGLM_ALIGN(8) vec3 up;
glm_vec3_ortho(dir, up);
glm_look_lh(eye, dir, up, dest);
}
#endif /*cglm_view_lh_h*/

View File

@@ -1,74 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_lookat_lh_no(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_lh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup_lh_no(vec3 eye, vec3 dir, mat4 dest)
*/
#ifndef cglm_view_lh_no_h
#define cglm_view_lh_no_h
#include "../common.h"
#include "view_lh.h"
/*!
* @brief set up view matrix with left handed coordinate system.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat_lh_no(vec3 eye, vec3 center, vec3 up, mat4 dest) {
glm_lookat_lh(eye, center, up, dest);
}
/*!
* @brief set up view matrix with left handed coordinate system.
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_lh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
glm_look_lh(eye, dir, up, dest);
}
/*!
* @brief set up view matrix with left handed coordinate system.
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup_lh_no(vec3 eye, vec3 dir, mat4 dest) {
glm_look_anyup_lh(eye, dir, dest);
}
#endif /*cglm_view_lh_no_h*/

View File

@@ -1,74 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_lookat_lh_zo(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_lh_zo(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup_lh_zo(vec3 eye, vec3 dir, mat4 dest)
*/
#ifndef cglm_view_lh_zo_h
#define cglm_view_lh_zo_h
#include "../common.h"
#include "view_lh.h"
/*!
* @brief set up view matrix with left handed coordinate system.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat_lh_zo(vec3 eye, vec3 center, vec3 up, mat4 dest) {
glm_lookat_lh(eye, center, up, dest);
}
/*!
* @brief set up view matrix with left handed coordinate system.
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_lh_zo(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
glm_look_lh(eye, dir, up, dest);
}
/*!
* @brief set up view matrix with left handed coordinate system.
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup_lh_zo(vec3 eye, vec3 dir, mat4 dest) {
glm_look_anyup_lh(eye, dir, dest);
}
#endif /*cglm_view_lh_zo_h*/

View File

@@ -1,99 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_lookat_rh(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_rh(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup_rh(vec3 eye, vec3 dir, mat4 dest)
*/
#ifndef cglm_view_rh_h
#define cglm_view_rh_h
#include "../common.h"
#include "../plane.h"
/*!
* @brief set up view matrix with right handed coordinate system.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat_rh(vec3 eye, vec3 center, vec3 up, mat4 dest) {
CGLM_ALIGN(8) vec3 f, u, s;
glm_vec3_sub(center, eye, f);
glm_vec3_normalize(f);
glm_vec3_crossn(f, up, s);
glm_vec3_cross(s, f, u);
dest[0][0] = s[0];
dest[0][1] = u[0];
dest[0][2] =-f[0];
dest[1][0] = s[1];
dest[1][1] = u[1];
dest[1][2] =-f[1];
dest[2][0] = s[2];
dest[2][1] = u[2];
dest[2][2] =-f[2];
dest[3][0] =-glm_vec3_dot(s, eye);
dest[3][1] =-glm_vec3_dot(u, eye);
dest[3][2] = glm_vec3_dot(f, eye);
dest[0][3] = dest[1][3] = dest[2][3] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_rh(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
CGLM_ALIGN(8) vec3 target;
glm_vec3_add(eye, dir, target);
glm_lookat_rh(eye, target, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup_rh(vec3 eye, vec3 dir, mat4 dest) {
CGLM_ALIGN(8) vec3 up;
glm_vec3_ortho(dir, up);
glm_look_rh(eye, dir, up, dest);
}
#endif /*cglm_view_rh_h*/

View File

@@ -1,74 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_lookat_rh_no(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_rh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup_rh_no(vec3 eye, vec3 dir, mat4 dest)
*/
#ifndef cglm_view_rh_no_h
#define cglm_view_rh_no_h
#include "../common.h"
#include "view_rh.h"
/*!
* @brief set up view matrix with right handed coordinate system.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat_rh_no(vec3 eye, vec3 center, vec3 up, mat4 dest) {
glm_lookat_rh(eye, center, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_rh_no(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
glm_look_rh(eye, dir, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup_rh_no(vec3 eye, vec3 dir, mat4 dest) {
glm_look_anyup_rh(eye, dir, dest);
}
#endif /*cglm_view_rh_no_h*/

View File

@@ -1,74 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_lookat_rh_zo(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_rh_zo(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup_rh_zo(vec3 eye, vec3 dir, mat4 dest)
*/
#ifndef cglm_view_rh_zo_h
#define cglm_view_rh_zo_h
#include "../common.h"
#include "view_rh.h"
/*!
* @brief set up view matrix with right handed coordinate system.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_lookat_rh_zo(vec3 eye, vec3 center, vec3 up, mat4 dest) {
glm_lookat_rh(eye, center, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_rh_zo(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
glm_look_rh(eye, dir, up, dest);
}
/*!
* @brief set up view matrix with right handed coordinate system.
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_look_anyup_rh_zo(vec3 eye, vec3 dir, mat4 dest) {
glm_look_anyup_rh(eye, dir, dest);
}
#endif /*cglm_view_rh_zo_h*/

View File

@@ -42,42 +42,17 @@
#include "types.h"
#include "simd/intrin.h"
#ifndef CGLM_USE_DEFAULT_EPSILON
# ifndef GLM_FLT_EPSILON
# define GLM_FLT_EPSILON 1e-5
# endif
#else
# define GLM_FLT_EPSILON FLT_EPSILON
#endif
/*
* Clip control: define GLM_FORCE_DEPTH_ZERO_TO_ONE before including
* CGLM to use a clip space between 0 to 1.
* Coordinate system: define GLM_FORCE_LEFT_HANDED before including
* CGLM to use the left handed coordinate system by default.
/** CGLM_USE_DEFAULT_EPSILON is removed, to override float epsilon,
* just define GLM_FLT_EPSILON with epsilon value like below
*
* #define GLM_FLT_EPSILON 1e-6f
*/
#define CGLM_CLIP_CONTROL_ZO_BIT (1 << 0) /* ZERO_TO_ONE */
#define CGLM_CLIP_CONTROL_NO_BIT (1 << 1) /* NEGATIVE_ONE_TO_ONE */
#define CGLM_CLIP_CONTROL_LH_BIT (1 << 2) /* LEFT_HANDED, For DirectX, Metal, Vulkan */
#define CGLM_CLIP_CONTROL_RH_BIT (1 << 3) /* RIGHT_HANDED, For OpenGL, default in GLM */
#define CGLM_CLIP_CONTROL_LH_ZO (CGLM_CLIP_CONTROL_LH_BIT | CGLM_CLIP_CONTROL_ZO_BIT)
#define CGLM_CLIP_CONTROL_LH_NO (CGLM_CLIP_CONTROL_LH_BIT | CGLM_CLIP_CONTROL_NO_BIT)
#define CGLM_CLIP_CONTROL_RH_ZO (CGLM_CLIP_CONTROL_RH_BIT | CGLM_CLIP_CONTROL_ZO_BIT)
#define CGLM_CLIP_CONTROL_RH_NO (CGLM_CLIP_CONTROL_RH_BIT | CGLM_CLIP_CONTROL_NO_BIT)
#ifdef CGLM_FORCE_DEPTH_ZERO_TO_ONE
# ifdef CGLM_FORCE_LEFT_HANDED
# define CGLM_CONFIG_CLIP_CONTROL CGLM_CLIP_CONTROL_LH_ZO
#ifndef GLM_FLT_EPSILON
# ifndef FLT_EPSILON
# define GLM_FLT_EPSILON 1e-6f
# else
# define CGLM_CONFIG_CLIP_CONTROL CGLM_CLIP_CONTROL_RH_ZO
# endif
#else
# ifdef CGLM_FORCE_LEFT_HANDED
# define CGLM_CONFIG_CLIP_CONTROL CGLM_CLIP_CONTROL_LH_NO
# else
# define CGLM_CONFIG_CLIP_CONTROL CGLM_CLIP_CONTROL_RH_NO
# define GLM_FLT_EPSILON FLT_EPSILON
# endif
#endif

View File

@@ -40,10 +40,6 @@
# include "simd/sse2/mat2.h"
#endif
#ifdef CGLM_NEON_FP
# include "simd/neon/mat2.h"
#endif
#define GLM_MAT2_IDENTITY_INIT {{1.0f, 0.0f}, {0.0f, 1.0f}}
#define GLM_MAT2_ZERO_INIT {{0.0f, 0.0f}, {0.0f, 0.0f}}
@@ -134,8 +130,6 @@ void
glm_mat2_mul(mat2 m1, mat2 m2, mat2 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat2_mul_sse2(m1, m2, dest);
#elif defined(CGLM_NEON_FP)
glm_mat2_mul_neon(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1],
a10 = m1[1][0], a11 = m1[1][1],

View File

@@ -187,29 +187,8 @@ glm_mat4_identity_array(mat4 * __restrict mat, size_t count) {
CGLM_INLINE
void
glm_mat4_zero(mat4 mat) {
#ifdef __AVX__
__m256 y0;
y0 = _mm256_setzero_ps();
glmm_store256(mat[0], y0);
glmm_store256(mat[2], y0);
#elif defined( __SSE__ ) || defined( __SSE2__ )
glmm_128 x0;
x0 = _mm_setzero_ps();
glmm_store(mat[0], x0);
glmm_store(mat[1], x0);
glmm_store(mat[2], x0);
glmm_store(mat[3], x0);
#elif defined(CGLM_NEON_FP)
glmm_128 x0;
x0 = vdupq_n_f32(0.0f);
vst1q_f32(mat[0], x0);
vst1q_f32(mat[1], x0);
vst1q_f32(mat[2], x0);
vst1q_f32(mat[3], x0);
#else
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_ZERO_INIT;
glm_mat4_copy(t, mat);
#endif
}
/*!
@@ -560,9 +539,7 @@ glm_mat4_scale_p(mat4 m, float s) {
CGLM_INLINE
void
glm_mat4_scale(mat4 m, float s) {
#ifdef __AVX__
glm_mat4_scale_avx(m, s);
#elif defined( __SSE__ ) || defined( __SSE2__ )
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_scale_sse2(m, s);
#elif defined(CGLM_NEON_FP)
glm_mat4_scale_neon(m, s);
@@ -583,8 +560,6 @@ float
glm_mat4_det(mat4 mat) {
#if defined( __SSE__ ) || defined( __SSE2__ )
return glm_mat4_det_sse2(mat);
#elif defined(CGLM_NEON_FP)
return glm_mat4_det_neon(mat);
#else
/* [square] det(A) = det(At) */
float t[6];
@@ -618,8 +593,6 @@ void
glm_mat4_inv(mat4 mat, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_inv_sse2(mat, dest);
#elif defined(CGLM_NEON_FP)
glm_mat4_inv_neon(mat, dest);
#else
float t[6];
float det;

View File

@@ -9,7 +9,6 @@
#define cglm_plane_h
#include "common.h"
#include "vec3.h"
#include "vec4.h"
/*

View File

@@ -13,17 +13,6 @@
#include "vec4.h"
#include "mat4.h"
#ifndef CGLM_CLIPSPACE_INCLUDE_ALL
# if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_ZO_BIT
# include "clipspace/project_zo.h"
# elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_NO_BIT
# include "clipspace/project_no.h"
# endif
#else
# include "clipspace/project_zo.h"
# include "clipspace/project_no.h"
#endif
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
@@ -53,11 +42,16 @@
CGLM_INLINE
void
glm_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_ZO_BIT
glm_unprojecti_zo(pos, invMat, vp, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_NO_BIT
glm_unprojecti_no(pos, invMat, vp, dest);
#endif
vec4 v;
v[0] = 2.0f * (pos[0] - vp[0]) / vp[2] - 1.0f;
v[1] = 2.0f * (pos[1] - vp[1]) / vp[3] - 1.0f;
v[2] = 2.0f * pos[2] - 1.0f;
v[3] = 1.0f;
glm_mat4_mulv(invMat, v, v);
glm_vec4_scale(v, 1.0f / v[3], v);
glm_vec3(v, dest);
}
/*!
@@ -107,44 +101,18 @@ glm_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
CGLM_INLINE
void
glm_project(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
#if CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_ZO_BIT
glm_project_zo(pos, m, vp, dest);
#elif CGLM_CONFIG_CLIP_CONTROL & CGLM_CLIP_CONTROL_NO_BIT
glm_project_no(pos, m, vp, dest);
#endif
}
CGLM_ALIGN(16) vec4 pos4, vone = GLM_VEC4_ONE_INIT;
/*!
* @brief define a picking region
*
* @param[in] center center [x, y] of a picking region in window coordinates
* @param[in] size size [width, height] of the picking region in window coordinates
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest projected coordinates
*/
CGLM_INLINE
void
glm_pickmatrix(vec2 center, vec2 size, vec4 vp, mat4 dest) {
mat4 res;
vec3 v;
glm_vec4(pos, 1.0f, pos4);
if (size[0] <= 0.0f || size[1] <= 0.0f)
return;
/* Translate and scale the picked region to the entire window */
v[0] = (vp[2] - 2.0f * (center[0] - vp[0])) / size[0];
v[1] = (vp[3] - 2.0f * (center[1] - vp[1])) / size[1];
v[2] = 0.0f;
glm_mat4_mulv(m, pos4, pos4);
glm_vec4_scale(pos4, 1.0f / pos4[3], pos4); /* pos = pos / pos.w */
glm_vec4_add(pos4, vone, pos4);
glm_vec4_scale(pos4, 0.5f, pos4);
glm_translate_make(res, v);
v[0] = vp[2] / size[0];
v[1] = vp[3] / size[1];
v[2] = 1.0f;
glm_scale(res, v);
glm_mat4_copy(res, dest);
dest[0] = pos4[0] * vp[2] + vp[0];
dest[1] = pos4[1] * vp[3] + vp[1];
dest[2] = pos4[2];
}
#endif /* cglm_project_h */

View File

@@ -16,7 +16,6 @@
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 axis);
CGLM_INLINE void glm_quat_copy(versor q, versor dest);
CGLM_INLINE void glm_quat_from_vecs(vec3 a, vec3 b, versor dest);
CGLM_INLINE float glm_quat_norm(versor q);
CGLM_INLINE void glm_quat_normalize(versor q);
CGLM_INLINE void glm_quat_normalize_to(versor q, versor dest);
@@ -39,7 +38,6 @@
CGLM_INLINE void glm_quat_lerp(versor from, versor to, float t, versor dest);
CGLM_INLINE void glm_quat_lerpc(versor from, versor to, float t, versor dest);
CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest);
CGLM_INLINE void glm_quat_nlerp(versor q, versor r, float t, versor dest);
CGLM_INLINE void glm_quat_look(vec3 eye, versor ori, mat4 dest);
CGLM_INLINE void glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
CGLM_INLINE void glm_quat_forp(vec3 from,
@@ -60,17 +58,22 @@
#include "mat4.h"
#include "mat3.h"
#include "affine-mat.h"
#include "affine.h"
#ifdef CGLM_SSE_FP
# include "simd/sse2/quat.h"
#endif
#ifdef CGLM_NEON_FP
# include "simd/neon/quat.h"
#endif
CGLM_INLINE
void
glm_mat4_mulv(mat4 m, vec4 v, vec4 dest);
CGLM_INLINE void glm_quat_normalize(versor q);
CGLM_INLINE
void
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest);
CGLM_INLINE
void
glm_translate(mat4 m, vec3 v);
/*
* IMPORTANT:
@@ -187,41 +190,10 @@ glm_quat_copy(versor q, versor dest) {
glm_vec4_copy(q, dest);
}
/*!
* @brief compute quaternion rotating vector A to vector B
*
* @param[in] a vec3 (must have unit length)
* @param[in] b vec3 (must have unit length)
* @param[out] dest quaternion (of unit length)
*/
CGLM_INLINE
void
glm_quat_from_vecs(vec3 a, vec3 b, versor dest) {
CGLM_ALIGN(8) vec3 axis;
float cos_theta;
float cos_half_theta;
cos_theta = glm_vec3_dot(a, b);
if (cos_theta >= 1.f - GLM_FLT_EPSILON) { /* a ∥ b */
glm_quat_identity(dest);
return;
}
if (cos_theta < -1.f + GLM_FLT_EPSILON) { /* angle(a, b) = π */
glm_vec3_ortho(a, axis);
cos_half_theta = 0.f; /* cos π/2 */
} else {
glm_vec3_cross(a, b, axis);
cos_half_theta = 1.0f + cos_theta; /* cos 0 + cos θ */
}
glm_quat_init(dest, axis[0], axis[1], axis[2], cos_half_theta);
glm_quat_normalize(dest);
}
/*!
* @brief returns norm (magnitude) of quaternion
*
* @param[in] q quaternion
* @param[out] q quaternion
*/
CGLM_INLINE
float
@@ -440,8 +412,6 @@ glm_quat_mul(versor p, versor q, versor dest) {
*/
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_quat_mul_sse2(p, q, dest);
#elif defined(CGLM_NEON_FP)
glm_quat_mul_neon(p, q, dest);
#else
dest[0] = p[3] * q[0] + p[0] * q[3] + p[1] * q[2] - p[2] * q[1];
dest[1] = p[3] * q[1] - p[0] * q[2] + p[1] * q[3] + p[2] * q[0];
@@ -652,29 +622,6 @@ glm_quat_lerpc(versor from, versor to, float t, versor dest) {
glm_vec4_lerpc(from, to, t, dest);
}
/*!
* @brief interpolates between two quaternions
* taking the shortest rotation path using
* normalized linear interpolation (NLERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t interpolant (amount)
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_nlerp(versor from, versor to, float t, versor dest) {
versor target;
float dot;
dot = glm_vec4_dot(from, to);
glm_vec4_scale(to, (dot >= 0) ? 1.0f : -1.0f, target);
glm_quat_lerp(from, target, t, dest);
glm_quat_normalize(dest);
}
/*!
* @brief interpolates between two quaternions
* using spherical linear interpolation (SLERP)

View File

@@ -10,56 +10,19 @@
#include "intrin.h"
#ifdef CGLM_SIMD_ARM
#if defined(_M_ARM64) || defined(_M_HYBRID_X86_ARM64) || defined(_M_ARM64EC) || defined(__aarch64__)
# define CGLM_ARM64 1
#endif
#define glmm_load(p) vld1q_f32(p)
#define glmm_store(p, a) vst1q_f32(p, a)
#define glmm_set1(x) vdupq_n_f32(x)
#define glmm_128 float32x4_t
#define glmm_splat_x(x) vdupq_lane_f32(vget_low_f32(x), 0)
#define glmm_splat_y(x) vdupq_lane_f32(vget_low_f32(x), 1)
#define glmm_splat_z(x) vdupq_lane_f32(vget_high_f32(x), 0)
#define glmm_splat_w(x) vdupq_lane_f32(vget_high_f32(x), 1)
#define glmm_xor(a, b) \
vreinterpretq_f32_s32(veorq_s32(vreinterpretq_s32_f32(a), \
vreinterpretq_s32_f32(b)))
#define glmm_swplane(v) vextq_f32(v, v, 2)
#define glmm_low(x) vget_low_f32(x)
#define glmm_high(x) vget_high_f32(x)
#define glmm_combine_ll(x, y) vcombine_f32(vget_low_f32(x), vget_low_f32(y))
#define glmm_combine_hl(x, y) vcombine_f32(vget_high_f32(x), vget_low_f32(y))
#define glmm_combine_lh(x, y) vcombine_f32(vget_low_f32(x), vget_high_f32(y))
#define glmm_combine_hh(x, y) vcombine_f32(vget_high_f32(x), vget_high_f32(y))
static inline
float32x4_t
glmm_abs(float32x4_t v) {
return vabsq_f32(v);
}
static inline
float32x4_t
glmm_vhadd(float32x4_t v) {
return vaddq_f32(vaddq_f32(glmm_splat_x(v), glmm_splat_y(v)),
vaddq_f32(glmm_splat_z(v), glmm_splat_w(v)));
/*
this seems slower:
v = vaddq_f32(v, vrev64q_f32(v));
return vaddq_f32(v, vcombine_f32(vget_high_f32(v), vget_low_f32(v)));
*/
}
static inline
float
glmm_hadd(float32x4_t v) {
#if CGLM_ARM64
#if defined(__aarch64__)
return vaddvq_f32(v);
#else
v = vaddq_f32(v, vrev64q_f32(v));
@@ -116,58 +79,5 @@ glmm_norm_inf(float32x4_t a) {
return glmm_hmax(glmm_abs(a));
}
static inline
float32x4_t
glmm_div(float32x4_t a, float32x4_t b) {
#if CGLM_ARM64
return vdivq_f32(a, b);
#else
/* 2 iterations of Newton-Raphson refinement of reciprocal */
float32x4_t r0, r1;
r0 = vrecpeq_f32(b);
r1 = vrecpsq_f32(r0, b);
r0 = vmulq_f32(r1, r0);
r1 = vrecpsq_f32(r0, b);
r0 = vmulq_f32(r1, r0);
return vmulq_f32(a, r0);
#endif
}
static inline
float32x4_t
glmm_fmadd(float32x4_t a, float32x4_t b, float32x4_t c) {
#if CGLM_ARM64
return vfmaq_f32(c, a, b); /* why vfmaq_f32 is slower than vmlaq_f32 ??? */
#else
return vmlaq_f32(c, a, b);
#endif
}
static inline
float32x4_t
glmm_fnmadd(float32x4_t a, float32x4_t b, float32x4_t c) {
#if CGLM_ARM64
return vfmsq_f32(c, a, b);
#else
return vmlsq_f32(c, a, b);
#endif
}
static inline
float32x4_t
glmm_fmsub(float32x4_t a, float32x4_t b, float32x4_t c) {
#if CGLM_ARM64
return vfmsq_f32(c, a, b);
#else
return vmlsq_f32(c, a, b);
#endif
}
static inline
float32x4_t
glmm_fnmsub(float32x4_t a, float32x4_t b, float32x4_t c) {
return vsubq_f32(vdupq_n_f32(0.0f), glmm_fmadd(a, b, c));
}
#endif
#endif /* cglm_simd_arm_h */

View File

@@ -14,16 +14,6 @@
#include <immintrin.h>
CGLM_INLINE
void
glm_mat4_scale_avx(mat4 m, float s) {
__m256 y0;
y0 = _mm256_set1_ps(s);
glmm_store256(m[0], _mm256_mul_ps(y0, glmm_load256(m[0])));
glmm_store256(m[2], _mm256_mul_ps(y0, glmm_load256(m[2])));
}
CGLM_INLINE
void
glm_mat4_mul_avx(mat4 m1, mat4 m2, mat4 dest) {

View File

@@ -34,7 +34,7 @@
#endif
#if defined(__SSE3__)
# include <pmmintrin.h>
# include <x86intrin.h>
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif

View File

@@ -1,121 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_affine_neon_h
#define cglm_affine_neon_h
#if defined(__ARM_NEON_FP)
#include "../../common.h"
#include "../intrin.h"
CGLM_INLINE
void
glm_mul_neon(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, r3, v0, v1, v2, v3;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
r3 = glmm_load(m2[3]);
v0 = vmulq_f32(glmm_splat_x(r0), l);
v1 = vmulq_f32(glmm_splat_x(r1), l);
v2 = vmulq_f32(glmm_splat_x(r2), l);
v3 = vmulq_f32(glmm_splat_x(r3), l);
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_y(r3), l, v3);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_z(r3), l, v3);
v3 = glmm_fmadd(glmm_splat_w(r3), glmm_load(m1[3]), v3);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], v3);
}
CGLM_INLINE
void
glm_mul_rot_neon(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, v0, v1, v2;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
v0 = vmulq_f32(glmm_splat_x(r0), l);
v1 = vmulq_f32(glmm_splat_x(r1), l);
v2 = vmulq_f32(glmm_splat_x(r2), l);
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], glmm_load(m1[3]));
}
CGLM_INLINE
void
glm_inv_tr_neon(mat4 mat) {
float32x4x4_t vmat;
glmm_128 r0, r1, r2, x0;
vmat = vld4q_f32(mat[0]);
r0 = vmat.val[0];
r1 = vmat.val[1];
r2 = vmat.val[2];
x0 = glmm_fmadd(r0, glmm_splat_w(r0),
glmm_fmadd(r1, glmm_splat_w(r1),
vmulq_f32(r2, glmm_splat_w(r2))));
x0 = vnegq_f32(x0);
glmm_store(mat[0], r0);
glmm_store(mat[1], r1);
glmm_store(mat[2], r2);
glmm_store(mat[3], x0);
mat[0][3] = 0.0f;
mat[1][3] = 0.0f;
mat[2][3] = 0.0f;
mat[3][3] = 1.0f;
/* TODO: ?
zo = vget_high_f32(r3);
vst1_lane_f32(&mat[0][3], zo, 0);
vst1_lane_f32(&mat[1][3], zo, 0);
vst1_lane_f32(&mat[2][3], zo, 0);
vst1_lane_f32(&mat[3][3], zo, 1);
*/
}
#endif
#endif /* cglm_affine_neon_h */

View File

@@ -1,44 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_mat2_neon_h
#define cglm_mat2_neon_h
#if defined(__ARM_NEON_FP)
#include "../../common.h"
#include "../intrin.h"
CGLM_INLINE
void
glm_mat2_mul_neon(mat2 m1, mat2 m2, mat2 dest) {
float32x4x2_t a1;
glmm_128 x0, x1, x2;
float32x2_t dc, ba;
x1 = glmm_load(m1[0]); /* d c b a */
x2 = glmm_load(m2[0]); /* h g f e */
dc = vget_high_f32(x1);
ba = vget_low_f32(x1);
/* g g e e, h h f f */
a1 = vtrnq_f32(x2, x2);
/*
dest[0][0] = a * e + c * f;
dest[0][1] = b * e + d * f;
dest[1][0] = a * g + c * h;
dest[1][1] = b * g + d * h;
*/
x0 = glmm_fmadd(vcombine_f32(ba, ba), a1.val[0],
vmulq_f32(vcombine_f32(dc, dc), a1.val[1]));
glmm_store(dest[0], x0);
}
#endif
#endif /* cglm_mat2_neon_h */

View File

@@ -42,42 +42,41 @@ CGLM_INLINE
void
glm_mat4_mul_neon(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
float32x4_t l0, l1, l2, l3, r, d0, d1, d2, d3;
glmm_128 l, r0, r1, r2, r3, v0, v1, v2, v3;
l0 = vld1q_f32(m2[0]);
l1 = vld1q_f32(m2[1]);
l2 = vld1q_f32(m2[2]);
l3 = vld1q_f32(m2[3]);
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
r3 = glmm_load(m2[3]);
r = vld1q_f32(m1[0]);
d0 = vmulq_lane_f32(r, vget_low_f32(l0), 0);
d1 = vmulq_lane_f32(r, vget_low_f32(l1), 0);
d2 = vmulq_lane_f32(r, vget_low_f32(l2), 0);
d3 = vmulq_lane_f32(r, vget_low_f32(l3), 0);
v0 = vmulq_f32(glmm_splat_x(r0), l);
v1 = vmulq_f32(glmm_splat_x(r1), l);
v2 = vmulq_f32(glmm_splat_x(r2), l);
v3 = vmulq_f32(glmm_splat_x(r3), l);
r = vld1q_f32(m1[1]);
d0 = vmlaq_lane_f32(d0, r, vget_low_f32(l0), 1);
d1 = vmlaq_lane_f32(d1, r, vget_low_f32(l1), 1);
d2 = vmlaq_lane_f32(d2, r, vget_low_f32(l2), 1);
d3 = vmlaq_lane_f32(d3, r, vget_low_f32(l3), 1);
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_y(r3), l, v3);
r = vld1q_f32(m1[2]);
d0 = vmlaq_lane_f32(d0, r, vget_high_f32(l0), 0);
d1 = vmlaq_lane_f32(d1, r, vget_high_f32(l1), 0);
d2 = vmlaq_lane_f32(d2, r, vget_high_f32(l2), 0);
d3 = vmlaq_lane_f32(d3, r, vget_high_f32(l3), 0);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_z(r3), l, v3);
r = vld1q_f32(m1[3]);
d0 = vmlaq_lane_f32(d0, r, vget_high_f32(l0), 1);
d1 = vmlaq_lane_f32(d1, r, vget_high_f32(l1), 1);
d2 = vmlaq_lane_f32(d2, r, vget_high_f32(l2), 1);
d3 = vmlaq_lane_f32(d3, r, vget_high_f32(l3), 1);
l = glmm_load(m1[3]);
v0 = glmm_fmadd(glmm_splat_w(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_w(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_w(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_w(r3), l, v3);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], v3);
vst1q_f32(dest[0], d0);
vst1q_f32(dest[1], d1);
vst1q_f32(dest[2], d2);
vst1q_f32(dest[3], d3);
}
CGLM_INLINE
@@ -102,216 +101,5 @@ glm_mat4_mulv_neon(mat4 m, vec4 v, vec4 dest) {
vst1q_f32(dest, l0);
}
CGLM_INLINE
float
glm_mat4_det_neon(mat4 mat) {
float32x4_t r0, r1, r2, r3, x0, x1, x2;
float32x2_t ij, op, mn, kl, nn, mm, jj, ii, gh, ef, t12, t34;
float32x4x2_t a1;
float32x4_t x3 = { 0.f, -0.f, 0.f, -0.f };
/* 127 <- 0, [square] det(A) = det(At) */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = vrev64q_f32(glmm_load(mat[1])); /* g h e f */
r2 = vrev64q_f32(glmm_load(mat[2])); /* l k i j */
r3 = vrev64q_f32(glmm_load(mat[3])); /* o p m n */
gh = vget_high_f32(r1);
ef = vget_low_f32(r1);
kl = vget_high_f32(r2);
ij = vget_low_f32(r2);
op = vget_high_f32(r3);
mn = vget_low_f32(r3);
mm = vdup_lane_f32(mn, 1);
nn = vdup_lane_f32(mn, 0);
ii = vdup_lane_f32(ij, 1);
jj = vdup_lane_f32(ij, 0);
/*
t[1] = j * p - n * l;
t[2] = j * o - n * k;
t[3] = i * p - m * l;
t[4] = i * o - m * k;
*/
x0 = glmm_fnmadd(vcombine_f32(kl, kl), vcombine_f32(nn, mm),
vmulq_f32(vcombine_f32(op, op), vcombine_f32(jj, ii)));
t12 = vget_low_f32(x0);
t34 = vget_high_f32(x0);
/* 1 3 1 3 2 4 2 4 */
a1 = vuzpq_f32(x0, x0);
/*
t[0] = k * p - o * l;
t[0] = k * p - o * l;
t[5] = i * n - m * j;
t[5] = i * n - m * j;
*/
x1 = glmm_fnmadd(vcombine_f32(vdup_lane_f32(kl, 0), jj),
vcombine_f32(vdup_lane_f32(op, 1), mm),
vmulq_f32(vcombine_f32(vdup_lane_f32(op, 0), nn),
vcombine_f32(vdup_lane_f32(kl, 1), ii)));
/*
a * (f * t[0] - g * t[1] + h * t[2])
- b * (e * t[0] - g * t[3] + h * t[4])
+ c * (e * t[1] - f * t[3] + h * t[5])
- d * (e * t[2] - f * t[4] + g * t[5])
*/
x2 = glmm_fnmadd(vcombine_f32(vdup_lane_f32(gh, 1), vdup_lane_f32(ef, 0)),
vcombine_f32(vget_low_f32(a1.val[0]), t34),
vmulq_f32(vcombine_f32(ef, vdup_lane_f32(ef, 1)),
vcombine_f32(vget_low_f32(x1), t12)));
x2 = glmm_fmadd(vcombine_f32(vdup_lane_f32(gh, 0), gh),
vcombine_f32(vget_low_f32(a1.val[1]), vget_high_f32(x1)), x2);
x2 = glmm_xor(x2, x3);
return glmm_hadd(vmulq_f32(x2, r0));
}
CGLM_INLINE
void
glm_mat4_inv_neon(mat4 mat, mat4 dest) {
float32x4_t r0, r1, r2, r3,
v0, v1, v2, v3,
t0, t1, t2, t3, t4, t5,
x0, x1, x2, x3, x4, x5, x6, x7, x8;
float32x4x2_t a1;
float32x2_t lp, ko, hg, jn, im, fe, ae, bf, cg, dh;
float32x4_t x9 = { -0.f, 0.f, -0.f, 0.f };
x8 = vrev64q_f32(x9);
/* 127 <- 0 */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
/* l p k o, j n i m */
a1 = vzipq_f32(r3, r2);
jn = vget_high_f32(a1.val[0]);
im = vget_low_f32(a1.val[0]);
lp = vget_high_f32(a1.val[1]);
ko = vget_low_f32(a1.val[1]);
hg = vget_high_f32(r1);
x1 = vcombine_f32(vdup_lane_f32(lp, 0), lp); /* l p p p */
x2 = vcombine_f32(vdup_lane_f32(ko, 0), ko); /* k o o o */
x0 = vcombine_f32(vdup_lane_f32(lp, 1), vdup_lane_f32(hg, 1)); /* h h l l */
x3 = vcombine_f32(vdup_lane_f32(ko, 1), vdup_lane_f32(hg, 0)); /* g g k k */
/* t1[0] = k * p - o * l;
t1[0] = k * p - o * l;
t2[0] = g * p - o * h;
t3[0] = g * l - k * h; */
t0 = glmm_fnmadd(x2, x0, vmulq_f32(x3, x1));
fe = vget_low_f32(r1);
x4 = vcombine_f32(vdup_lane_f32(jn, 0), jn); /* j n n n */
x5 = vcombine_f32(vdup_lane_f32(jn, 1), vdup_lane_f32(fe, 1)); /* f f j j */
/* t1[1] = j * p - n * l;
t1[1] = j * p - n * l;
t2[1] = f * p - n * h;
t3[1] = f * l - j * h; */
t1 = glmm_fnmadd(x4, x0, vmulq_f32(x5, x1));
/* t1[2] = j * o - n * k
t1[2] = j * o - n * k;
t2[2] = f * o - n * g;
t3[2] = f * k - j * g; */
t2 = glmm_fnmadd(x4, x3, vmulq_f32(x5, x2));
x6 = vcombine_f32(vdup_lane_f32(im, 1), vdup_lane_f32(fe, 0)); /* e e i i */
x7 = vcombine_f32(vdup_lane_f32(im, 0), im); /* i m m m */
/* t1[3] = i * p - m * l;
t1[3] = i * p - m * l;
t2[3] = e * p - m * h;
t3[3] = e * l - i * h; */
t3 = glmm_fnmadd(x7, x0, vmulq_f32(x6, x1));
/* t1[4] = i * o - m * k;
t1[4] = i * o - m * k;
t2[4] = e * o - m * g;
t3[4] = e * k - i * g; */
t4 = glmm_fnmadd(x7, x3, vmulq_f32(x6, x2));
/* t1[5] = i * n - m * j;
t1[5] = i * n - m * j;
t2[5] = e * n - m * f;
t3[5] = e * j - i * f; */
t5 = glmm_fnmadd(x7, x5, vmulq_f32(x6, x4));
/* h d f b, g c e a */
a1 = vtrnq_f32(r0, r1);
x4 = vrev64q_f32(a1.val[0]); /* c g a e */
x5 = vrev64q_f32(a1.val[1]); /* d h b f */
ae = vget_low_f32(x4);
cg = vget_high_f32(x4);
bf = vget_low_f32(x5);
dh = vget_high_f32(x5);
x0 = vcombine_f32(ae, vdup_lane_f32(ae, 1)); /* a a a e */
x1 = vcombine_f32(bf, vdup_lane_f32(bf, 1)); /* b b b f */
x2 = vcombine_f32(cg, vdup_lane_f32(cg, 1)); /* c c c g */
x3 = vcombine_f32(dh, vdup_lane_f32(dh, 1)); /* d d d h */
/*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
dest[0][1] =-(b * t1[0] - c * t1[1] + d * t1[2]);
dest[0][2] = b * t2[0] - c * t2[1] + d * t2[2];
dest[0][3] =-(b * t3[0] - c * t3[1] + d * t3[2]); */
v0 = glmm_xor(glmm_fmadd(x3, t2, glmm_fnmadd(x2, t1, vmulq_f32(x1, t0))), x8);
/*
dest[2][0] = e * t1[1] - f * t1[3] + h * t1[5];
dest[2][1] =-(a * t1[1] - b * t1[3] + d * t1[5]);
dest[2][2] = a * t2[1] - b * t2[3] + d * t2[5];
dest[2][3] =-(a * t3[1] - b * t3[3] + d * t3[5]);*/
v2 = glmm_xor(glmm_fmadd(x3, t5, glmm_fnmadd(x1, t3, vmulq_f32(x0, t1))), x8);
/*
dest[1][0] =-(e * t1[0] - g * t1[3] + h * t1[4]);
dest[1][1] = a * t1[0] - c * t1[3] + d * t1[4];
dest[1][2] =-(a * t2[0] - c * t2[3] + d * t2[4]);
dest[1][3] = a * t3[0] - c * t3[3] + d * t3[4]; */
v1 = glmm_xor(glmm_fmadd(x3, t4, glmm_fnmadd(x2, t3, vmulq_f32(x0, t0))), x9);
/*
dest[3][0] =-(e * t1[2] - f * t1[4] + g * t1[5]);
dest[3][1] = a * t1[2] - b * t1[4] + c * t1[5];
dest[3][2] =-(a * t2[2] - b * t2[4] + c * t2[5]);
dest[3][3] = a * t3[2] - b * t3[4] + c * t3[5]; */
v3 = glmm_xor(glmm_fmadd(x2, t5, glmm_fnmadd(x1, t4, vmulq_f32(x0, t2))), x9);
/* determinant */
x0 = vcombine_f32(vget_low_f32(vzipq_f32(v0, v1).val[0]),
vget_low_f32(vzipq_f32(v2, v3).val[0]));
/*
x0 = glmm_div(glmm_set1(1.0f), glmm_vhadd(vmulq_f32(x0, r0)));
glmm_store(dest[0], vmulq_f32(v0, x0));
glmm_store(dest[1], vmulq_f32(v1, x0));
glmm_store(dest[2], vmulq_f32(v2, x0));
glmm_store(dest[3], vmulq_f32(v3, x0));
*/
x0 = glmm_vhadd(vmulq_f32(x0, r0));
glmm_store(dest[0], glmm_div(v0, x0));
glmm_store(dest[1], glmm_div(v1, x0));
glmm_store(dest[2], glmm_div(v2, x0));
glmm_store(dest[3], glmm_div(v3, x0));
}
#endif
#endif /* cglm_mat4_neon_h */

View File

@@ -1,56 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_quat_neon_h
#define cglm_quat_neon_h
#if defined(__ARM_NEON_FP)
#include "../../common.h"
#include "../intrin.h"
CGLM_INLINE
void
glm_quat_mul_neon(versor p, versor q, versor dest) {
/*
+ (a1 b2 + b1 a2 + c1 d2 d1 c2)i
+ (a1 c2 b1 d2 + c1 a2 + d1 b2)j
+ (a1 d2 + b1 c2 c1 b2 + d1 a2)k
a1 a2 b1 b2 c1 c2 d1 d2
*/
glmm_128 xp, xq, xqr, r, x, y, z, s2, s3;
glmm_128 s1 = {-0.f, 0.f, 0.f, -0.f};
float32x2_t qh, ql;
xp = glmm_load(p); /* 3 2 1 0 */
xq = glmm_load(q);
r = vmulq_f32(glmm_splat_w(xp), xq);
x = glmm_splat_x(xp);
y = glmm_splat_y(xp);
z = glmm_splat_z(xp);
ql = vget_high_f32(s1);
s3 = vcombine_f32(ql, ql);
s2 = vzipq_f32(s3, s3).val[0];
xqr = vrev64q_f32(xq);
qh = vget_high_f32(xqr);
ql = vget_low_f32(xqr);
r = glmm_fmadd(glmm_xor(x, s3), vcombine_f32(qh, ql), r);
r = glmm_fmadd(glmm_xor(y, s2), vcombine_f32(vget_high_f32(xq),
vget_low_f32(xq)), r);
r = glmm_fmadd(glmm_xor(z, s1), vcombine_f32(ql, qh), r);
glmm_store(dest, r);
}
#endif
#endif /* cglm_quat_neon_h */

View File

@@ -16,76 +16,75 @@ CGLM_INLINE
void
glm_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, r3, v0, v1, v2, v3;
__m128 l0, l1, l2, l3, r;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
r3 = glmm_load(m2[3]);
l0 = glmm_load(m1[0]);
l1 = glmm_load(m1[1]);
l2 = glmm_load(m1[2]);
l3 = glmm_load(m1[3]);
v0 = _mm_mul_ps(glmm_splat_x(r0), l);
v1 = _mm_mul_ps(glmm_splat_x(r1), l);
v2 = _mm_mul_ps(glmm_splat_x(r2), l);
v3 = _mm_mul_ps(glmm_splat_x(r3), l);
r = glmm_load(m2[0]);
glmm_store(dest[0],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_y(r3), l, v3);
r = glmm_load(m2[1]);
glmm_store(dest[1],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_z(r3), l, v3);
r = glmm_load(m2[2]);
glmm_store(dest[2],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
l = glmm_load(m1[3]);
v3 = glmm_fmadd(glmm_splat_w(r3), l, v3);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], v3);
r = glmm_load(m2[3]);
glmm_store(dest[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
}
CGLM_INLINE
void
glm_mul_rot_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
__m128 l0, l1, l2, l3, r;
glmm_128 l, r0, r1, r2, v0, v1, v2;
l0 = glmm_load(m1[0]);
l1 = glmm_load(m1[1]);
l2 = glmm_load(m1[2]);
l3 = glmm_load(m1[3]);
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
r = glmm_load(m2[0]);
glmm_store(dest[0],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
v0 = _mm_mul_ps(glmm_splat_x(r0), l);
v1 = _mm_mul_ps(glmm_splat_x(r1), l);
v2 = _mm_mul_ps(glmm_splat_x(r2), l);
r = glmm_load(m2[1]);
glmm_store(dest[1],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
r = glmm_load(m2[2]);
glmm_store(dest[2],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], glmm_load(m1[3]));
glmm_store(dest[3], l3);
}
CGLM_INLINE
void
glm_inv_tr_sse2(mat4 mat) {
__m128 r0, r1, r2, r3, x0, x1, x2, x3, x4, x5;
__m128 r0, r1, r2, r3, x0, x1;
r0 = glmm_load(mat[0]);
r1 = glmm_load(mat[1]);
@@ -95,13 +94,10 @@ glm_inv_tr_sse2(mat4 mat) {
_MM_TRANSPOSE4_PS(r0, r1, r2, x1);
x2 = glmm_shuff1(r3, 0, 0, 0, 0);
x3 = glmm_shuff1(r3, 1, 1, 1, 1);
x4 = glmm_shuff1(r3, 2, 2, 2, 2);
x5 = _mm_set1_ps(-0.f);
x0 = glmm_fmadd(r0, x2, glmm_fmadd(r1, x3, _mm_mul_ps(r2, x4)));
x0 = _mm_xor_ps(x0, x5);
x0 = _mm_add_ps(_mm_mul_ps(r0, glmm_shuff1(r3, 0, 0, 0, 0)),
_mm_mul_ps(r1, glmm_shuff1(r3, 1, 1, 1, 1)));
x0 = _mm_add_ps(x0, _mm_mul_ps(r2, glmm_shuff1(r3, 2, 2, 2, 2)));
x0 = _mm_xor_ps(x0, _mm_set1_ps(-0.f));
x0 = _mm_add_ps(x0, x1);

View File

@@ -15,25 +15,22 @@
CGLM_INLINE
void
glm_mat2_mul_sse2(mat2 m1, mat2 m2, mat2 dest) {
__m128 x0, x1, x2, x3, x4;
__m128 x0, x1, x2;
x1 = glmm_load(m1[0]); /* d c b a */
x2 = glmm_load(m2[0]); /* h g f e */
x3 = glmm_shuff1(x2, 2, 2, 0, 0);
x4 = glmm_shuff1(x2, 3, 3, 1, 1);
x0 = _mm_movelh_ps(x1, x1);
x2 = _mm_movehl_ps(x1, x1);
/*
dest[0][0] = a * e + c * f;
dest[0][1] = b * e + d * f;
dest[1][0] = a * g + c * h;
dest[1][1] = b * g + d * h;
*/
x0 = glmm_fmadd(x0, x3, _mm_mul_ps(x2, x4));
x0 = _mm_mul_ps(_mm_movelh_ps(x1, x1), glmm_shuff1(x2, 2, 2, 0, 0));
x1 = _mm_mul_ps(_mm_movehl_ps(x1, x1), glmm_shuff1(x2, 3, 3, 1, 1));
x1 = _mm_add_ps(x0, x1);
glmm_store(dest[0], x0);
glmm_store(dest[0], x1);
}
CGLM_INLINE

View File

@@ -15,61 +15,44 @@
CGLM_INLINE
void
glm_mat3_mul_sse2(mat3 m1, mat3 m2, mat3 dest) {
__m128 l0, l1, l2, r0, r1, r2, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;
__m128 l0, l1, l2;
__m128 r0, r1, r2;
__m128 x0, x1, x2;
l0 = _mm_loadu_ps(m1[0]);
l1 = _mm_loadu_ps(&m1[1][1]);
l2 = _mm_set1_ps(m1[2][2]);
r0 = _mm_loadu_ps(m2[0]);
r1 = _mm_loadu_ps(&m2[1][1]);
r2 = _mm_set1_ps(m2[2][2]);
x8 = glmm_shuff1(l0, 0, 2, 1, 0); /* a00 a02 a01 a00 */
x1 = glmm_shuff1(r0, 3, 0, 0, 0); /* b10 b00 b00 b00 */
x2 = _mm_shuffle_ps(l0, l1, _MM_SHUFFLE(1, 0, 3, 3)); /* a12 a11 a10 a10 */
x3 = _mm_shuffle_ps(r0, r1, _MM_SHUFFLE(2, 0, 3, 1)); /* b20 b11 b10 b01 */
x0 = _mm_mul_ps(x8, x1);
x1 = glmm_shuff2(l0, l1, 1, 0, 3, 3, 0, 3, 2, 0);
x2 = glmm_shuff2(l1, l2, 0, 0, 3, 2, 0, 2, 1, 0);
x6 = glmm_shuff1(l0, 1, 0, 2, 1); /* a01 a00 a02 a01 */
x7 = glmm_shuff1(x3, 3, 3, 1, 1); /* b20 b20 b10 b10 */
l2 = _mm_load_ss(&m1[2][2]);
r2 = _mm_load_ss(&m2[2][2]);
x1 = _mm_mul_ps(x6, x7);
l2 = glmm_shuff1(l2, 0, 0, 1, 0); /* a22 a22 0.f a22 */
r2 = glmm_shuff1(r2, 0, 0, 1, 0); /* b22 b22 0.f b22 */
x0 = _mm_add_ps(_mm_mul_ps(glmm_shuff1(l0, 0, 2, 1, 0),
glmm_shuff1(r0, 3, 0, 0, 0)),
_mm_mul_ps(x1, glmm_shuff2(r0, r1, 0, 0, 1, 1, 2, 0, 0, 0)));
x4 = glmm_shuff1(x2, 0, 3, 2, 0); /* a10 a12 a11 a10 */
x5 = glmm_shuff1(x2, 2, 0, 3, 2); /* a11 a10 a12 a11 */
x6 = glmm_shuff1(x3, 2, 0, 0, 0); /* b11 b01 b01 b01 */
x2 = glmm_shuff1(r1, 3, 3, 0, 0); /* b21 b21 b11 b11 */
x0 = _mm_add_ps(x0,
_mm_mul_ps(x2, glmm_shuff2(r0, r1, 1, 1, 2, 2, 2, 0, 0, 0)));
x8 = _mm_unpackhi_ps(x8, x4); /* a10 a00 a12 a02 */
x9 = _mm_unpackhi_ps(x7, x2); /* b21 b20 b21 b20 */
_mm_storeu_ps(dest[0], x0);
x0 = glmm_fmadd(x4, x6, x0);
x1 = glmm_fmadd(x5, x2, x1);
x0 = _mm_add_ps(_mm_mul_ps(glmm_shuff1(l0, 1, 0, 2, 1),
_mm_shuffle_ps(r0, r1, _MM_SHUFFLE(2, 2, 3, 3))),
_mm_mul_ps(glmm_shuff1(x1, 1, 0, 2, 1),
glmm_shuff1(r1, 3, 3, 0, 0)));
x2 = _mm_movehl_ps(l2, l1); /* a22 a22 a21 a20 */
x3 = glmm_shuff1(x2, 0, 2, 1, 0); /* a20 a22 a21 a20 */
x2 = glmm_shuff1(x2, 1, 0, 2, 1); /* a21 a20 a22 a21 */
x4 = _mm_shuffle_ps(r0, r1, _MM_SHUFFLE(1, 1, 2, 2)); /* b12 b12 b02 b02 */
x5 = glmm_shuff1(x4, 3, 0, 0, 0); /* b12 b02 b02 b02 */
x4 = _mm_movehl_ps(r2, x4); /* b22 b22 b12 b12 */
x0 = glmm_fmadd(x3, x5, x0);
x1 = glmm_fmadd(x2, x4, x1);
x0 = _mm_add_ps(x0,
_mm_mul_ps(glmm_shuff1(x2, 1, 0, 2, 1),
_mm_shuffle_ps(r1, r2, _MM_SHUFFLE(0, 0, 1, 1))));
/*
Dot Product : dest[2][2] = a02 * b20 +
a12 * b21 +
a22 * b22 +
0 * 00 */
x2 = _mm_movelh_ps(x8, l2); /* 0.f a22 a12 a02 */
x3 = _mm_movelh_ps(x9, r2); /* 0.f b22 b21 b20 */
x2 = glmm_vdots(x2, x3);
_mm_storeu_ps(&dest[1][1], x0);
_mm_storeu_ps(&dest[0][0], x0);
_mm_storeu_ps(&dest[1][1], x1);
_mm_store_ss (&dest[2][2], x2);
dest[2][2] = m1[0][2] * m2[2][0]
+ m1[1][2] * m2[2][1]
+ m1[2][2] * m2[2][2];
}
#endif

View File

@@ -49,65 +49,53 @@ void
glm_mat4_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
glmm_128 l, r0, r1, r2, r3, v0, v1, v2, v3;
__m128 l0, l1, l2, l3, r;
l = glmm_load(m1[0]);
r0 = glmm_load(m2[0]);
r1 = glmm_load(m2[1]);
r2 = glmm_load(m2[2]);
r3 = glmm_load(m2[3]);
l0 = glmm_load(m1[0]);
l1 = glmm_load(m1[1]);
l2 = glmm_load(m1[2]);
l3 = glmm_load(m1[3]);
v0 = _mm_mul_ps(glmm_splat_x(r0), l);
v1 = _mm_mul_ps(glmm_splat_x(r1), l);
v2 = _mm_mul_ps(glmm_splat_x(r2), l);
v3 = _mm_mul_ps(glmm_splat_x(r3), l);
r = glmm_load(m2[0]);
glmm_store(dest[0],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
r = glmm_load(m2[1]);
glmm_store(dest[1],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
r = glmm_load(m2[2]);
glmm_store(dest[2],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
l = glmm_load(m1[1]);
v0 = glmm_fmadd(glmm_splat_y(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_y(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_y(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_y(r3), l, v3);
l = glmm_load(m1[2]);
v0 = glmm_fmadd(glmm_splat_z(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_z(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_z(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_z(r3), l, v3);
l = glmm_load(m1[3]);
v0 = glmm_fmadd(glmm_splat_w(r0), l, v0);
v1 = glmm_fmadd(glmm_splat_w(r1), l, v1);
v2 = glmm_fmadd(glmm_splat_w(r2), l, v2);
v3 = glmm_fmadd(glmm_splat_w(r3), l, v3);
glmm_store(dest[0], v0);
glmm_store(dest[1], v1);
glmm_store(dest[2], v2);
glmm_store(dest[3], v3);
r = glmm_load(m2[3]);
glmm_store(dest[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
}
CGLM_INLINE
void
glm_mat4_mulv_sse2(mat4 m, vec4 v, vec4 dest) {
__m128 x0, x1, m0, m1, m2, m3, v0, v1, v2, v3;
m0 = glmm_load(m[0]);
m1 = glmm_load(m[1]);
m2 = glmm_load(m[2]);
m3 = glmm_load(m[3]);
__m128 x0, x1, x2;
x0 = glmm_load(v);
v0 = glmm_splat_x(x0);
v1 = glmm_splat_y(x0);
v2 = glmm_splat_z(x0);
v3 = glmm_splat_w(x0);
x1 = _mm_add_ps(_mm_mul_ps(glmm_load(m[0]), glmm_shuff1x(x0, 0)),
_mm_mul_ps(glmm_load(m[1]), glmm_shuff1x(x0, 1)));
x1 = _mm_mul_ps(m3, v3);
x1 = glmm_fmadd(m2, v2, x1);
x1 = glmm_fmadd(m1, v1, x1);
x1 = glmm_fmadd(m0, v0, x1);
x2 = _mm_add_ps(_mm_mul_ps(glmm_load(m[2]), glmm_shuff1x(x0, 2)),
_mm_mul_ps(glmm_load(m[3]), glmm_shuff1x(x0, 3)));
glmm_store(dest, x1);
glmm_store(dest, _mm_add_ps(x1, x2));
}
CGLM_INLINE
@@ -127,18 +115,20 @@ glm_mat4_det_sse2(mat4 mat) {
t[3] = i * p - m * l;
t[4] = i * o - m * k;
*/
x0 = glmm_fnmadd(glmm_shuff1(r3, 0, 0, 1, 1), glmm_shuff1(r2, 2, 3, 2, 3),
_mm_mul_ps(glmm_shuff1(r2, 0, 0, 1, 1),
glmm_shuff1(r3, 2, 3, 2, 3)));
x0 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r2, 0, 0, 1, 1),
glmm_shuff1(r3, 2, 3, 2, 3)),
_mm_mul_ps(glmm_shuff1(r3, 0, 0, 1, 1),
glmm_shuff1(r2, 2, 3, 2, 3)));
/*
t[0] = k * p - o * l;
t[0] = k * p - o * l;
t[5] = i * n - m * j;
t[5] = i * n - m * j;
*/
x1 = glmm_fnmadd(glmm_shuff1(r3, 0, 0, 2, 2), glmm_shuff1(r2, 1, 1, 3, 3),
_mm_mul_ps(glmm_shuff1(r2, 0, 0, 2, 2),
glmm_shuff1(r3, 1, 1, 3, 3)));
x1 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r2, 0, 0, 2, 2),
glmm_shuff1(r3, 1, 1, 3, 3)),
_mm_mul_ps(glmm_shuff1(r3, 0, 0, 2, 2),
glmm_shuff1(r2, 1, 1, 3, 3)));
/*
a * (f * t[0] - g * t[1] + h * t[2])
@@ -146,16 +136,21 @@ glm_mat4_det_sse2(mat4 mat) {
+ c * (e * t[1] - f * t[3] + h * t[5])
- d * (e * t[2] - f * t[4] + g * t[5])
*/
x2 = glmm_fnmadd(glmm_shuff1(r1, 1, 1, 2, 2), glmm_shuff1(x0, 3, 2, 2, 0),
_mm_mul_ps(glmm_shuff1(r1, 0, 0, 0, 1),
_mm_shuffle_ps(x1, x0, _MM_SHUFFLE(1, 0, 0, 0))));
x2 = glmm_fmadd(glmm_shuff1(r1, 2, 3, 3, 3),
_mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 2, 3, 1)),
x2);
x2 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r1, 0, 0, 0, 1),
_mm_shuffle_ps(x1, x0, _MM_SHUFFLE(1, 0, 0, 0))),
_mm_mul_ps(glmm_shuff1(r1, 1, 1, 2, 2),
glmm_shuff1(x0, 3, 2, 2, 0)));
x2 = _mm_add_ps(x2,
_mm_mul_ps(glmm_shuff1(r1, 2, 3, 3, 3),
_mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 2, 3, 1))));
x2 = _mm_xor_ps(x2, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
return glmm_hadd(_mm_mul_ps(x2, r0));
x0 = _mm_mul_ps(r0, x2);
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 3, 3, 1));
return _mm_cvtss_f32(x0);
}
CGLM_INLINE
@@ -164,129 +159,117 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
__m128 r0, r1, r2, r3,
v0, v1, v2, v3,
t0, t1, t2, t3, t4, t5,
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;
x8 = _mm_set_ps(-0.f, 0.f, -0.f, 0.f);
x9 = glmm_shuff1(x8, 2, 1, 2, 1);
x0, x1, x2, x3, x4, x5, x6, x7;
/* 127 <- 0 */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
x0 = _mm_movehl_ps(r3, r2); /* p o l k */
x3 = _mm_movelh_ps(r2, r3); /* n m j i */
x1 = glmm_shuff1(x0, 1, 3, 3 ,3); /* l p p p */
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
x4 = glmm_shuff1(x3, 1, 3, 3, 3); /* j n n n */
x7 = glmm_shuff1(x3, 0, 2, 2, 2); /* i m m m */
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */
x1 = glmm_shuff1(x0, 1, 3, 3, 3); /* l p p p */
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
t0 = _mm_mul_ps(x3, x1);
t1 = _mm_mul_ps(x5, x1);
t2 = _mm_mul_ps(x5, x2);
t3 = _mm_mul_ps(x6, x1);
t4 = _mm_mul_ps(x6, x2);
t5 = _mm_mul_ps(x6, x4);
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
/* t1[0] = k * p - o * l;
t1[0] = k * p - o * l;
t2[0] = g * p - o * h;
t3[0] = g * l - k * h; */
t0 = glmm_fnmadd(x2, x0, t0);
t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0));
x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */
x4 = glmm_shuff1(x4, 0, 2, 2, 2); /* j n n n */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
/* t1[1] = j * p - n * l;
t1[1] = j * p - n * l;
t2[1] = f * p - n * h;
t3[1] = f * l - j * h; */
t1 = glmm_fnmadd(x4, x0, t1);
t1 = _mm_sub_ps(_mm_mul_ps(x5, x1), _mm_mul_ps(x4, x0));
/* t1[2] = j * o - n * k
t1[2] = j * o - n * k;
t2[2] = f * o - n * g;
t3[2] = f * k - j * g; */
t2 = glmm_fnmadd(x4, x3, t2);
t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3));
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x7 = glmm_shuff2(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
/* t1[3] = i * p - m * l;
t1[3] = i * p - m * l;
t2[3] = e * p - m * h;
t3[3] = e * l - i * h; */
t3 = glmm_fnmadd(x7, x0, t3);
t3 = _mm_sub_ps(_mm_mul_ps(x6, x1), _mm_mul_ps(x7, x0));
/* t1[4] = i * o - m * k;
t1[4] = i * o - m * k;
t2[4] = e * o - m * g;
t3[4] = e * k - i * g; */
t4 = glmm_fnmadd(x7, x3, t4);
t4 = _mm_sub_ps(_mm_mul_ps(x6, x2), _mm_mul_ps(x7, x3));
/* t1[5] = i * n - m * j;
t1[5] = i * n - m * j;
t2[5] = e * n - m * f;
t3[5] = e * j - i * f; */
t5 = glmm_fnmadd(x7, x5, t5);
x4 = _mm_movelh_ps(r0, r1); /* f e b a */
x5 = _mm_movehl_ps(r1, r0); /* h g d c */
x0 = glmm_shuff1(x4, 0, 0, 0, 2); /* a a a e */
x1 = glmm_shuff1(x4, 1, 1, 1, 3); /* b b b f */
x2 = glmm_shuff1(x5, 0, 0, 0, 2); /* c c c g */
x3 = glmm_shuff1(x5, 1, 1, 1, 3); /* d d d h */
v2 = _mm_mul_ps(x0, t1);
v1 = _mm_mul_ps(x0, t0);
v3 = _mm_mul_ps(x0, t2);
v0 = _mm_mul_ps(x1, t0);
v2 = glmm_fnmadd(x1, t3, v2);
v3 = glmm_fnmadd(x1, t4, v3);
v0 = glmm_fnmadd(x2, t1, v0);
v1 = glmm_fnmadd(x2, t3, v1);
v3 = glmm_fmadd(x2, t5, v3);
v0 = glmm_fmadd(x3, t2, v0);
v2 = glmm_fmadd(x3, t5, v2);
v1 = glmm_fmadd(x3, t4, v1);
t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5));
x0 = glmm_shuff2(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
x1 = glmm_shuff2(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
x2 = glmm_shuff2(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
x3 = glmm_shuff2(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
/*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
dest[0][1] =-(b * t1[0] - c * t1[1] + d * t1[2]);
dest[0][2] = b * t2[0] - c * t2[1] + d * t2[2];
dest[0][3] =-(b * t3[0] - c * t3[1] + d * t3[2]); */
v0 = _mm_xor_ps(v0, x8);
/*
dest[2][0] = e * t1[1] - f * t1[3] + h * t1[5];
dest[2][1] =-(a * t1[1] - b * t1[3] + d * t1[5]);
dest[2][2] = a * t2[1] - b * t2[3] + d * t2[5];
dest[2][3] =-(a * t3[1] - b * t3[3] + d * t3[5]);*/
v2 = _mm_xor_ps(v2, x8);
v0 = _mm_add_ps(_mm_mul_ps(x3, t2),
_mm_sub_ps(_mm_mul_ps(x1, t0),
_mm_mul_ps(x2, t1)));
v0 = _mm_xor_ps(v0, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
/*
dest[1][0] =-(e * t1[0] - g * t1[3] + h * t1[4]);
dest[1][1] = a * t1[0] - c * t1[3] + d * t1[4];
dest[1][2] =-(a * t2[0] - c * t2[3] + d * t2[4]);
dest[1][3] = a * t3[0] - c * t3[3] + d * t3[4]; */
v1 = _mm_xor_ps(v1, x9);
v1 = _mm_add_ps(_mm_mul_ps(x3, t4),
_mm_sub_ps(_mm_mul_ps(x0, t0),
_mm_mul_ps(x2, t3)));
v1 = _mm_xor_ps(v1, _mm_set_ps(0.f, -0.f, 0.f, -0.f));
/*
dest[2][0] = e * t1[1] - f * t1[3] + h * t1[5];
dest[2][1] =-(a * t1[1] - b * t1[3] + d * t1[5]);
dest[2][2] = a * t2[1] - b * t2[3] + d * t2[5];
dest[2][3] =-(a * t3[1] - b * t3[3] + d * t3[5]);*/
v2 = _mm_add_ps(_mm_mul_ps(x3, t5),
_mm_sub_ps(_mm_mul_ps(x0, t1),
_mm_mul_ps(x1, t3)));
v2 = _mm_xor_ps(v2, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
/*
dest[3][0] =-(e * t1[2] - f * t1[4] + g * t1[5]);
dest[3][1] = a * t1[2] - b * t1[4] + c * t1[5];
dest[3][2] =-(a * t2[2] - b * t2[4] + c * t2[5]);
dest[3][3] = a * t3[2] - b * t3[4] + c * t3[5]; */
v3 = _mm_xor_ps(v3, x9);
v3 = _mm_add_ps(_mm_mul_ps(x2, t5),
_mm_sub_ps(_mm_mul_ps(x0, t2),
_mm_mul_ps(x1, t4)));
v3 = _mm_xor_ps(v3, _mm_set_ps(0.f, -0.f, 0.f, -0.f));
/* determinant */
x0 = _mm_shuffle_ps(v0, v1, _MM_SHUFFLE(0, 0, 0, 0));
x1 = _mm_shuffle_ps(v2, v3, _MM_SHUFFLE(0, 0, 0, 0));
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
x0 = _mm_rcp_ps(glmm_vhadd(_mm_mul_ps(x0, r0)));
x0 = _mm_mul_ps(x0, r0);
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
x0 = _mm_rcp_ps(x0);
glmm_store(dest[0], _mm_mul_ps(v0, x0));
glmm_store(dest[1], _mm_mul_ps(v1, x0));
@@ -300,129 +283,117 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
__m128 r0, r1, r2, r3,
v0, v1, v2, v3,
t0, t1, t2, t3, t4, t5,
x0, x1, x2, x3, x4, x5, x6, x7, x8, x9;
x8 = _mm_set_ps(-0.f, 0.f, -0.f, 0.f);
x9 = glmm_shuff1(x8, 2, 1, 2, 1);
x0, x1, x2, x3, x4, x5, x6, x7;
/* 127 <- 0 */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
x0 = _mm_movehl_ps(r3, r2); /* p o l k */
x3 = _mm_movelh_ps(r2, r3); /* n m j i */
x1 = glmm_shuff1(x0, 1, 3, 3 ,3); /* l p p p */
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
x4 = glmm_shuff1(x3, 1, 3, 3, 3); /* j n n n */
x7 = glmm_shuff1(x3, 0, 2, 2, 2); /* i m m m */
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */
x1 = glmm_shuff1(x0, 1, 3, 3, 3); /* l p p p */
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
t0 = _mm_mul_ps(x3, x1);
t1 = _mm_mul_ps(x5, x1);
t2 = _mm_mul_ps(x5, x2);
t3 = _mm_mul_ps(x6, x1);
t4 = _mm_mul_ps(x6, x2);
t5 = _mm_mul_ps(x6, x4);
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
/* t1[0] = k * p - o * l;
t1[0] = k * p - o * l;
t2[0] = g * p - o * h;
t3[0] = g * l - k * h; */
t0 = glmm_fnmadd(x2, x0, t0);
t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0));
x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */
x4 = glmm_shuff1(x4, 0, 2, 2, 2); /* j n n n */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
/* t1[1] = j * p - n * l;
t1[1] = j * p - n * l;
t2[1] = f * p - n * h;
t3[1] = f * l - j * h; */
t1 = glmm_fnmadd(x4, x0, t1);
t1 = _mm_sub_ps(_mm_mul_ps(x5, x1), _mm_mul_ps(x4, x0));
/* t1[2] = j * o - n * k
t1[2] = j * o - n * k;
t2[2] = f * o - n * g;
t3[2] = f * k - j * g; */
t2 = glmm_fnmadd(x4, x3, t2);
t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3));
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x7 = glmm_shuff2(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
/* t1[3] = i * p - m * l;
t1[3] = i * p - m * l;
t2[3] = e * p - m * h;
t3[3] = e * l - i * h; */
t3 = glmm_fnmadd(x7, x0, t3);
t3 = _mm_sub_ps(_mm_mul_ps(x6, x1), _mm_mul_ps(x7, x0));
/* t1[4] = i * o - m * k;
t1[4] = i * o - m * k;
t2[4] = e * o - m * g;
t3[4] = e * k - i * g; */
t4 = glmm_fnmadd(x7, x3, t4);
t4 = _mm_sub_ps(_mm_mul_ps(x6, x2), _mm_mul_ps(x7, x3));
/* t1[5] = i * n - m * j;
t1[5] = i * n - m * j;
t2[5] = e * n - m * f;
t3[5] = e * j - i * f; */
t5 = glmm_fnmadd(x7, x5, t5);
x4 = _mm_movelh_ps(r0, r1); /* f e b a */
x5 = _mm_movehl_ps(r1, r0); /* h g d c */
x0 = glmm_shuff1(x4, 0, 0, 0, 2); /* a a a e */
x1 = glmm_shuff1(x4, 1, 1, 1, 3); /* b b b f */
x2 = glmm_shuff1(x5, 0, 0, 0, 2); /* c c c g */
x3 = glmm_shuff1(x5, 1, 1, 1, 3); /* d d d h */
v2 = _mm_mul_ps(x0, t1);
v1 = _mm_mul_ps(x0, t0);
v3 = _mm_mul_ps(x0, t2);
v0 = _mm_mul_ps(x1, t0);
v2 = glmm_fnmadd(x1, t3, v2);
v3 = glmm_fnmadd(x1, t4, v3);
v0 = glmm_fnmadd(x2, t1, v0);
v1 = glmm_fnmadd(x2, t3, v1);
v3 = glmm_fmadd(x2, t5, v3);
v0 = glmm_fmadd(x3, t2, v0);
v2 = glmm_fmadd(x3, t5, v2);
v1 = glmm_fmadd(x3, t4, v1);
t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5));
x0 = glmm_shuff2(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
x1 = glmm_shuff2(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
x2 = glmm_shuff2(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
x3 = glmm_shuff2(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
/*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
dest[0][1] =-(b * t1[0] - c * t1[1] + d * t1[2]);
dest[0][2] = b * t2[0] - c * t2[1] + d * t2[2];
dest[0][3] =-(b * t3[0] - c * t3[1] + d * t3[2]); */
v0 = _mm_xor_ps(v0, x8);
/*
dest[2][0] = e * t1[1] - f * t1[3] + h * t1[5];
dest[2][1] =-(a * t1[1] - b * t1[3] + d * t1[5]);
dest[2][2] = a * t2[1] - b * t2[3] + d * t2[5];
dest[2][3] =-(a * t3[1] - b * t3[3] + d * t3[5]);*/
v2 = _mm_xor_ps(v2, x8);
v0 = _mm_add_ps(_mm_mul_ps(x3, t2),
_mm_sub_ps(_mm_mul_ps(x1, t0),
_mm_mul_ps(x2, t1)));
v0 = _mm_xor_ps(v0, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
/*
dest[1][0] =-(e * t1[0] - g * t1[3] + h * t1[4]);
dest[1][1] = a * t1[0] - c * t1[3] + d * t1[4];
dest[1][2] =-(a * t2[0] - c * t2[3] + d * t2[4]);
dest[1][3] = a * t3[0] - c * t3[3] + d * t3[4]; */
v1 = _mm_xor_ps(v1, x9);
v1 = _mm_add_ps(_mm_mul_ps(x3, t4),
_mm_sub_ps(_mm_mul_ps(x0, t0),
_mm_mul_ps(x2, t3)));
v1 = _mm_xor_ps(v1, _mm_set_ps(0.f, -0.f, 0.f, -0.f));
/*
dest[2][0] = e * t1[1] - f * t1[3] + h * t1[5];
dest[2][1] =-(a * t1[1] - b * t1[3] + d * t1[5]);
dest[2][2] = a * t2[1] - b * t2[3] + d * t2[5];
dest[2][3] =-(a * t3[1] - b * t3[3] + d * t3[5]);*/
v2 = _mm_add_ps(_mm_mul_ps(x3, t5),
_mm_sub_ps(_mm_mul_ps(x0, t1),
_mm_mul_ps(x1, t3)));
v2 = _mm_xor_ps(v2, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
/*
dest[3][0] =-(e * t1[2] - f * t1[4] + g * t1[5]);
dest[3][1] = a * t1[2] - b * t1[4] + c * t1[5];
dest[3][2] =-(a * t2[2] - b * t2[4] + c * t2[5]);
dest[3][3] = a * t3[2] - b * t3[4] + c * t3[5]; */
v3 = _mm_xor_ps(v3, x9);
v3 = _mm_add_ps(_mm_mul_ps(x2, t5),
_mm_sub_ps(_mm_mul_ps(x0, t2),
_mm_mul_ps(x1, t4)));
v3 = _mm_xor_ps(v3, _mm_set_ps(0.f, -0.f, 0.f, -0.f));
/* determinant */
x0 = _mm_shuffle_ps(v0, v1, _MM_SHUFFLE(0, 0, 0, 0));
x1 = _mm_shuffle_ps(v2, v3, _MM_SHUFFLE(0, 0, 0, 0));
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
x0 = _mm_div_ps(_mm_set1_ps(1.0f), glmm_vhadd(_mm_mul_ps(x0, r0)));
x0 = _mm_mul_ps(x0, r0);
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
x0 = _mm_div_ps(_mm_set1_ps(1.0f), x0);
glmm_store(dest[0], _mm_mul_ps(v0, x0));
glmm_store(dest[1], _mm_mul_ps(v1, x0));

View File

@@ -22,33 +22,25 @@ glm_quat_mul_sse2(versor p, versor q, versor dest) {
a1 a2 b1 b2 c1 c2 d1 d2
*/
__m128 xp, xq, x1, x2, x3, r, x, y, z;
__m128 xp, xq, x0, r;
xp = glmm_load(p); /* 3 2 1 0 */
xq = glmm_load(q);
x1 = _mm_set_ps(-0.f, 0.f, -0.f, 0.f); /* TODO: _mm_set1_ss() + shuff ? */
r = _mm_mul_ps(glmm_splat_w(xp), xq);
x2 = _mm_unpackhi_ps(x1, x1);
x3 = glmm_shuff1(x1, 3, 2, 0, 1);
x = glmm_splat_x(xp);
y = glmm_splat_y(xp);
z = glmm_splat_z(xp);
x = _mm_xor_ps(x, x1);
y = _mm_xor_ps(y, x2);
z = _mm_xor_ps(z, x3);
x1 = glmm_shuff1(xq, 0, 1, 2, 3);
x2 = glmm_shuff1(xq, 1, 0, 3, 2);
x3 = glmm_shuff1(xq, 2, 3, 0, 1);
r = glmm_fmadd(x, x1, r);
r = glmm_fmadd(y, x2, r);
r = glmm_fmadd(z, x3, r);
r = _mm_mul_ps(glmm_shuff1x(xp, 3), xq);
x0 = _mm_xor_ps(glmm_shuff1x(xp, 0), _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 0, 1, 2, 3)));
x0 = _mm_xor_ps(glmm_shuff1x(xp, 1), _mm_set_ps(-0.f, -0.f, 0.f, 0.f));
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 1, 0, 3, 2)));
x0 = _mm_xor_ps(glmm_shuff1x(xp, 2), _mm_set_ps(-0.f, 0.f, 0.f, -0.f));
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 2, 3, 0, 1)));
glmm_store(dest, r);
}
#endif
#endif /* cglm_quat_simd_h */

View File

@@ -18,9 +18,6 @@
# define glmm_store(p, a) _mm_store_ps(p, a)
#endif
#define glmm_set1(x) _mm_set1_ps(x)
#define glmm_128 __m128
#ifdef CGLM_USE_INT_DOMAIN
# define glmm_shuff1(xmm, z, y, x, w) \
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(xmm), \
@@ -30,16 +27,7 @@
_mm_shuffle_ps(xmm, xmm, _MM_SHUFFLE(z, y, x, w))
#endif
#define glmm_splat(x, lane) glmm_shuff1(x, lane, lane, lane, lane)
#define glmm_splat_x(x) glmm_splat(x, 0)
#define glmm_splat_y(x) glmm_splat(x, 1)
#define glmm_splat_z(x) glmm_splat(x, 2)
#define glmm_splat_w(x) glmm_splat(x, 3)
/* glmm_shuff1x() is DEPRECATED!, use glmm_splat() */
#define glmm_shuff1x(xmm, x) glmm_shuff1(xmm, x, x, x, x)
#define glmm_shuff2(a, b, z0, y0, x0, w0, z1, y1, x1, w1) \
glmm_shuff1(_mm_shuffle_ps(a, b, _MM_SHUFFLE(z0, y0, x0, w0)), \
z1, y1, x1, w1)
@@ -60,15 +48,6 @@ glmm_abs(__m128 x) {
return _mm_andnot_ps(_mm_set1_ps(-0.0f), x);
}
static inline
__m128
glmm_vhadd(__m128 v) {
__m128 x0;
x0 = _mm_add_ps(v, glmm_shuff1(v, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
return x0;
}
static inline
__m128
glmm_vhadds(__m128 v) {
@@ -101,7 +80,7 @@ glmm_vhmin(__m128 v) {
__m128 x0, x1, x2;
x0 = _mm_movehl_ps(v, v); /* [2, 3, 2, 3] */
x1 = _mm_min_ps(x0, v); /* [0|2, 1|3, 2|2, 3|3] */
x2 = glmm_splat(x1, 1); /* [1|3, 1|3, 1|3, 1|3] */
x2 = glmm_shuff1x(x1, 1); /* [1|3, 1|3, 1|3, 1|3] */
return _mm_min_ss(x1, x2);
}
@@ -117,7 +96,7 @@ glmm_vhmax(__m128 v) {
__m128 x0, x1, x2;
x0 = _mm_movehl_ps(v, v); /* [2, 3, 2, 3] */
x1 = _mm_max_ps(x0, v); /* [0|2, 1|3, 2|2, 3|3] */
x2 = glmm_splat(x1, 1); /* [1|3, 1|3, 1|3, 1|3] */
x2 = glmm_shuff1x(x1, 1); /* [1|3, 1|3, 1|3, 1|3] */
return _mm_max_ss(x1, x2);
}
@@ -209,99 +188,5 @@ glmm_store3(float v[3], __m128 vx) {
_mm_store_ss(&v[2], glmm_shuff1(vx, 2, 2, 2, 2));
}
static inline
__m128
glmm_div(__m128 a, __m128 b) {
return _mm_div_ps(a, b);
}
/* enable FMA macro for MSVC? */
#if defined(_MSC_VER) && !defined(__FMA__) && defined(__AVX2__)
# define __FMA__ 1
#endif
static inline
__m128
glmm_fmadd(__m128 a, __m128 b, __m128 c) {
#ifdef __FMA__
return _mm_fmadd_ps(a, b, c);
#else
return _mm_add_ps(c, _mm_mul_ps(a, b));
#endif
}
static inline
__m128
glmm_fnmadd(__m128 a, __m128 b, __m128 c) {
#ifdef __FMA__
return _mm_fnmadd_ps(a, b, c);
#else
return _mm_sub_ps(c, _mm_mul_ps(a, b));
#endif
}
static inline
__m128
glmm_fmsub(__m128 a, __m128 b, __m128 c) {
#ifdef __FMA__
return _mm_fmsub_ps(a, b, c);
#else
return _mm_sub_ps(_mm_mul_ps(a, b), c);
#endif
}
static inline
__m128
glmm_fnmsub(__m128 a, __m128 b, __m128 c) {
#ifdef __FMA__
return _mm_fnmsub_ps(a, b, c);
#else
return _mm_xor_ps(_mm_add_ps(_mm_mul_ps(a, b), c), _mm_set1_ps(-0.0f));
#endif
}
#if defined(__AVX__)
static inline
__m256
glmm256_fmadd(__m256 a, __m256 b, __m256 c) {
#ifdef __FMA__
return _mm256_fmadd_ps(a, b, c);
#else
return _mm256_add_ps(c, _mm256_mul_ps(a, b));
#endif
}
static inline
__m256
glmm256_fnmadd(__m256 a, __m256 b, __m256 c) {
#ifdef __FMA__
return _mm256_fnmadd_ps(a, b, c);
#else
return _mm256_sub_ps(c, _mm256_mul_ps(a, b));
#endif
}
static inline
__m256
glmm256_fmsub(__m256 a, __m256 b, __m256 c) {
#ifdef __FMA__
return _mm256_fmsub_ps(a, b, c);
#else
return _mm256_sub_ps(_mm256_mul_ps(a, b), c);
#endif
}
static inline
__m256
glmm256_fnmsub(__m256 a, __m256 b, __m256 c) {
#ifdef __FMA__
return _mm256_fmsub_ps(a, b, c);
#else
return _mm256_xor_ps(_mm256_sub_ps(_mm256_mul_ps(a, b), c),
_mm256_set1_ps(-0.0f));
#endif
}
#endif
#endif
#endif /* cglm_simd_x86_h */

View File

@@ -9,10 +9,10 @@
Functions:
CGLM_INLINE mat4s glms_frustum(float left, float right,
float bottom, float top,
float nearZ, float farZ)
float nearVal, float farVal)
CGLM_INLINE mat4s glms_ortho(float left, float right,
float bottom, float top,
float nearZ, float farZ)
float nearVal, float farVal)
CGLM_INLINE mat4s glms_ortho_aabb(vec3s box[2]);
CGLM_INLINE mat4s glms_ortho_aabb_p(vec3s box[2], float padding);
CGLM_INLINE mat4s glms_ortho_aabb_pz(vec3s box[2], float padding);
@@ -20,8 +20,8 @@
CGLM_INLINE mat4s glms_ortho_default_s(float aspect, float size)
CGLM_INLINE mat4s glms_perspective(float fovy,
float aspect,
float nearZ,
float farZ)
float nearVal,
float farVal)
CGLM_INLINE void glms_persp_move_far(mat4s proj, float deltaFar)
CGLM_INLINE mat4s glms_perspective_default(float aspect)
CGLM_INLINE void glms_perspective_resize(mat4s proj, float aspect)
@@ -36,8 +36,8 @@
CGLM_INLINE void glms_persp_decomp_x(mat4s proj, float *left, float *right)
CGLM_INLINE void glms_persp_decomp_y(mat4s proj, float *top, float *bottom)
CGLM_INLINE void glms_persp_decomp_z(mat4s proj, float *nearv, float *farv)
CGLM_INLINE void glms_persp_decomp_far(mat4s proj, float *farZ)
CGLM_INLINE void glms_persp_decomp_near(mat4s proj, float *nearZ)
CGLM_INLINE void glms_persp_decomp_far(mat4s proj, float *farVal)
CGLM_INLINE void glms_persp_decomp_near(mat4s proj, float *nearVal)
CGLM_INLINE float glms_persp_fovy(mat4s proj)
CGLM_INLINE float glms_persp_aspect(mat4s proj)
CGLM_INLINE vec4s glms_persp_sizes(mat4s proj, float fovy)
@@ -51,39 +51,6 @@
#include "../plane.h"
#include "../cam.h"
#ifndef CGLM_CLIPSPACE_INCLUDE_ALL
# if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
# include "clipspace/ortho_lh_zo.h"
# include "clipspace/persp_lh_zo.h"
# include "clipspace/view_lh_zo.h"
# elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
# include "clipspace/ortho_lh_no.h"
# include "clipspace/persp_lh_no.h"
# include "clipspace/view_lh_no.h"
# elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
# include "clipspace/ortho_rh_zo.h"
# include "clipspace/persp_rh_zo.h"
# include "clipspace/view_rh_zo.h"
# elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
# include "clipspace/ortho_rh_no.h"
# include "clipspace/persp_rh_no.h"
# include "clipspace/view_rh_no.h"
# endif
#else
# include "clipspace/ortho_lh_zo.h"
# include "clipspace/persp_lh_zo.h"
# include "clipspace/ortho_lh_no.h"
# include "clipspace/persp_lh_no.h"
# include "clipspace/ortho_rh_zo.h"
# include "clipspace/persp_rh_zo.h"
# include "clipspace/ortho_rh_no.h"
# include "clipspace/persp_rh_no.h"
# include "clipspace/view_lh_zo.h"
# include "clipspace/view_lh_no.h"
# include "clipspace/view_rh_zo.h"
# include "clipspace/view_rh_no.h"
#endif
/*!
* @brief set up perspective peprojection matrix
*
@@ -91,24 +58,18 @@
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[in] nearVal near clipping plane
* @param[in] farVal far clipping plane
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_frustum(float left, float right,
float bottom, float top,
float nearZ, float farZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_frustum_lh_zo(left, right, bottom, top, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_frustum_lh_no(left, right, bottom, top, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_frustum_rh_zo(left, right, bottom, top, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_frustum_rh_no(left, right, bottom, top, nearZ, farZ);
#endif
glms_frustum(float left, float right,
float bottom, float top,
float nearVal, float farVal) {
mat4s dest;
glm_frustum(left, right, bottom, top, nearVal, farVal, dest.raw);
return dest;
}
/*!
@@ -118,24 +79,18 @@ glms_frustum(float left, float right,
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @param[in] nearVal near clipping plane
* @param[in] farVal far clipping plane
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho(float left, float right,
float bottom, float top,
float nearZ, float farZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_ortho_lh_zo(left, right, bottom, top, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_ortho_lh_no(left, right, bottom, top, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_ortho_rh_zo(left, right, bottom, top, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_ortho_rh_no(left, right, bottom, top, nearZ, farZ);
#endif
glms_ortho(float left, float right,
float bottom, float top,
float nearVal, float farVal) {
mat4s dest;
glm_ortho(left, right, bottom, top, nearVal, farVal, dest.raw);
return dest;
}
/*!
@@ -149,15 +104,13 @@ glms_ortho(float left, float right,
CGLM_INLINE
mat4s
glms_ortho_aabb(vec3s box[2]) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_ortho_aabb_lh_zo(box);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_ortho_aabb_lh_no(box);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_ortho_aabb_rh_zo(box);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_ortho_aabb_rh_no(box);
#endif
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb(rawBox, dest.raw);
return dest;
}
/*!
@@ -172,15 +125,13 @@ glms_ortho_aabb(vec3s box[2]) {
CGLM_INLINE
mat4s
glms_ortho_aabb_p(vec3s box[2], float padding) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_ortho_aabb_p_lh_zo(box, padding);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_ortho_aabb_p_lh_no(box, padding);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_ortho_aabb_p_rh_zo(box, padding);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_ortho_aabb_p_rh_no(box, padding);
#endif
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_p(rawBox, padding, dest.raw);
return dest;
}
/*!
@@ -195,15 +146,13 @@ glms_ortho_aabb_p(vec3s box[2], float padding) {
CGLM_INLINE
mat4s
glms_ortho_aabb_pz(vec3s box[2], float padding) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_ortho_aabb_pz_lh_zo(box, padding);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_ortho_aabb_pz_lh_no(box, padding);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_ortho_aabb_pz_rh_zo(box, padding);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_ortho_aabb_pz_rh_no(box, padding);
#endif
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_pz(rawBox, padding, dest.raw);
return dest;
}
/*!
@@ -215,15 +164,9 @@ glms_ortho_aabb_pz(vec3s box[2], float padding) {
CGLM_INLINE
mat4s
glms_ortho_default(float aspect) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_ortho_default_lh_zo(aspect);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_ortho_default_lh_no(aspect);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_ortho_default_rh_zo(aspect);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_ortho_default_rh_no(aspect);
#endif
mat4s dest;
glm_ortho_default(aspect, dest.raw);
return dest;
}
/*!
@@ -236,15 +179,9 @@ glms_ortho_default(float aspect) {
CGLM_INLINE
mat4s
glms_ortho_default_s(float aspect, float size) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_ortho_default_s_lh_zo(aspect, size);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_ortho_default_s_lh_no(aspect, size);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_ortho_default_s_rh_zo(aspect, size);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_ortho_default_s_rh_no(aspect, size);
#endif
mat4s dest;
glm_ortho_default_s(aspect, size, dest.raw);
return dest;
}
/*!
@@ -252,48 +189,30 @@ glms_ortho_default_s(float aspect, float size) {
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @param[in] nearVal near clipping plane
* @param[in] farVal far clipping planes
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_perspective(float fovy, float aspect, float nearZ, float farZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_perspective_lh_zo(fovy, aspect, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_perspective_lh_no(fovy, aspect, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_perspective_rh_zo(fovy, aspect, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_perspective_rh_no(fovy, aspect, nearZ, farZ);
#endif
glms_perspective(float fovy, float aspect, float nearVal, float farVal) {
mat4s dest;
glm_perspective(fovy, aspect, nearVal, farVal, dest.raw);
return dest;
}
/*!
* @brief extend perspective projection matrix's far distance
*
* NOTE: if you dodn't want to create new matrix then use array api on struct.raw
* like glm_persp_move_far(prooj.raw, deltaFar) to avoid create new mat4
* each time
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
mat4s
void
glms_persp_move_far(mat4s proj, float deltaFar) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_persp_move_far_lh_zo(proj, deltaFar);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_persp_move_far_lh_no(proj, deltaFar);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_persp_move_far_rh_zo(proj, deltaFar);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_persp_move_far_rh_no(proj, deltaFar);
#endif
glm_persp_move_far(proj.raw, deltaFar);
}
/*!
@@ -306,15 +225,9 @@ glms_persp_move_far(mat4s proj, float deltaFar) {
CGLM_INLINE
mat4s
glms_perspective_default(float aspect) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_perspective_default_lh_zo(aspect);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_perspective_default_lh_no(aspect);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_perspective_default_rh_zo(aspect);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_perspective_default_rh_no(aspect);
#endif
mat4s dest;
glm_perspective_default(aspect, dest.raw);
return dest;
}
/*!
@@ -322,25 +235,13 @@ glms_perspective_default(float aspect) {
* this makes very easy to resize proj matrix when window /viewport
* reized
*
* NOTE: if you dodn't want to create new matrix then use array api on struct.raw
* like glms_perspective_resize(proj.raw, aspect) to avoid create new mat4
* each time
*
* @param[in, out] proj perspective projection matrix
* @param[in] aspect aspect ratio ( width / height )
*/
CGLM_INLINE
mat4s
void
glms_perspective_resize(mat4s proj, float aspect) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_perspective_resize_lh_zo(proj, aspect);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_perspective_resize_lh_no(proj, aspect);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_perspective_resize_rh_zo(proj, aspect);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_perspective_resize_rh_no(proj, aspect);
#endif
glm_perspective_resize(aspect, proj.raw);
}
/*!
@@ -357,15 +258,9 @@ glms_perspective_resize(mat4s proj, float aspect) {
CGLM_INLINE
mat4s
glms_lookat(vec3s eye, vec3s center, vec3s up) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_lookat_lh_zo(eye, center, up);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_lookat_lh_no(eye, center, up);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_lookat_rh_zo(eye, center, up);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_lookat_rh_no(eye, center, up);
#endif
mat4s dest;
glm_lookat(eye.raw, center.raw, up.raw, dest.raw);
return dest;
}
/*!
@@ -385,15 +280,9 @@ glms_lookat(vec3s eye, vec3s center, vec3s up) {
CGLM_INLINE
mat4s
glms_look(vec3s eye, vec3s dir, vec3s up) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_look_lh_zo(eye, dir, up);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_look_lh_no(eye, dir, up);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_look_rh_zo(eye, dir, up);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_look_rh_no(eye, dir, up);
#endif
mat4s dest;
glm_look(eye.raw, dir.raw, up.raw, dest.raw);
return dest;
}
/*!
@@ -409,23 +298,17 @@ glms_look(vec3s eye, vec3s dir, vec3s up) {
CGLM_INLINE
mat4s
glms_look_anyup(vec3s eye, vec3s dir) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_look_anyup_lh_zo(eye, dir);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_look_anyup_lh_no(eye, dir);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_look_anyup_rh_zo(eye, dir);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_look_anyup_rh_no(eye, dir);
#endif
mat4s dest;
glm_look_anyup(eye.raw, dir.raw, dest.raw);
return dest;
}
/*!
* @brief decomposes frustum values of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] nearVal near
* @param[out] farVal far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
@@ -434,18 +317,10 @@ glms_look_anyup(vec3s eye, vec3s dir) {
CGLM_INLINE
void
glms_persp_decomp(mat4s proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glms_persp_decomp_lh_zo(proj, nearZ, farZ, top, bottom, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glms_persp_decomp_lh_no(proj, nearZ, farZ, top, bottom, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glms_persp_decomp_rh_zo(proj, nearZ, farZ, top, bottom, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glms_persp_decomp_rh_no(proj, nearZ, farZ, top, bottom, left, right);
#endif
float * __restrict nearVal, float * __restrict farVal,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
glm_persp_decomp(proj.raw, nearVal, farVal, top, bottom, left, right);
}
/*!
@@ -458,15 +333,7 @@ glms_persp_decomp(mat4s proj,
CGLM_INLINE
void
glms_persp_decompv(mat4s proj, float dest[6]) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glms_persp_decompv_lh_zo(proj, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glms_persp_decompv_lh_no(proj, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glms_persp_decompv_rh_zo(proj, dest);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glms_persp_decompv_rh_no(proj, dest);
#endif
glm_persp_decompv(proj.raw, dest);
}
/*!
@@ -482,15 +349,7 @@ void
glms_persp_decomp_x(mat4s proj,
float * __restrict left,
float * __restrict right) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glms_persp_decomp_x_lh_zo(proj, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glms_persp_decomp_x_lh_no(proj, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glms_persp_decomp_x_rh_zo(proj, left, right);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glms_persp_decomp_x_rh_no(proj, left, right);
#endif
glm_persp_decomp_x(proj.raw, left, right);
}
/*!
@@ -506,15 +365,7 @@ void
glms_persp_decomp_y(mat4s proj,
float * __restrict top,
float * __restrict bottom) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glms_persp_decomp_y_lh_zo(proj, top, bottom);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glms_persp_decomp_y_lh_no(proj, top, bottom);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glms_persp_decomp_y_rh_zo(proj, top, bottom);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glms_persp_decomp_y_rh_no(proj, top, bottom);
#endif
glm_persp_decomp_y(proj.raw, top, bottom);
}
/*!
@@ -522,63 +373,39 @@ glms_persp_decomp_y(mat4s proj,
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] nearVal near
* @param[out] farVal far
*/
CGLM_INLINE
void
glms_persp_decomp_z(mat4s proj,
float * __restrict nearZ,
float * __restrict farZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glms_persp_decomp_z_lh_zo(proj, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glms_persp_decomp_z_lh_no(proj, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glms_persp_decomp_z_rh_zo(proj, nearZ, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glms_persp_decomp_z_rh_no(proj, nearZ, farZ);
#endif
float * __restrict nearVal,
float * __restrict farVal) {
glm_persp_decomp_z(proj.raw, nearVal, farVal);
}
/*!
* @brief decomposes far value of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
* @param[out] farVal far
*/
CGLM_INLINE
void
glms_persp_decomp_far(mat4s proj, float * __restrict farZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glms_persp_decomp_far_lh_zo(proj, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glms_persp_decomp_far_lh_no(proj, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glms_persp_decomp_far_rh_zo(proj, farZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glms_persp_decomp_far_rh_no(proj, farZ);
#endif
glms_persp_decomp_far(mat4s proj, float * __restrict farVal) {
glm_persp_decomp_far(proj.raw, farVal);
}
/*!
* @brief decomposes near value of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[in] proj perspective projection matrix
* @param[out] nearVal near
*/
CGLM_INLINE
void
glms_persp_decomp_near(mat4s proj, float * __restrict nearZ) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
glms_persp_decomp_near_lh_zo(proj, nearZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
glms_persp_decomp_near_lh_no(proj, nearZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
glms_persp_decomp_near_rh_zo(proj, nearZ);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
glms_persp_decomp_near_rh_no(proj, nearZ);
#endif
glms_persp_decomp_near(mat4s proj, float * __restrict nearVal) {
glm_persp_decomp_near(proj.raw, nearVal);
}
/*!
@@ -592,15 +419,7 @@ glms_persp_decomp_near(mat4s proj, float * __restrict nearZ) {
CGLM_INLINE
float
glms_persp_fovy(mat4s proj) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_persp_fovy_lh_zo(proj);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_persp_fovy_lh_no(proj);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_persp_fovy_rh_zo(proj);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_persp_fovy_rh_no(proj);
#endif
return glm_persp_fovy(proj.raw);
}
/*!
@@ -611,15 +430,7 @@ glms_persp_fovy(mat4s proj) {
CGLM_INLINE
float
glms_persp_aspect(mat4s proj) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_persp_aspect_lh_zo(proj);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_persp_aspect_lh_no(proj);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_persp_aspect_rh_zo(proj);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_persp_aspect_rh_no(proj);
#endif
return glm_persp_aspect(proj.raw);
}
/*!
@@ -632,15 +443,9 @@ glms_persp_aspect(mat4s proj) {
CGLM_INLINE
vec4s
glms_persp_sizes(mat4s proj, float fovy) {
#if CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_ZO
return glms_persp_sizes_lh_zo(proj, fovy);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_LH_NO
return glms_persp_sizes_lh_no(proj, fovy);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_ZO
return glms_persp_sizes_rh_zo(proj, fovy);
#elif CGLM_CONFIG_CLIP_CONTROL == CGLM_CLIP_CONTROL_RH_NO
return glms_persp_sizes_rh_no(proj, fovy);
#endif
vec4s dest;
glm_persp_sizes(proj.raw, fovy, dest.raw);
return dest;
}
#endif /* cglms_cam_h */

View File

@@ -1,152 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), htt../opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_ortho_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ)
CGLM_INLINE mat4s glms_ortho_aabb_lh_no(vec3s box[2]);
CGLM_INLINE mat4s glms_ortho_aabb_p_lh_no(vec3s box[2], float padding);
CGLM_INLINE mat4s glms_ortho_aabb_pz_lh_no(vec3s box[2], float padding);
CGLM_INLINE mat4s glms_ortho_default_lh_no(float aspect)
CGLM_INLINE mat4s glms_ortho_default_s_lh_no(float aspect, float size)
*/
#ifndef cglms_ortho_lh_no_h
#define cglms_ortho_lh_no_h
#include "../../common.h"
#include "../../types-struct.h"
#include "../../plane.h"
#include "../../cam.h"
/*!
* @brief set up orthographic projection matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ) {
mat4s dest;
glm_ortho_lh_no(left, right, bottom, top, nearZ, farZ, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_lh_no(vec3s box[2]) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_lh_no(rawBox, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_p_lh_no(vec3s box[2], float padding) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_p_lh_no(rawBox, padding, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_pz_lh_no(vec3s box[2], float padding) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_pz_lh_no(rawBox, padding, dest.raw);
return dest;
}
/*!
* @brief set up unit orthographic projection matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_default_lh_no(float aspect) {
mat4s dest;
glm_ortho_default_lh_no(aspect, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_default_s_lh_no(float aspect, float size) {
mat4s dest;
glm_ortho_default_s_lh_no(aspect, size, dest.raw);
return dest;
}
#endif /* cglms_ortho_lh_no_h */

View File

@@ -1,152 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), htt../opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_ortho_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ)
CGLM_INLINE mat4s glms_ortho_aabb_lh_zo(vec3s box[2]);
CGLM_INLINE mat4s glms_ortho_aabb_p_lh_zo(vec3s box[2], float padding);
CGLM_INLINE mat4s glms_ortho_aabb_pz_lh_zo(vec3s box[2], float padding);
CGLM_INLINE mat4s glms_ortho_default_lh_zo(float aspect)
CGLM_INLINE mat4s glms_ortho_default_s_lh_zo(float aspect, float size)
*/
#ifndef cglms_ortho_lh_zo_h
#define cglms_ortho_lh_zo_h
#include "../../common.h"
#include "../../types-struct.h"
#include "../../plane.h"
#include "../../cam.h"
/*!
* @brief set up orthographic projection matrix
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ) {
mat4s dest;
glm_ortho_lh_zo(left, right, bottom, top, nearZ, farZ, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_lh_zo(vec3s box[2]) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_lh_zo(rawBox, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_p_lh_zo(vec3s box[2], float padding) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_p_lh_zo(rawBox, padding, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_pz_lh_zo(vec3s box[2], float padding) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_pz_lh_zo(rawBox, padding, dest.raw);
return dest;
}
/*!
* @brief set up unit orthographic projection matrix
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_default_lh_zo(float aspect) {
mat4s dest;
glm_ortho_default_lh_zo(aspect, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_default_s_lh_zo(float aspect, float size) {
mat4s dest;
glm_ortho_default_s_lh_zo(aspect, size, dest.raw);
return dest;
}
#endif /* cglms_ortho_lh_zo_h */

View File

@@ -1,152 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), htt../opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_ortho_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ)
CGLM_INLINE mat4s glms_ortho_aabb_rh_no(vec3s box[2]);
CGLM_INLINE mat4s glms_ortho_aabb_p_rh_no(vec3s box[2], float padding);
CGLM_INLINE mat4s glms_ortho_aabb_pz_rh_no(vec3s box[2], float padding);
CGLM_INLINE mat4s glms_ortho_default_rh_no(float aspect)
CGLM_INLINE mat4s glms_ortho_default_s_rh_no(float aspect, float size)
*/
#ifndef cglms_ortho_rh_no_h
#define cglms_ortho_rh_no_h
#include "../../common.h"
#include "../../types-struct.h"
#include "../../plane.h"
#include "../../cam.h"
/*!
* @brief set up orthographic projection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ) {
mat4s dest;
glm_ortho_rh_no(left, right, bottom, top, nearZ, farZ, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_rh_no(vec3s box[2]) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_rh_no(rawBox, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_p_rh_no(vec3s box[2], float padding) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_p_rh_no(rawBox, padding, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_pz_rh_no(vec3s box[2], float padding) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_pz_rh_no(rawBox, padding, dest.raw);
return dest;
}
/*!
* @brief set up unit orthographic projection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_default_rh_no(float aspect) {
mat4s dest;
glm_ortho_default_rh_no(aspect, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_default_s_rh_no(float aspect, float size) {
mat4s dest;
glm_ortho_default_s_rh_no(aspect, size, dest.raw);
return dest;
}
#endif /* cglms_ortho_rh_no_h */

View File

@@ -1,152 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), htt../opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_ortho_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ)
CGLM_INLINE mat4s glms_ortho_aabb_rh_zo(vec3s box[2]);
CGLM_INLINE mat4s glms_ortho_aabb_p_rh_zo(vec3s box[2], float padding);
CGLM_INLINE mat4s glms_ortho_aabb_pz_rh_zo(vec3s box[2], float padding);
CGLM_INLINE mat4s glms_ortho_default_rh_zo(float aspect)
CGLM_INLINE mat4s glms_ortho_default_s_rh_zo(float aspect, float size)
*/
#ifndef cglms_ortho_rh_zo_h
#define cglms_ortho_rh_zo_h
#include "../../common.h"
#include "../../types-struct.h"
#include "../../plane.h"
#include "../../cam.h"
/*!
* @brief set up orthographic projection matrix
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ) {
mat4s dest;
glm_ortho_rh_zo(left, right, bottom, top, nearZ, farZ, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_rh_zo(vec3s box[2]) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_rh_zo(rawBox, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_p_rh_zo(vec3s box[2], float padding) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_p_rh_zo(rawBox, padding, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_pz_rh_zo(vec3s box[2], float padding) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_pz_rh_zo(rawBox, padding, dest.raw);
return dest;
}
/*!
* @brief set up unit orthographic projection matrix
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] aspect aspect ration ( width / height )
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_default_rh_zo(float aspect) {
mat4s dest;
glm_ortho_default_rh_zo(aspect, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_default_s_rh_zo(float aspect, float size) {
mat4s dest;
glm_ortho_default_s_rh_zo(aspect, size, dest.raw);
return dest;
}
#endif /* cglms_ortho_rh_zo_h */

View File

@@ -1,311 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), htt../opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_frustum_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ)
CGLM_INLINE mat4s glms_perspective_lh_no(float fovy,
float aspect,
float nearZ,
float farZ)
CGLM_INLINE void glms_persp_move_far_lh_no(mat4s proj, float deltaFar)
CGLM_INLINE mat4s glms_perspective_default_lh_no(float aspect)
CGLM_INLINE void glms_perspective_resize_lh_no(mat4s proj, float aspect)
CGLM_INLINE void glms_persp_decomp_lh_no(mat4s proj,
float *nearv, float *farv,
float *top, float *bottom,
float *left, float *right)
CGLM_INLINE void glms_persp_decompv_lh_no(mat4s proj, float dest[6])
CGLM_INLINE void glms_persp_decomp_x_lh_no(mat4s proj, float *left, float *right)
CGLM_INLINE void glms_persp_decomp_y_lh_no(mat4s proj, float *top, float *bottom)
CGLM_INLINE void glms_persp_decomp_z_lh_no(mat4s proj, float *nearv, float *farv)
CGLM_INLINE void glms_persp_decomp_far_lh_no(mat4s proj, float *farZ)
CGLM_INLINE void glms_persp_decomp_near_lh_no(mat4s proj, float *nearZ)
CGLM_INLINE float glms_persp_fovy_lh_no(mat4s proj)
CGLM_INLINE float glms_persp_aspect_lh_no(mat4s proj)
CGLM_INLINE vec4s glms_persp_sizes_lh_no(mat4s proj, float fovy)
*/
#ifndef cglms_persp_lh_no_h
#define cglms_persp_lh_no_h
#include "../../common.h"
#include "../../types-struct.h"
#include "../../plane.h"
#include "../../cam.h"
/*!
* @brief set up perspective peprojection matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_frustum_lh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ) {
mat4s dest;
glm_frustum_lh_no(left, right, bottom, top, nearZ, farZ, dest.raw);
return dest;
}
/*!
* @brief set up perspective projection matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_perspective_lh_no(float fovy, float aspect, float nearZ, float farZ) {
mat4s dest;
glm_perspective_lh_no(fovy, aspect, nearZ, farZ, dest.raw);
return dest;
}
/*!
* @brief extend perspective projection matrix's far distance
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* NOTE: if you dodn't want to create new matrix then use array api on struct.raw
* like glms_persp_move_far_lh_no(prooj.raw, deltaFar) to avoid create new mat4
* each time
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
mat4s
glms_persp_move_far_lh_no(mat4s proj, float deltaFar) {
mat4s dest;
dest = proj;
glm_persp_move_far_lh_no(dest.raw, deltaFar);
return dest;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_perspective_default_lh_no(float aspect) {
mat4s dest;
glm_perspective_default_lh_no(aspect, dest.raw);
return dest;
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* reized with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* NOTE: if you dodn't want to create new matrix then use array api on struct.raw
* like glm_perspective_resize_lh_no(proj.raw, aspect) to avoid create new mat4
* each time
*
* @param[in, out] proj perspective projection matrix
* @param[in] aspect aspect ratio ( width / height )
*/
CGLM_INLINE
mat4s
glms_perspective_resize_lh_no(mat4s proj, float aspect) {
mat4s dest;
dest = proj;
glm_perspective_resize_lh_no(aspect, dest.raw);
return dest;
}
/*!
* @brief decomposes frustum values of perspective projection.
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glms_persp_decomp_lh_no(mat4s proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
glm_persp_decomp_lh_no(proj.raw, nearZ, farZ, top, bottom, left, right);
}
/*!
* @brief decomposes frustum values of perspective projection.
* this makes easy to get all values at once
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glms_persp_decompv_lh_no(mat4s proj, float dest[6]) {
glm_persp_decompv_lh_no(proj.raw, dest);
}
/*!
* @brief decomposes left and right values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glms_persp_decomp_x_lh_no(mat4s proj,
float * __restrict left,
float * __restrict right) {
glm_persp_decomp_x_lh_no(proj.raw, left, right);
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
* y stands for y axis (top / botom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glms_persp_decomp_y_lh_no(mat4s proj,
float * __restrict top,
float * __restrict bottom) {
glm_persp_decomp_y_lh_no(proj.raw, top, bottom);
}
/*!
* @brief decomposes near and far values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glms_persp_decomp_z_lh_no(mat4s proj,
float * __restrict nearZ,
float * __restrict farZ) {
glm_persp_decomp_z_lh_no(proj.raw, nearZ, farZ);
}
/*!
* @brief decomposes far value of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glms_persp_decomp_far_lh_no(mat4s proj, float * __restrict farZ) {
glm_persp_decomp_far_lh_no(proj.raw, farZ);
}
/*!
* @brief decomposes near value of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glms_persp_decomp_near_lh_no(mat4s proj, float * __restrict nearZ) {
glm_persp_decomp_near_lh_no(proj.raw, nearZ);
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glms_persp_fovy_lh_no(mat4s proj) {
return glm_persp_fovy_lh_no(proj.raw);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glms_persp_aspect_lh_no(mat4s proj) {
return glm_persp_aspect_lh_no(proj.raw);
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @returns sizes as vector, sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
vec4s
glms_persp_sizes_lh_no(mat4s proj, float fovy) {
vec4s dest;
glm_persp_sizes_lh_no(proj.raw, fovy, dest.raw);
return dest;
}
#endif /* cglms_persp_lh_no_h */

View File

@@ -1,311 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), htt../opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_frustum_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ)
CGLM_INLINE mat4s glms_perspective_lh_zo(float fovy,
float aspect,
float nearZ,
float farZ)
CGLM_INLINE void glms_persp_move_far_lh_zo(mat4s proj, float deltaFar)
CGLM_INLINE mat4s glms_perspective_default_lh_zo(float aspect)
CGLM_INLINE void glms_perspective_resize_lh_zo(mat4s proj, float aspect)
CGLM_INLINE void glms_persp_decomp_lh_zo(mat4s proj,
float *nearv, float *farv,
float *top, float *bottom,
float *left, float *right)
CGLM_INLINE void glms_persp_decompv_lh_zo(mat4s proj, float dest[6])
CGLM_INLINE void glms_persp_decomp_x_lh_zo(mat4s proj, float *left, float *right)
CGLM_INLINE void glms_persp_decomp_y_lh_zo(mat4s proj, float *top, float *bottom)
CGLM_INLINE void glms_persp_decomp_z_lh_zo(mat4s proj, float *nearv, float *farv)
CGLM_INLINE void glms_persp_decomp_far_lh_zo(mat4s proj, float *farZ)
CGLM_INLINE void glms_persp_decomp_near_lh_zo(mat4s proj, float *nearZ)
CGLM_INLINE float glms_persp_fovy_lh_zo(mat4s proj)
CGLM_INLINE float glms_persp_aspect_lh_zo(mat4s proj)
CGLM_INLINE vec4s glms_persp_sizes_lh_zo(mat4s proj, float fovy)
*/
#ifndef cglms_persp_lh_zo_h
#define cglms_persp_lh_zo_h
#include "../../common.h"
#include "../../types-struct.h"
#include "../../plane.h"
#include "../../cam.h"
/*!
* @brief set up perspective peprojection matrix
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_frustum_lh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ) {
mat4s dest;
glm_frustum_lh_zo(left, right, bottom, top, nearZ, farZ, dest.raw);
return dest;
}
/*!
* @brief set up perspective projection matrix
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_perspective_lh_zo(float fovy, float aspect, float nearZ, float farZ) {
mat4s dest;
glm_perspective_lh_zo(fovy, aspect, nearZ, farZ, dest.raw);
return dest;
}
/*!
* @brief extend perspective projection matrix's far distance
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* NOTE: if you dodn't want to create new matrix then use array api on struct.raw
* like glms_persp_move_far_lh_zo(prooj.raw, deltaFar) to avoid create new mat4
* each time
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
mat4s
glms_persp_move_far_lh_zo(mat4s proj, float deltaFar) {
mat4s dest;
dest = proj;
glm_persp_move_far_lh_zo(dest.raw, deltaFar);
return dest;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_perspective_default_lh_zo(float aspect) {
mat4s dest;
glm_perspective_default_lh_zo(aspect, dest.raw);
return dest;
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* reized with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* NOTE: if you dodn't want to create new matrix then use array api on struct.raw
* like glms_perspective_resize_lh_zo(proj.raw, aspect) to avoid create new mat4
* each time
*
* @param[in, out] proj perspective projection matrix
* @param[in] aspect aspect ratio ( width / height )
*/
CGLM_INLINE
mat4s
glms_perspective_resize_lh_zo(mat4s proj, float aspect) {
mat4s dest;
dest = proj;
glm_perspective_resize_lh_zo(aspect, dest.raw);
return dest;
}
/*!
* @brief decomposes frustum values of perspective projection.
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glms_persp_decomp_lh_zo(mat4s proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
glm_persp_decomp_lh_zo(proj.raw, nearZ, farZ, top, bottom, left, right);
}
/*!
* @brief decomposes frustum values of perspective projection.
* this makes easy to get all values at once
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glms_persp_decompv_lh_zo(mat4s proj, float dest[6]) {
glm_persp_decompv_lh_zo(proj.raw, dest);
}
/*!
* @brief decomposes left and right values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [0, 1].
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glms_persp_decomp_x_lh_zo(mat4s proj,
float * __restrict left,
float * __restrict right) {
glm_persp_decomp_x_lh_zo(proj.raw, left, right);
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [0, 1].
* y stands for y axis (top / botom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glms_persp_decomp_y_lh_zo(mat4s proj,
float * __restrict top,
float * __restrict bottom) {
glm_persp_decomp_y_lh_zo(proj.raw, top, bottom);
}
/*!
* @brief decomposes near and far values of perspective projection
* with a left-hand coordinate system and a
* clip-space of [0, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glms_persp_decomp_z_lh_zo(mat4s proj,
float * __restrict nearZ,
float * __restrict farZ) {
glm_persp_decomp_z_lh_zo(proj.raw, nearZ, farZ);
}
/*!
* @brief decomposes far value of perspective projection
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glms_persp_decomp_far_lh_zo(mat4s proj, float * __restrict farZ) {
glm_persp_decomp_far_lh_zo(proj.raw, farZ);
}
/*!
* @brief decomposes near value of perspective projection
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glms_persp_decomp_near_lh_zo(mat4s proj, float * __restrict nearZ) {
glm_persp_decomp_near_lh_zo(proj.raw, nearZ);
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glms_persp_fovy_lh_zo(mat4s proj) {
return glm_persp_fovy_lh_zo(proj.raw);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glms_persp_aspect_lh_zo(mat4s proj) {
return glm_persp_aspect_lh_zo(proj.raw);
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @returns sizes as vector, sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
vec4s
glms_persp_sizes_lh_zo(mat4s proj, float fovy) {
vec4s dest;
glm_persp_sizes_lh_zo(proj.raw, fovy, dest.raw);
return dest;
}
#endif /* cglms_persp_lh_zo_h */

View File

@@ -1,311 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), htt../opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_frustum_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ)
CGLM_INLINE mat4s glms_perspective_rh_no(float fovy,
float aspect,
float nearZ,
float farZ)
CGLM_INLINE void glms_persp_move_far_rh_no(mat4s proj, float deltaFar)
CGLM_INLINE mat4s glms_perspective_default_rh_no(float aspect)
CGLM_INLINE void glms_perspective_resize_rh_no(mat4s proj, float aspect)
CGLM_INLINE void glms_persp_decomp_rh_no(mat4s proj,
float *nearv, float *farv,
float *top, float *bottom,
float *left, float *right)
CGLM_INLINE void glms_persp_decompv_rh_no(mat4s proj, float dest[6])
CGLM_INLINE void glms_persp_decomp_x_rh_no(mat4s proj, float *left, float *right)
CGLM_INLINE void glms_persp_decomp_y_rh_no(mat4s proj, float *top, float *bottom)
CGLM_INLINE void glms_persp_decomp_z_rh_no(mat4s proj, float *nearv, float *farv)
CGLM_INLINE void glms_persp_decomp_far_rh_no(mat4s proj, float *farZ)
CGLM_INLINE void glms_persp_decomp_near_rh_no(mat4s proj, float *nearZ)
CGLM_INLINE float glms_persp_fovy_rh_no(mat4s proj)
CGLM_INLINE float glms_persp_aspect_rh_no(mat4s proj)
CGLM_INLINE vec4s glms_persp_sizes_rh_no(mat4s proj, float fovy)
*/
#ifndef cglms_persp_rh_no_h
#define cglms_persp_rh_no_h
#include "../../common.h"
#include "../../types-struct.h"
#include "../../plane.h"
#include "../../cam.h"
/*!
* @brief set up perspective peprojection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_frustum_rh_no(float left, float right,
float bottom, float top,
float nearZ, float farZ) {
mat4s dest;
glm_frustum_rh_no(left, right, bottom, top, nearZ, farZ, dest.raw);
return dest;
}
/*!
* @brief set up perspective projection matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_perspective_rh_no(float fovy, float aspect, float nearZ, float farZ) {
mat4s dest;
glm_perspective_rh_no(fovy, aspect, nearZ, farZ, dest.raw);
return dest;
}
/*!
* @brief extend perspective projection matrix's far distance
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* NOTE: if you dodn't want to create new matrix then use array api on struct.raw
* like glms_persp_move_far_rh_no(prooj.raw, deltaFar) to avoid create new mat4
* each time
* s
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
mat4s
glms_persp_move_far_rh_no(mat4s proj, float deltaFar) {
mat4s dest;
dest = proj;
glm_persp_move_far_rh_no(dest.raw, deltaFar);
return dest;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_perspective_default_rh_no(float aspect) {
mat4s dest;
glm_perspective_default_rh_no(aspect, dest.raw);
return dest;
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* reized with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* NOTE: if you dodn't want to create new matrix then use array api on struct.raw
* like glm_perspective_resize_rh_no(proj.raw, aspect) to avoid create new mat4
* each time
*
* @param[in, out] proj perspective projection matrix
* @param[in] aspect aspect ratio ( width / height )
*/
CGLM_INLINE
mat4s
glms_perspective_resize_rh_no(mat4s proj, float aspect) {
mat4s dest;
dest = proj;
glm_perspective_resize_rh_no(aspect, dest.raw);
return dest;
}
/*!
* @brief decomposes frustum values of perspective projection.
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glms_persp_decomp_rh_no(mat4s proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
glm_persp_decomp_rh_no(proj.raw, nearZ, farZ, top, bottom, left, right);
}
/*!
* @brief decomposes frustum values of perspective projection.
* this makes easy to get all values at once
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glms_persp_decompv_rh_no(mat4s proj, float dest[6]) {
glm_persp_decompv_rh_no(proj.raw, dest);
}
/*!
* @brief decomposes left and right values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glms_persp_decomp_x_rh_no(mat4s proj,
float * __restrict left,
float * __restrict right) {
glm_persp_decomp_x_rh_no(proj.raw, left, right);
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* y stands for y axis (top / botom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glms_persp_decomp_y_rh_no(mat4s proj,
float * __restrict top,
float * __restrict bottom) {
glm_persp_decomp_y_rh_no(proj.raw, top, bottom);
}
/*!
* @brief decomposes near and far values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glms_persp_decomp_z_rh_no(mat4s proj,
float * __restrict nearZ,
float * __restrict farZ) {
glm_persp_decomp_z_rh_no(proj.raw, nearZ, farZ);
}
/*!
* @brief decomposes far value of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glms_persp_decomp_far_rh_no(mat4s proj, float * __restrict farZ) {
glm_persp_decomp_far_rh_no(proj.raw, farZ);
}
/*!
* @brief decomposes near value of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glms_persp_decomp_near_rh_no(mat4s proj, float * __restrict nearZ) {
glm_persp_decomp_near_rh_no(proj.raw, nearZ);
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glms_persp_fovy_rh_no(mat4s proj) {
return glm_persp_fovy_rh_no(proj.raw);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glms_persp_aspect_rh_no(mat4s proj) {
return glm_persp_aspect_rh_no(proj.raw);
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @returns sizes as vector, sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
vec4s
glms_persp_sizes_rh_no(mat4s proj, float fovy) {
vec4s dest;
glm_persp_sizes_rh_no(proj.raw, fovy, dest.raw);
return dest;
}
#endif /* cglms_persp_rh_no_h */

View File

@@ -1,311 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), htt../opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_frustum_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ)
CGLM_INLINE mat4s glms_perspective_rh_zo(float fovy,
float aspect,
float nearZ,
float farZ)
CGLM_INLINE void glms_persp_move_far_rh_zo(mat4s proj, float deltaFar)
CGLM_INLINE mat4s glms_perspective_default_rh_zo(float aspect)
CGLM_INLINE void glms_perspective_resize_rh_zo(mat4s proj, float aspect)
CGLM_INLINE void glms_persp_decomp_rh_zo(mat4s proj,
float *nearv, float *farv,
float *top, float *bottom,
float *left, float *right)
CGLM_INLINE void glms_persp_decompv_rh_zo(mat4s proj, float dest[6])
CGLM_INLINE void glms_persp_decomp_x_rh_zo(mat4s proj, float *left, float *right)
CGLM_INLINE void glms_persp_decomp_y_rh_zo(mat4s proj, float *top, float *bottom)
CGLM_INLINE void glms_persp_decomp_z_rh_zo(mat4s proj, float *nearv, float *farv)
CGLM_INLINE void glms_persp_decomp_far_rh_zo(mat4s proj, float *farZ)
CGLM_INLINE void glms_persp_decomp_near_rh_zo(mat4s proj, float *nearZ)
CGLM_INLINE float glms_persp_fovy_rh_zo(mat4s proj)
CGLM_INLINE float glms_persp_aspect_rh_zo(mat4s proj)
CGLM_INLINE vec4s glms_persp_sizes_rh_zo(mat4s proj, float fovy)
*/
#ifndef cglms_persp_rh_zo_h
#define cglms_persp_rh_zo_h
#include "../../common.h"
#include "../../types-struct.h"
#include "../../plane.h"
#include "../../cam.h"
/*!
* @brief set up perspective peprojection matrix
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping plane
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_frustum_rh_zo(float left, float right,
float bottom, float top,
float nearZ, float farZ) {
mat4s dest;
glm_frustum_rh_zo(left, right, bottom, top, nearZ, farZ, dest.raw);
return dest;
}
/*!
* @brief set up perspective projection matrix
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearZ near clipping plane
* @param[in] farZ far clipping planes
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_perspective_rh_zo(float fovy, float aspect, float nearZ, float farZ) {
mat4s dest;
glm_perspective_rh_zo(fovy, aspect, nearZ, farZ, dest.raw);
return dest;
}
/*!
* @brief extend perspective projection matrix's far distance
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* NOTE: if you dodn't want to create new matrix then use array api on struct.raw
* like glms_persp_move_far_rh_zo(prooj.raw, deltaFar) to avoid create new mat4
* each time
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
mat4s
glms_persp_move_far_rh_zo(mat4s proj, float deltaFar) {
mat4s dest;
dest = proj;
glm_persp_move_far_rh_zo(dest.raw, deltaFar);
return dest;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] aspect aspect ratio ( width / height )
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_perspective_default_rh_zo(float aspect) {
mat4s dest;
glm_perspective_default_rh_zo(aspect, dest.raw);
return dest;
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* reized with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* NOTE: if you dodn't want to create new matrix then use array api on struct.raw
* like glm_perspective_resize_rh_zo(proj.raw, aspect) to avoid create new mat4
* each time
*
* @param[in, out] proj perspective projection matrix
* @param[in] aspect aspect ratio ( width / height )
*/
CGLM_INLINE
mat4s
glms_perspective_resize_rh_zo(mat4s proj, float aspect) {
mat4s dest;
dest = proj;
glm_perspective_resize_rh_zo(aspect, dest.raw);
return dest;
}
/*!
* @brief decomposes frustum values of perspective projection.
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glms_persp_decomp_rh_zo(mat4s proj,
float * __restrict nearZ, float * __restrict farZ,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
glm_persp_decomp_rh_zo(proj.raw, nearZ, farZ, top, bottom, left, right);
}
/*!
* @brief decomposes frustum values of perspective projection.
* this makes easy to get all values at once
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glms_persp_decompv_rh_zo(mat4s proj, float dest[6]) {
glm_persp_decompv_rh_zo(proj.raw, dest);
}
/*!
* @brief decomposes left and right values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [0, 1].
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glms_persp_decomp_x_rh_zo(mat4s proj,
float * __restrict left,
float * __restrict right) {
glm_persp_decomp_x_rh_zo(proj.raw, left, right);
}
/*!
* @brief decomposes top and bottom values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [0, 1].
* y stands for y axis (top / botom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glms_persp_decomp_y_rh_zo(mat4s proj,
float * __restrict top,
float * __restrict bottom) {
glm_persp_decomp_y_rh_zo(proj.raw, top, bottom);
}
/*!
* @brief decomposes near and far values of perspective projection
* with a right-hand coordinate system and a
* clip-space of [0, 1].
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
* @param[out] farZ far
*/
CGLM_INLINE
void
glms_persp_decomp_z_rh_zo(mat4s proj,
float * __restrict nearZ,
float * __restrict farZ) {
glm_persp_decomp_z_rh_zo(proj.raw, nearZ, farZ);
}
/*!
* @brief decomposes far value of perspective projection
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] farZ far
*/
CGLM_INLINE
void
glms_persp_decomp_far_rh_zo(mat4s proj, float * __restrict farZ) {
glm_persp_decomp_far_rh_zo(proj.raw, farZ);
}
/*!
* @brief decomposes near value of perspective projection
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[out] nearZ near
*/
CGLM_INLINE
void
glms_persp_decomp_near_rh_zo(mat4s proj, float * __restrict nearZ) {
glm_persp_decomp_near_rh_zo(proj.raw, nearZ);
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glms_persp_fovy_rh_zo(mat4s proj) {
return glm_persp_fovy_rh_zo(proj.raw);
}
/*!
* @brief returns aspect ratio of perspective projection
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glms_persp_aspect_rh_zo(mat4s proj) {
return glm_persp_aspect_rh_zo(proj.raw);
}
/*!
* @brief returns sizes of near and far planes of perspective projection
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @returns sizes as vector, sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
vec4s
glms_persp_sizes_rh_zo(mat4s proj, float fovy) {
vec4s dest;
glm_persp_sizes_rh_zo(proj.raw, fovy, dest.raw);
return dest;
}
#endif /* cglms_persp_rh_zo_h */

View File

@@ -1,88 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), htt../opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_lookat_lh_no(vec3s eye, vec3s center, vec3s up)
CGLM_INLINE mat4s glms_look_lh_no(vec3s eye, vec3s dir, vec3s up)
CGLM_INLINE mat4s glms_look_anyup_lh_no(vec3s eye, vec3s dir)
*/
#ifndef cglms_view_lh_no_h
#define cglms_view_lh_no_h
#include "../../common.h"
#include "../../types-struct.h"
#include "../../plane.h"
#include "../../cam.h"
/*!
* @brief set up view matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_lookat_lh_no(vec3s eye, vec3s center, vec3s up) {
mat4s dest;
glm_lookat_lh_no(eye.raw, center.raw, up.raw, dest.raw);
return dest;
}
/*!
* @brief set up view matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_look_lh_no(vec3s eye, vec3s dir, vec3s up) {
mat4s dest;
glm_look_lh_no(eye.raw, dir.raw, up.raw, dest.raw);
return dest;
}
/*!
* @brief set up view matrix
* with a left-hand coordinate system and a
* clip-space of [-1, 1].
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_look_anyup_lh_no(vec3s eye, vec3s dir) {
mat4s dest;
glm_look_anyup_lh_no(eye.raw, dir.raw, dest.raw);
return dest;
}
#endif /* cglms_view_lh_no_h */

View File

@@ -1,88 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), htt../opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_lookat_lh_zo(vec3s eye, vec3s center, vec3s up)
CGLM_INLINE mat4s glms_look_lh_zo(vec3s eye, vec3s dir, vec3s up)
CGLM_INLINE mat4s glms_look_anyup_lh_zo(vec3s eye, vec3s dir)
*/
#ifndef cglms_view_lh_zo_h
#define cglms_view_lh_zo_h
#include "../../common.h"
#include "../../types-struct.h"
#include "../../plane.h"
#include "../../cam.h"
/*!
* @brief set up view matrix
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_lookat_lh_zo(vec3s eye, vec3s center, vec3s up) {
mat4s dest;
glm_lookat_lh_zo(eye.raw, center.raw, up.raw, dest.raw);
return dest;
}
/*!
* @brief set up view matrix
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_look_lh_zo(vec3s eye, vec3s dir, vec3s up) {
mat4s dest;
glm_look_lh_zo(eye.raw, dir.raw, up.raw, dest.raw);
return dest;
}
/*!
* @brief set up view matrix
* with a left-hand coordinate system and a
* clip-space of [0, 1].
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_look_anyup_lh_zo(vec3s eye, vec3s dir) {
mat4s dest;
glm_look_anyup_lh_zo(eye.raw, dir.raw, dest.raw);
return dest;
}
#endif /* cglms_view_lh_zo_h */

View File

@@ -1,88 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), htt../opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_lookat_rh_no(vec3s eye, vec3s center, vec3s up)
CGLM_INLINE mat4s glms_look_rh_no(vec3s eye, vec3s dir, vec3s up)
CGLM_INLINE mat4s glms_look_anyup_rh_no(vec3s eye, vec3s dir)
*/
#ifndef cglms_view_rh_no_h
#define cglms_view_rh_no_h
#include "../../common.h"
#include "../../types-struct.h"
#include "../../plane.h"
#include "../../cam.h"
/*!
* @brief set up view matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_lookat_rh_no(vec3s eye, vec3s center, vec3s up) {
mat4s dest;
glm_lookat_rh_no(eye.raw, center.raw, up.raw, dest.raw);
return dest;
}
/*!
* @brief set up view matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_look_rh_no(vec3s eye, vec3s dir, vec3s up) {
mat4s dest;
glm_look_rh_no(eye.raw, dir.raw, up.raw, dest.raw);
return dest;
}
/*!
* @brief set up view matrix
* with a right-hand coordinate system and a
* clip-space of [-1, 1].
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_look_anyup_rh_no(vec3s eye, vec3s dir) {
mat4s dest;
glm_look_anyup_rh_no(eye.raw, dir.raw, dest.raw);
return dest;
}
#endif /* cglms_view_rh_no_h */

View File

@@ -1,88 +0,0 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), htt../opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_lookat_rh_zo(vec3s eye, vec3s center, vec3s up)
CGLM_INLINE mat4s glms_look_rh_zo(vec3s eye, vec3s dir, vec3s up)
CGLM_INLINE mat4s glms_look_anyup_rh_zo(vec3s eye, vec3s dir)
*/
#ifndef cglms_view_rh_zo_h
#define cglms_view_rh_zo_h
#include "../../common.h"
#include "../../types-struct.h"
#include "../../plane.h"
#include "../../cam.h"
/*!
* @brief set up view matrix
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_lookat_rh_zo(vec3s eye, vec3s center, vec3s up) {
mat4s dest;
glm_lookat_rh_zo(eye.raw, center.raw, up.raw, dest.raw);
return dest;
}
/*!
* @brief set up view matrix
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_look_rh_zo(vec3s eye, vec3s dir, vec3s up) {
mat4s dest;
glm_look_rh_zo(eye.raw, dir.raw, up.raw, dest.raw);
return dest;
}
/*!
* @brief set up view matrix
* with a right-hand coordinate system and a
* clip-space of [0, 1].
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_look_anyup_rh_zo(vec3s eye, vec3s dir) {
mat4s dest;
glm_look_anyup_rh_zo(eye.raw, dir.raw, dest.raw);
return dest;
}
#endif /* cglms_view_rh_zo_h */

View File

@@ -101,20 +101,4 @@ glms_project(vec3s pos, mat4s m, vec4s vp) {
return r;
}
/*!
* @brief define a picking region
*
* @param[in] center center [x, y] of a picking region in window coordinates
* @param[in] size size [width, height] of the picking region in window coordinates
* @param[in] vp viewport as [x, y, width, height]
* @returns projected coordinates
*/
CGLM_INLINE
mat4s
glms_pickmatrix(vec2s center, vec2s size, vec4s vp) {
mat4s res;
glm_pickmatrix(center.raw, size.raw, vp.raw, res.raw);
return res;
}
#endif /* cglms_projects_h */

View File

@@ -16,7 +16,6 @@
CGLM_INLINE versors glms_quat_init(float x, float y, float z, float w)
CGLM_INLINE versors glms_quatv(float angle, vec3s axis)
CGLM_INLINE versors glms_quat(float angle, float x, float y, float z)
CGLM_INLINE versors glms_quat_from_vecs(vec3s a, vec3s b)
CGLM_INLINE float glms_quat_norm(versors q)
CGLM_INLINE versors glms_quat_normalize(versors q)
CGLM_INLINE float glms_quat_dot(versors p, versors q)
@@ -35,7 +34,6 @@
CGLM_INLINE mat3s glms_quat_mat3t(versors q)
CGLM_INLINE versors glms_quat_lerp(versors from, versors to, float t)
CGLM_INLINE versors glms_quat_lerpc(versors from, versors to, float t)
CGLM_INLINE versors glms_quat_nlerp(versors from, versors to, float t)
CGLM_INLINE versors glms_quat_slerp(versors from, versors to, float t)
CGLM_INLINE mat4s. glms_quat_look(vec3s eye, versors ori)
CGLM_INLINE versors glms_quat_for(vec3s dir, vec3s fwd, vec3s up)
@@ -148,25 +146,10 @@ glms_quat(float angle, float x, float y, float z) {
return dest;
}
/*!
* @brief compute quaternion rotating vector A to vector B
*
* @param[in] a vec3 (must have unit length)
* @param[in] b vec3 (must have unit length)
* @returns quaternion (of unit length)
*/
CGLM_INLINE
versors
glms_quat_from_vecs(vec3s a, vec3s b) {
versors dest;
glm_quat_from_vecs(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief returns norm (magnitude) of quaternion
*
* @param[in] q quaternion
* @param[out] q quaternion
*/
CGLM_INLINE
float
@@ -418,24 +401,6 @@ glms_quat_lerpc(versors from, versors to, float t) {
return dest;
}
/*!
* @brief interpolates between two quaternions
* taking the shortest rotation path using
* normalized linear interpolation (NLERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t interpolant (amount)
* @returns result quaternion
*/
CGLM_INLINE
versors
glms_quat_nlerp(versors from, versors to, float t) {
versors dest;
glm_quat_nlerp(from.raw, to.raw, t, dest.raw);
return dest;
}
/*!
* @brief interpolates between two quaternions
* using spherical linear interpolation (SLERP)

View File

@@ -195,45 +195,4 @@ glms_vec2_sqrt(vec2s v) {
return r;
}
/*!
* @brief treat vectors as complex numbers and multiply them as such.
*
* @param[in] a left number
* @param[in] b right number
* @param[out] dest destination number
*/
CGLM_INLINE
vec2s
glms_vec2_complex_mul(vec2s a, vec2s b, vec2s dest) {
glm_vec2_complex_mul(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief treat vectors as complex numbers and divide them as such.
*
* @param[in] a left number (numerator)
* @param[in] b right number (denominator)
* @param[out] dest destination number
*/
CGLM_INLINE
vec2s
glms_vec2_complex_div(vec2s a, vec2s b, vec2s dest) {
glm_vec2_complex_div(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief treat the vector as a complex number and conjugate it as such.
*
* @param[in] a the number
* @param[out] dest destination number
*/
CGLM_INLINE
vec2s
glms_vec2_complex_conjugate(vec2s a, vec2s dest) {
glm_vec2_complex_conjugate(a.raw, dest.raw);
return dest;
}
#endif /* cglms_vec2s_ext_h */

View File

@@ -47,21 +47,6 @@ typedef union vec2s {
float x;
float y;
};
struct {
float r;
float i;
};
struct {
float u;
float v;
};
struct {
float s;
float t;
};
#endif
} vec2s;
@@ -73,40 +58,9 @@ typedef union vec3s {
float y;
float z;
};
struct {
float r;
float g;
float b;
};
#endif
} vec3s;
typedef union ivec2s {
ivec2 raw;
#if CGLM_USE_ANONYMOUS_STRUCT
struct {
int x;
int y;
};
struct {
int r;
int i;
};
struct {
int u;
int v;
};
struct {
int s;
int t;
};
#endif
} ivec2s;
typedef union ivec3s {
ivec3 raw;
#if CGLM_USE_ANONYMOUS_STRUCT
@@ -115,34 +69,9 @@ typedef union ivec3s {
int y;
int z;
};
struct {
int r;
int g;
int b;
};
#endif
} ivec3s;
typedef union ivec4s {
ivec4 raw;
#if CGLM_USE_ANONYMOUS_STRUCT
struct {
int x;
int y;
int z;
int w;
};
struct {
int r;
int g;
int b;
int a;
};
#endif
} ivec4s;
typedef union CGLM_ALIGN_IF(16) vec4s {
vec4 raw;
#if CGLM_USE_ANONYMOUS_STRUCT
@@ -152,13 +81,6 @@ typedef union CGLM_ALIGN_IF(16) vec4s {
float z;
float w;
};
struct {
float r;
float g;
float b;
float a;
};
#endif
} vec4s;

View File

@@ -42,12 +42,9 @@
#define CGLM_CASTPTR_ASSUME_ALIGNED(expr, type) \
((type*)CGLM_ASSUME_ALIGNED((expr), __alignof__(type)))
typedef int ivec2[2];
typedef int ivec3[3];
typedef int ivec4[4];
typedef float vec2[2];
typedef float vec3[3];
typedef int ivec3[3];
typedef CGLM_ALIGN_IF(16) float vec4[4];
typedef vec4 versor; /* |x, y, z, w| -> w is the last */
typedef vec3 mat3[3];

View File

@@ -20,9 +20,6 @@
CGLM_INLINE bool glm_vec2_isvalid(vec2 v);
CGLM_INLINE void glm_vec2_sign(vec2 v, vec2 dest);
CGLM_INLINE void glm_vec2_sqrt(vec2 v, vec2 dest);
CGLM_INLINE void glm_vec2_complex_mul(vec2 a, vec2 b, vec2 dest)
CGLM_INLINE void glm_vec2_complex_div(vec2 a, vec2 b, vec2 dest)
CGLM_INLINE void glm_vec2_complex_conjugate(vec2 a, vec2 dest)
*/
#ifndef cglm_vec2_ext_h
@@ -189,53 +186,4 @@ glm_vec2_sqrt(vec2 v, vec2 dest) {
dest[1] = sqrtf(v[1]);
}
/*!
* @brief treat vectors as complex numbers and multiply them as such.
*
* @param[in] a left number
* @param[in] b right number
* @param[out] dest destination number
*/
CGLM_INLINE
void
glm_vec2_complex_mul(vec2 a, vec2 b, vec2 dest) {
float tr, ti;
tr = a[0] * b[0] - a[1] * b[1];
ti = a[0] * b[1] + a[1] * b[0];
dest[0] = tr;
dest[1] = ti;
}
/*!
* @brief treat vectors as complex numbers and divide them as such.
*
* @param[in] a left number (numerator)
* @param[in] b right number (denominator)
* @param[out] dest destination number
*/
CGLM_INLINE
void
glm_vec2_complex_div(vec2 a, vec2 b, vec2 dest) {
float tr, ti;
float const ibnorm2 = 1.0f / (b[0] * b[0] + b[1] * b[1]);
tr = ibnorm2 * (a[0] * b[0] + a[1] * b[1]);
ti = ibnorm2 * (a[1] * b[0] - a[0] * b[1]);
dest[0] = tr;
dest[1] = ti;
}
/*!
* @brief treat the vector as a complex number and conjugate it as such.
*
* @param[in] a the number
* @param[out] dest destination number
*/
CGLM_INLINE
void
glm_vec2_complex_conjugate(vec2 a, vec2 dest) {
dest[0] = a[0];
dest[1] = -a[1];
}
#endif /* cglm_vec2_ext_h */

View File

@@ -237,9 +237,9 @@ glm_vec3_abs(vec3 v, vec3 dest) {
CGLM_INLINE
void
glm_vec3_fract(vec3 v, vec3 dest) {
dest[0] = fminf(v[0] - floorf(v[0]), 0.999999940395355224609375f);
dest[1] = fminf(v[1] - floorf(v[1]), 0.999999940395355224609375f);
dest[2] = fminf(v[2] - floorf(v[2]), 0.999999940395355224609375f);
dest[0] = fminf(v[0] - floorf(v[0]), 0x1.fffffep-1f);
dest[1] = fminf(v[1] - floorf(v[1]), 0x1.fffffep-1f);
dest[2] = fminf(v[2] - floorf(v[2]), 0x1.fffffep-1f);
}
/*!

View File

@@ -578,12 +578,10 @@ glm_vec3_normalize_to(vec3 v, vec3 dest) {
CGLM_INLINE
void
glm_vec3_cross(vec3 a, vec3 b, vec3 dest) {
vec3 c;
/* (u2.v3 - u3.v2, u3.v1 - u1.v3, u1.v2 - u2.v1) */
c[0] = a[1] * b[2] - a[2] * b[1];
c[1] = a[2] * b[0] - a[0] * b[2];
c[2] = a[0] * b[1] - a[1] * b[0];
glm_vec3_copy(c, dest);
dest[0] = a[1] * b[2] - a[2] * b[1];
dest[1] = a[2] * b[0] - a[0] * b[2];
dest[2] = a[0] * b[1] - a[1] * b[0];
}
/*!
@@ -809,10 +807,9 @@ glm_vec3_minv(vec3 a, vec3 b, vec3 dest) {
CGLM_INLINE
void
glm_vec3_ortho(vec3 v, vec3 dest) {
float ignore;
float f = modff(fabsf(v[0]) + 0.5f, &ignore);
vec3 result = {-v[1], v[0] - f * v[2], f * v[1]};
glm_vec3_copy(result, dest);
dest[0] = v[1] - v[2];
dest[1] = v[2] - v[0];
dest[2] = v[0] - v[1];
}
/*!

View File

@@ -224,10 +224,10 @@ glm_vec4_sign(vec4 v, vec4 dest) {
x0 = glmm_load(v);
x1 = _mm_set_ps(0.0f, 0.0f, 1.0f, -1.0f);
x2 = glmm_splat(x1, 2);
x2 = glmm_shuff1x(x1, 2);
x3 = _mm_and_ps(_mm_cmpgt_ps(x0, x2), glmm_splat(x1, 1));
x4 = _mm_and_ps(_mm_cmplt_ps(x0, x2), glmm_splat(x1, 0));
x3 = _mm_and_ps(_mm_cmpgt_ps(x0, x2), glmm_shuff1x(x1, 1));
x4 = _mm_and_ps(_mm_cmplt_ps(x0, x2), glmm_shuff1x(x1, 0));
glmm_store(dest, _mm_or_ps(x3, x4));
#else
@@ -268,10 +268,10 @@ glm_vec4_abs(vec4 v, vec4 dest) {
CGLM_INLINE
void
glm_vec4_fract(vec4 v, vec4 dest) {
dest[0] = fminf(v[0] - floorf(v[0]), 0.999999940395355224609375f);
dest[1] = fminf(v[1] - floorf(v[1]), 0.999999940395355224609375f);
dest[2] = fminf(v[2] - floorf(v[2]), 0.999999940395355224609375f);
dest[3] = fminf(v[3] - floorf(v[3]), 0.999999940395355224609375f);
dest[0] = fminf(v[0] - floorf(v[0]), 0x1.fffffep-1f);
dest[1] = fminf(v[1] - floorf(v[1]), 0x1.fffffep-1f);
dest[2] = fminf(v[2] - floorf(v[2]), 0x1.fffffep-1f);
dest[3] = fminf(v[3] - floorf(v[3]), 0x1.fffffep-1f);
}
/*!

View File

@@ -473,8 +473,8 @@ glm_vec4_scale_as(vec4 v, float s, vec4 dest) {
CGLM_INLINE
void
glm_vec4_div(vec4 a, vec4 b, vec4 dest) {
#if defined(CGLM_SIMD)
glmm_store(dest, glmm_div(glmm_load(a), glmm_load(b)));
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_div_ps(glmm_load(a), glmm_load(b)));
#else
dest[0] = a[0] / b[0];
dest[1] = a[1] / b[1];
@@ -568,8 +568,14 @@ glm_vec4_subadd(vec4 a, vec4 b, vec4 dest) {
CGLM_INLINE
void
glm_vec4_muladd(vec4 a, vec4 b, vec4 dest) {
#if defined(CGLM_SIMD)
glmm_store(dest, glmm_fmadd(glmm_load(a), glmm_load(b), glmm_load(dest)));
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_mul_ps(glmm_load(a),
glmm_load(b))));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
vmulq_f32(vld1q_f32(a),
vld1q_f32(b))));
#else
dest[0] += a[0] * b[0];
dest[1] += a[1] * b[1];
@@ -590,8 +596,14 @@ glm_vec4_muladd(vec4 a, vec4 b, vec4 dest) {
CGLM_INLINE
void
glm_vec4_muladds(vec4 a, float s, vec4 dest) {
#if defined(CGLM_SIMD)
glmm_store(dest, glmm_fmadd(glmm_load(a), glmm_set1(s), glmm_load(dest)));
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_mul_ps(glmm_load(a),
_mm_set1_ps(s))));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
vmulq_f32(vld1q_f32(a),
vdupq_n_f32(s))));
#else
dest[0] += a[0] * s;
dest[1] += a[1] * s;

View File

@@ -10,6 +10,6 @@
#define CGLM_VERSION_MAJOR 0
#define CGLM_VERSION_MINOR 8
#define CGLM_VERSION_PATCH 5
#define CGLM_VERSION_PATCH 0
#endif /* cglm_version_h */

View File

@@ -1,5 +1,5 @@
project('cglm', 'c',
version : '0.8.5',
version : '0.8.0',
license : 'mit',
default_options : [
'c_std=c11',
@@ -48,28 +48,14 @@ cglm_src = files(
'src/sphere.c',
'src/vec2.c',
'src/vec3.c',
'src/vec4.c',
'src/clipspace/ortho_lh_no.c',
'src/clipspace/ortho_lh_zo.c',
'src/clipspace/ortho_rh_no.c',
'src/clipspace/ortho_rh_zo.c',
'src/clipspace/persp_lh_no.c',
'src/clipspace/persp_lh_zo.c',
'src/clipspace/persp_rh_no.c',
'src/clipspace/persp_rh_zo.c',
'src/clipspace/view_lh_no.c',
'src/clipspace/view_lh_zo.c',
'src/clipspace/view_rh_no.c',
'src/clipspace/view_rh_zo.c',
'src/vec4.c'
)
cglm_lib = library('cglm',
cglm_src,
install : cglm_install,
dependencies : cglm_deps,
c_args : [ build_args, cglm_args ],
version : meson.project_version(),
soversion : '0'
c_args : [ build_args, cglm_args ]
)
cglm_dep = declare_dependency(
@@ -102,21 +88,17 @@ if get_option('build_tests') == true
test_src = files(
'test/runner.c',
'test/src/test_euler.c',
'test/src/test_bezier.c',
'test/src/test_cam.c',
'test/src/test_cam_lh_no.c',
'test/src/test_cam_lh_zo.c',
'test/src/test_cam_rh_no.c',
'test/src/test_cam_rh_zo.c',
'test/src/test_struct.c',
'test/src/test_clamp.c',
'test/src/test_common.c',
'test/src/test_euler.c',
'test/src/tests.c',
'test/src/test_struct.c',
'test/src/tests.c'
)
test_exe = executable('tests',
test_src,
test_exe = executable('tests',
test_src,
dependencies : cglm_dep,
c_args : '-DGLM_TESTS_NO_COLORFUL_OUTPUT'
)

Some files were not shown because too many files have changed in this diff Show More