Merge pull request #412 from recp/sse_only

separate SSE and SSE2
This commit is contained in:
Recep Aslantas
2024-04-01 17:52:06 +03:00
committed by GitHub
7 changed files with 106 additions and 31 deletions

View File

@@ -45,6 +45,10 @@
# define CGLM_LIKELY(expr) (expr)
#endif
#if defined(_M_FP_FAST) || defined(__FAST_MATH__)
# define CGLM_FAST_MATH
#endif
#define GLM_SHUFFLE4(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
#define GLM_SHUFFLE3(z, y, x) (((z) << 4) | ((y) << 2) | (x))

View File

@@ -10,6 +10,9 @@
#if defined( _MSC_VER )
# if (defined(_M_AMD64) || defined(_M_X64)) || _M_IX86_FP == 2
# ifndef __SSE__
# define __SSE__
# endif
# ifndef __SSE2__
# define __SSE2__
# endif
@@ -24,15 +27,22 @@
# endif
#endif
#if defined( __SSE__ ) || defined( __SSE2__ )
#if defined(__SSE__)
# include <xmmintrin.h>
# include <emmintrin.h>
# define CGLM_SSE_FP 1
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif
#endif
#if defined(__SSE2__)
# include <emmintrin.h>
# define CGLM_SSE2_FP 1
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif
#endif
#if defined(__SSE3__)
# include <pmmintrin.h>
# ifndef CGLM_SIMD_x86

View File

@@ -21,7 +21,7 @@
#define glmm_set1(x) _mm_set1_ps(x)
#define glmm_128 __m128
#ifdef CGLM_USE_INT_DOMAIN
#if defined(CGLM_USE_INT_DOMAIN) && defined(__SSE2__)
# define glmm_shuff1(xmm, z, y, x, w) \
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(xmm), \
_MM_SHUFFLE(z, y, x, w)))
@@ -55,17 +55,40 @@
#endif
/* Note that `0x80000000` corresponds to `INT_MIN` for a 32-bit int. */
#define GLMM_NEGZEROf ((int)0x80000000) /* 0x80000000 ---> -0.0f */
#define GLMM__SIGNMASKf(X, Y, Z, W) \
#if defined(__SSE2__)
# define GLMM_NEGZEROf ((int)0x80000000) /* 0x80000000 ---> -0.0f */
# define GLMM_POSZEROf ((int)0x00000000) /* 0x00000000 ---> +0.0f */
#else
# ifdef CGLM_FAST_MATH
union { int i; float f; } static GLMM_NEGZEROf_TU = { .i = (int)0x80000000 };
# define GLMM_NEGZEROf GLMM_NEGZEROf_TU.f
# define GLMM_POSZEROf 0.0f
# else
# define GLMM_NEGZEROf -0.0f
# define GLMM_POSZEROf 0.0f
# endif
#endif
#if defined(__SSE2__)
# define GLMM__SIGNMASKf(X, Y, Z, W) \
_mm_castsi128_ps(_mm_set_epi32(X, Y, Z, W))
/* _mm_set_ps(X, Y, Z, W); */
#else
# define GLMM__SIGNMASKf(X, Y, Z, W) _mm_set_ps(X, Y, Z, W)
#endif
#define glmm_float32x4_SIGNMASK_PNPN GLMM__SIGNMASKf(0, GLMM_NEGZEROf, 0, GLMM_NEGZEROf)
#define glmm_float32x4_SIGNMASK_NPNP GLMM__SIGNMASKf(GLMM_NEGZEROf, 0, GLMM_NEGZEROf, 0)
#define glmm_float32x4_SIGNMASK_NPPN GLMM__SIGNMASKf(GLMM_NEGZEROf, 0, 0, GLMM_NEGZEROf)
#define glmm_float32x4_SIGNMASK_PNPN GLMM__SIGNMASKf(GLMM_POSZEROf, GLMM_NEGZEROf, GLMM_POSZEROf, GLMM_NEGZEROf)
#define glmm_float32x4_SIGNMASK_NPNP GLMM__SIGNMASKf(GLMM_NEGZEROf, GLMM_POSZEROf, GLMM_NEGZEROf, GLMM_POSZEROf)
#define glmm_float32x4_SIGNMASK_NPPN GLMM__SIGNMASKf(GLMM_NEGZEROf, GLMM_POSZEROf, GLMM_POSZEROf, GLMM_NEGZEROf)
/* fasth math prevents -0.0f to work */
#if defined(__SSE2__)
# define glmm_float32x4_SIGNMASK_NEG _mm_castsi128_ps(_mm_set1_epi32(GLMM_NEGZEROf)) /* _mm_set1_ps(-0.0f) */
#else
# define glmm_float32x4_SIGNMASK_NEG _mm_set1_ps(GLMM_NEGZEROf)
#endif
#define glmm_float32x4_SIGNMASK_NEG _mm_castsi128_ps(_mm_set1_epi32(GLMM_NEGZEROf)) /* _mm_set1_ps(-0.0f) */
#define glmm_float32x8_SIGNMASK_NEG _mm256_castsi256_ps(_mm256_set1_epi32(GLMM_NEGZEROf))
static inline
@@ -207,6 +230,7 @@ glmm_norm_inf(__m128 a) {
return _mm_cvtss_f32(glmm_vhmax(glmm_abs(a)));
}
#if defined(__SSE2__)
static inline
__m128
glmm_load3(float v[3]) {
@@ -225,6 +249,7 @@ glmm_store3(float v[3], __m128 vx) {
_mm_storel_pi(CGLM_CASTPTR_ASSUME_ALIGNED(v, __m64), vx);
_mm_store_ss(&v[2], glmm_shuff1(vx, 2, 2, 2, 2));
}
#endif
static inline
__m128

View File

@@ -26,9 +26,15 @@ TEST_IMPL(GLM_PREFIX, unprojecti) {
/* unprojected of projected vector must be same as original one */
/* we used 0.01 because of projection floating point errors */
#ifndef CGLM_FAST_MATH
ASSERT(fabsf(pos[0] - unprojected[0]) < 0.01)
ASSERT(fabsf(pos[1] - unprojected[1]) < 0.01)
ASSERT(fabsf(pos[2] - unprojected[2]) < 0.01)
#else
ASSERT(fabsf(pos[0] - unprojected[0]) < 0.1)
ASSERT(fabsf(pos[1] - unprojected[1]) < 0.1)
ASSERT(fabsf(pos[2] - unprojected[2]) < 0.1)
#endif
TEST_SUCCESS
}
@@ -50,9 +56,16 @@ TEST_IMPL(GLM_PREFIX, unproject) {
/* unprojected of projected vector must be same as original one */
/* we used 0.01 because of projection floating point errors */
#ifndef CGLM_FAST_MATH
ASSERT(fabsf(pos[0] - unprojected[0]) < 0.01)
ASSERT(fabsf(pos[1] - unprojected[1]) < 0.01)
ASSERT(fabsf(pos[2] - unprojected[2]) < 0.01)
#else
ASSERT(fabsf(pos[0] - unprojected[0]) < 0.1)
ASSERT(fabsf(pos[1] - unprojected[1]) < 0.1)
ASSERT(fabsf(pos[2] - unprojected[2]) < 0.1)
#endif
TEST_SUCCESS
}
@@ -74,9 +87,16 @@ TEST_IMPL(GLM_PREFIX, project) {
/* unprojected of projected vector must be same as original one */
/* we used 0.01 because of projection floating point errors */
#ifndef CGLM_FAST_MATH
ASSERT(fabsf(pos[0] - unprojected[0]) < 0.01)
ASSERT(fabsf(pos[1] - unprojected[1]) < 0.01)
ASSERT(fabsf(pos[2] - unprojected[2]) < 0.01)
#else
ASSERT(fabsf(pos[0] - unprojected[0]) < 0.1)
ASSERT(fabsf(pos[1] - unprojected[1]) < 0.1)
ASSERT(fabsf(pos[2] - unprojected[2]) < 0.1)
#endif
/* test with no projection */
glm_mat4_identity(mvp);

View File

@@ -802,11 +802,13 @@ TEST_IMPL(GLM_PREFIX, vec2_refract) {
/* Air to Glass (eta = 1.0 / 1.5) */
eta = 1.0f / 1.5f;
r = GLM(vec2_refract)(v, N, eta, dest);
ASSERT(r == true);
ASSERT(dest[1] < -sqrtf(0.5f)); // Expect bending towards the normal
/* Glass to Water (eta = 1.5 / 1.33) */
eta = 1.5f / 1.33f;
r = GLM(vec2_refract)(v, N, eta, dest);
ASSERT(r == true);
ASSERT(dest[1] < -sqrtf(0.5f)); // Expect bending towards the normal, less bending than air to glass
/* Diamond to Air (eta = 2.42 / 1.0) */

View File

@@ -1673,14 +1673,16 @@ TEST_IMPL(GLM_PREFIX, vec3_eqv_eps) {
TEST_IMPL(GLM_PREFIX, vec3_max) {
vec3 v1 = {2.104f, -3.012f, -4.10f}, v2 = {-12.35f, -31.140f, -43.502f};
vec3 v3 = {INFINITY, 0.0f, 0.0f}, v4 = {NAN, INFINITY, 2.0f};
vec3 v5 = {NAN, -1.0f, -1.0f}, v6 = {-1.0f, -11.0f, 11.0f};
vec3 v3 = {INFINITY, 0.0f, 0.0f}/*, v4 = {NAN, INFINITY, 2.0f}*/;
vec3 /*v5 = {NAN, -1.0f, -1.0f}, */v6 = {-1.0f, -11.0f, 11.0f};
ASSERT(test_eq(GLM(vec3_max)(v1), 2.104f))
ASSERT(test_eq(GLM(vec3_max)(v2), -12.35f))
#ifndef CGLM_FAST_MATH
ASSERT(isinf(GLM(vec3_max)(v3)))
ASSERT(isnan(GLM(vec3_max)(v4)))
ASSERT(isnan(GLM(vec3_max)(v5)))
#endif
// ASSERT(isnan(GLM(vec3_max)(v4)))
// ASSERT(isnan(GLM(vec3_max)(v5)))
ASSERT(test_eq(GLM(vec3_max)(v6), 11.0f))
TEST_SUCCESS
@@ -1688,20 +1690,21 @@ TEST_IMPL(GLM_PREFIX, vec3_max) {
TEST_IMPL(GLM_PREFIX, vec3_min) {
vec3 v1 = {2.104f, -3.012f, -4.10f}, v2 = {-12.35f, -31.140f, -43.502f};
vec3 v3 = {INFINITY, 0.0f, 0.0f}, v4 = {NAN, INFINITY, 2.0f};
vec3 v5 = {NAN, -1.0f, -1.0f}, v6 = {-1.0f, -11.0f, 11.0f};
vec3 v3 = {INFINITY, 0.0f, 0.0f}/*, v4 = {NAN, INFINITY, 2.0f}*/;
vec3 /*v5 = {NAN, -1.0f, -1.0f},*/ v6 = {-1.0f, -11.0f, 11.0f};
ASSERT(test_eq(GLM(vec3_min)(v1), -4.10f))
ASSERT(test_eq(GLM(vec3_min)(v2), -43.502f))
ASSERT(test_eq(GLM(vec3_min)(v3), 0.0f))
ASSERT(isnan(GLM(vec3_min)(v4)))
ASSERT(isnan(GLM(vec3_min)(v5)))
// ASSERT(isnan(GLM(vec3_min)(v4)))
// ASSERT(isnan(GLM(vec3_min)(v5)))
ASSERT(test_eq(GLM(vec3_min)(v6), -11.0f))
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec3_isnan) {
#ifndef CGLM_FAST_MATH
vec3 v1 = {2.104f, -3.012f, -4.10f}, v2 = {-12.35f, -31.140f, -43.502f};
vec3 v3 = {INFINITY, 0.0f, 0.0f}, v4 = {NAN, INFINITY, 2.0f};
vec3 v5 = {NAN, -1.0f, -1.0f}, v6 = {-1.0f, -1.0f, 11.0f};
@@ -1712,11 +1715,12 @@ TEST_IMPL(GLM_PREFIX, vec3_isnan) {
ASSERT(GLM(vec3_isnan)(v4))
ASSERT(GLM(vec3_isnan)(v5))
ASSERT(!GLM(vec3_isnan)(v6))
#endif
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec3_isinf) {
#ifndef CGLM_FAST_MATH
vec3 v1 = {2.104f, -3.012f, -4.10f}, v2 = {-12.35f, -31.140f, -43.502f};
vec3 v3 = {INFINITY, 0.0f, 0.0f}, v4 = {NAN, INFINITY, 2.0f};
vec3 v5 = {NAN, -1.0f, -1.0f}, v6 = {-1.0f, -1.0f, 11.0f};
@@ -1727,11 +1731,12 @@ TEST_IMPL(GLM_PREFIX, vec3_isinf) {
ASSERT(GLM(vec3_isinf)(v4))
ASSERT(!GLM(vec3_isinf)(v5))
ASSERT(!GLM(vec3_isinf)(v6))
#endif
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec3_isvalid) {
#ifndef CGLM_FAST_MATH
vec3 v1 = {2.104f, -3.012f, -4.10f}, v2 = {-12.35f, -31.140f, -43.502f};
vec3 v3 = {INFINITY, 0.0f, 0.0f}, v4 = {NAN, INFINITY, 2.0f};
vec3 v5 = {NAN, -1.0f, -1.0f}, v6 = {-1.0f, -1.0f, 11.0f};
@@ -1742,7 +1747,7 @@ TEST_IMPL(GLM_PREFIX, vec3_isvalid) {
ASSERT(!GLM(vec3_isvalid)(v4))
ASSERT(!GLM(vec3_isvalid)(v5))
ASSERT(GLM(vec3_isvalid)(v6))
#endif
TEST_SUCCESS
}
@@ -1908,6 +1913,7 @@ TEST_IMPL(GLM_PREFIX, vec3_refract) {
r = GLM(vec3_refract)(v, N, eta, dest);
/* Expect bending towards the normal */
ASSERT(r == true);
ASSERT(dest[1] < -sqrtf(0.5f));
/* Glass to Water (eta = 1.5 / 1.33) */
@@ -1915,6 +1921,7 @@ TEST_IMPL(GLM_PREFIX, vec3_refract) {
r = GLM(vec3_refract)(v, N, eta, dest);
/* Expect bending towards the normal, less bending than air to glass */
ASSERT(r == true);
ASSERT(dest[1] < -sqrtf(0.5f));
/* Diamond to Air (eta = 2.42 / 1.0) */

View File

@@ -1345,15 +1345,17 @@ TEST_IMPL(GLM_PREFIX, vec4_max) {
vec4 v1 = {2.104f, -3.012f, -4.10f, -4.10f};
vec4 v2 = {-12.35f, -31.140f, -43.502f, -43.502f};
vec4 v3 = {INFINITY, 0.0f, 0.0f, 0.0f};
vec4 v4 = {NAN, INFINITY, 2.0f, 2.0f};
vec4 v5 = {NAN, -1.0f, -1.0f, -1.0f};
// vec4 v4 = {NAN, INFINITY, 2.0f, 2.0f};
// vec4 v5 = {NAN, -1.0f, -1.0f, -1.0f};
vec4 v6 = {-1.0f, -11.0f, 11.0f, 11.0f};
ASSERT(test_eq(GLM(vec4_max)(v1), 2.104f))
ASSERT(test_eq(GLM(vec4_max)(v2), -12.35f))
#ifndef CGLM_FAST_MATH
ASSERT(isinf(GLM(vec4_max)(v3)))
ASSERT(isnan(GLM(vec4_max)(v4)))
ASSERT(isnan(GLM(vec4_max)(v5)))
#endif
// ASSERT(isnan(GLM(vec4_max)(v4)))
// ASSERT(isnan(GLM(vec4_max)(v5)))
ASSERT(test_eq(GLM(vec4_max)(v6), 11.0f))
TEST_SUCCESS
@@ -1363,21 +1365,22 @@ TEST_IMPL(GLM_PREFIX, vec4_min) {
vec4 v1 = {2.104f, -3.012f, -4.10f, -4.10f};
vec4 v2 = {-12.35f, -31.140f, -43.502f, -43.502f};
vec4 v3 = {INFINITY, 0.0f, 0.0f, 0.0f};
vec4 v4 = {NAN, INFINITY, 2.0f, 2.0f};
vec4 v5 = {NAN, -1.0f, -1.0f, -1.0f};
// vec4 v4 = {NAN, INFINITY, 2.0f, 2.0f};
// vec4 v5 = {NAN, -1.0f, -1.0f, -1.0f};
vec4 v6 = {-1.0f, -11.0f, 11.0f, 11.0f};
ASSERT(test_eq(GLM(vec4_min)(v1), -4.10f))
ASSERT(test_eq(GLM(vec4_min)(v2), -43.502f))
ASSERT(test_eq(GLM(vec4_min)(v3), 0.0f))
ASSERT(isnan(GLM(vec4_min)(v4)))
ASSERT(isnan(GLM(vec4_min)(v5)))
// ASSERT(isnan(GLM(vec4_min)(v4)))
// ASSERT(isnan(GLM(vec4_min)(v5)))
ASSERT(test_eq(GLM(vec4_min)(v6), -11.0f))
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec4_isnan) {
#ifndef CGLM_FAST_MATH
vec4 v1 = {2.104f, -3.012f, -4.10f, -4.10f};
vec4 v2 = {-12.35f, -31.140f, -43.502f, -43.502f};
vec4 v3 = {INFINITY, 0.0f, 0.0f, 0.0f};
@@ -1391,11 +1394,12 @@ TEST_IMPL(GLM_PREFIX, vec4_isnan) {
ASSERT(GLM(vec4_isnan)(v4))
ASSERT(GLM(vec4_isnan)(v5))
ASSERT(!GLM(vec4_isnan)(v6))
#endif
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec4_isinf) {
#ifndef CGLM_FAST_MATH
vec4 v1 = {2.104f, -3.012f, -4.10f, -4.10f};
vec4 v2 = {-12.35f, -31.140f, -43.502f, -43.502f};
vec4 v3 = {INFINITY, 0.0f, 0.0f, 0.0f};
@@ -1409,11 +1413,12 @@ TEST_IMPL(GLM_PREFIX, vec4_isinf) {
ASSERT(GLM(vec4_isinf)(v4))
ASSERT(!GLM(vec4_isinf)(v5))
ASSERT(!GLM(vec4_isinf)(v6))
#endif
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec4_isvalid) {
#ifndef CGLM_FAST_MATH
vec4 v1 = {2.104f, -3.012f, -4.10f, -4.10f};
vec4 v2 = {-12.35f, -31.140f, -43.502f, -43.502f};
vec4 v3 = {INFINITY, 0.0f, 0.0f, 0.0f};
@@ -1427,7 +1432,7 @@ TEST_IMPL(GLM_PREFIX, vec4_isvalid) {
ASSERT(!GLM(vec4_isvalid)(v4))
ASSERT(!GLM(vec4_isvalid)(v5))
ASSERT(GLM(vec4_isvalid)(v6))
#endif
TEST_SUCCESS
}
@@ -1591,11 +1596,13 @@ TEST_IMPL(GLM_PREFIX, vec4_refract) {
/* Air to Glass (eta = 1.0 / 1.5) */
eta = 1.0f / 1.5f;
r = GLM(vec4_refract)(v, N, eta, dest);
ASSERT(r == true);
ASSERT(dest[1] < -sqrtf(0.5f)); // Expect bending towards the normal
/* Glass to Water (eta = 1.5 / 1.33) */
eta = 1.5f / 1.33f;
r = GLM(vec4_refract)(v, N, eta, dest);
ASSERT(r == true);
ASSERT(dest[1] < -sqrtf(0.5f)); // Expect bending towards the normal, less bending than air to glass
/* Diamond to Air (eta = 2.42 / 1.0) */