Files
cglm/include/cglm/euler.h
Recep Aslantas 5698653f54 Update euler.h
2020-03-22 22:10:31 +03:00

597 lines
17 KiB
C

/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
NOTE:
angles must be passed as [X-Angle, Y-Angle, Z-angle] order
For instance you don't pass angles as [Z-Angle, X-Angle, Y-angle] to
glm_euler_zxy funciton, All RELATED functions accept angles same order
which is [X, Y, Z].
*/
/*
Types:
enum glm_euler_seq
Functions:
CGLM_INLINE glm_eul_mat4(vec3 ea, int order, mat4 dest)
*/
#ifndef cglm_euler_h
#define cglm_euler_h
#include "common.h"
#include "util.h"
/* ---------- Notice for Ken Shoemake's algorithm Implementation -------------*
| Ken Shoemake's algorithm impl. is taken from this repo by permission: |
| https://github.com/erich666/GraphicsGems/blob/master/gemsiv/euler_angle |
| |
| cglm doesn't claim the ownership of GraphicsGems source codes |
| and the algorithm itself. But cglm may change variable names or some piece |
| of codes in order to apply optimizations or to make it usable in cglm. |
| |
| Related issue: https://github.com/recp/cglm/issues/30 |
| |
* -------------------------- GraphicsGems EULA ----------------------------- *
| Related EULA for GraphicsGems can be found at below, plus in CREDITS: |
| http://www.realtimerendering.com/resources/GraphicsGems/ |
| |
| EULA: The Graphics Gems code is copyright-protected. In other words, you |
| cannot claim the text of the code as your own and resell it. Using the |
| code is permitted in any program, product, or library, non-commercial or |
| commercial. Giving credit is not required, though is a nice gesture. |
| The code comes as-is, and if there are any flaws or problems with any Gems |
| code, nobody involved with Gems - authors, editors, publishers, or |
| webmasters - are to be held responsible. Basically, don't be a jerk, and |
| remember that anything free comes with no guarantee. |
* -------------------------------- END --------------------------------------*/
/* Order type constants, constructors, extractors
* There are 24 possible conventions, designated by:
* o EulAxI = axis used initially
* o EulPar = parity of axis permutation
* o EulRep = repetition of initial axis as last
* o EulFrm = frame from which axes are taken
* Axes I,J,K will be a permutation of X,Y,Z.
* Axis H will be either I or K, depending on EulRep.
* Frame S takes axes from initial static frame.
* If ord = (AxI=X, Par=Even, Rep=No, Frm=S), then
* {a,b,c,ord} means Rz(c)Ry(b)Rx(a), where Rz(c)v
* rotates v around Z by c radians.
*/
#define EulFrmS 0
#define EulFrmR 1
#define EulFrm(ord) ((unsigned)(ord)&1)
#define EulRepNo 0
#define EulRepYes 1
#define EulRep(ord) (((unsigned)(ord)>>1)&1)
#define EulParEven 0
#define EulParOdd 1
#define EulPar(ord) (((unsigned)(ord)>>2)&1)
/*! this code is merely a quick (and legal!) way to set arrays,
EulSafe being 0,1,2,0 */
#define EulSafe "\000\001\002\000"
#define EulNext "\001\002\000\001"
#define EulAxI(ord) ((int)(EulSafe[(((unsigned)(ord)>>3)&3)]))
#define EulAxJ(ord) ((int)(EulNext[EulAxI(ord)+(EulPar(ord)==EulParOdd)]))
#define EulAxK(ord) ((int)(EulNext[EulAxI(ord)+(EulPar(ord)!=EulParOdd)]))
#define EulAxH(ord) ((EulRep(ord)==EulRepNo)?EulAxK(ord):EulAxI(ord))
/*! EulGetOrd unpacks all useful information about order simultaneously. */
#define EulGetOrd(ord,i,j,k,h,n,s,f) \
{unsigned o=(unsigned)ord;f=o&1;o>>=1;s=o&1;o>>=1;\
n=o&1;o>>=1;i=EulSafe[o&3];j=EulNext[i+n];k=EulNext[i+1-n];h=s?k:i;}
/*! EulOrd creates an order value between 0 and 23 from 4-tuple choices. */
#define EulOrd(i,p,r,f) (((((((i)<<1)+(p))<<1)+(r))<<1)+(f))
/* EulOrd first param: X = 0, Y = 1, Z = 2 */
/*! Static axes */
#define GLM_EUL_XYZs EulOrd(0,EulParEven,EulRepNo,EulFrmS)
#define GLM_EUL_XYXs EulOrd(0,EulParEven,EulRepYes,EulFrmS)
#define GLM_EUL_XZYs EulOrd(0,EulParOdd,EulRepNo,EulFrmS)
#define GLM_EUL_XZXs EulOrd(0,EulParOdd,EulRepYes,EulFrmS)
#define GLM_EUL_YZXs EulOrd(1,EulParEven,EulRepNo,EulFrmS)
#define GLM_EUL_YZYs EulOrd(1,EulParEven,EulRepYes,EulFrmS)
#define GLM_EUL_YXZs EulOrd(1,EulParOdd,EulRepNo,EulFrmS)
#define GLM_EUL_YXYs EulOrd(1,EulParOdd,EulRepYes,EulFrmS)
#define GLM_EUL_ZXYs EulOrd(2,EulParEven,EulRepNo,EulFrmS)
#define GLM_EUL_ZXZs EulOrd(2,EulParEven,EulRepYes,EulFrmS)
#define GLM_EUL_ZYXs EulOrd(2,EulParOdd,EulRepNo,EulFrmS)
#define GLM_EUL_ZYZs EulOrd(2,EulParOdd,EulRepYes,EulFrmS)
/*! Rotating axes */
#define GLM_EUL_ZYXr EulOrd(0,EulParEven,EulRepNo,EulFrmR)
#define GLM_EUL_XYXr EulOrd(0,EulParEven,EulRepYes,EulFrmR)
#define GLM_EUL_YZXr EulOrd(0,EulParOdd,EulRepNo,EulFrmR)
#define GLM_EUL_XZXr EulOrd(0,EulParOdd,EulRepYes,EulFrmR)
#define GLM_EUL_XZYr EulOrd(1,EulParEven,EulRepNo,EulFrmR)
#define GLM_EUL_YZYr EulOrd(1,EulParEven,EulRepYes,EulFrmR)
#define GLM_EUL_ZXYr EulOrd(1,EulParOdd,EulRepNo,EulFrmR)
#define GLM_EUL_YXYr EulOrd(1,EulParOdd,EulRepYes,EulFrmR)
#define GLM_EUL_YXZr EulOrd(2,EulParEven,EulRepNo,EulFrmR)
#define GLM_EUL_ZXZr EulOrd(2,EulParEven,EulRepYes,EulFrmR)
#define GLM_EUL_XYZr EulOrd(2,EulParOdd,EulRepNo,EulFrmR)
#define GLM_EUL_ZYZr EulOrd(2,EulParOdd,EulRepYes,EulFrmR)
/*!
* @brief build matrix from euler angles
*
* @param[in] ea [Xangle, Yangle, Zangle, OrderCode]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_eul_mat4(vec3 ea, int order, mat4 dest) {
float ti, tj, th, ci, cj, ch, si, sj, sh, cc, cs, sc, ss;
int i, j, k, h, n, s, f;
EulGetOrd(order, i, j, k, h, n, s, f);
if (f == EulFrmR)
glm_swapf(&ea[0], &ea[2]);
if (n == EulParOdd)
glm_vec3_negate(ea);
ti = ea[0]; tj = ea[1]; th = ea[2];
ci = cosf(ti); cj = cosf(tj);
ch = cosf(th); si = sinf(ti);
sj = sinf(tj); sh = sinf(th);
cc = ci * ch; cs = ci * sh;
sc = si * ch; ss = si * sh;
if (s == EulRepYes) {
dest[i][i] = cj;
dest[i][j] = sj * si;
dest[i][k] = sj * ci;
dest[j][i] = sj * sh;
dest[j][j] = -cj * ss + cc;
dest[j][k] = -cj * cs - sc;
dest[k][i] = -sj * ch;
dest[k][j] = cj * sc + cs;
dest[k][k] = cj * cc - ss;
} else {
dest[i][i] = cj * ch;
dest[i][j] = sj * sc - cs;
dest[i][k] = sj * cc + ss;
dest[j][i] = cj * sh;
dest[j][j] = sj * ss + cc;
dest[j][k] = sj * cs - sc;
dest[k][i] = -sj;
dest[k][j] = cj * si;
dest[k][k] = cj * ci;
}
dest[3][0] = 0.f;
dest[3][1] = 0.f;
dest[3][2] = 0.f;
dest[0][3] = 0.f;
dest[1][3] = 0.f;
dest[2][3] = 0.f;
dest[3][3] = 1.f;
}
/*!
* if you have axis order like vec3 orderVec = [0, 1, 2] or [0, 2, 1]...
* vector then you can convert it to this enum by doing this:
* @code
* glm_euler_seq order;
* order = orderVec[0] | orderVec[1] << 2 | orderVec[2] << 4;
* @endcode
* you may need to explicit cast if required
*/
typedef enum glm_euler_seq {
GLM_EULER_XYZ = 0 << 0 | 1 << 2 | 2 << 4,
GLM_EULER_XZY = 0 << 0 | 2 << 2 | 1 << 4,
GLM_EULER_YZX = 1 << 0 | 2 << 2 | 0 << 4,
GLM_EULER_YXZ = 1 << 0 | 0 << 2 | 2 << 4,
GLM_EULER_ZXY = 2 << 0 | 0 << 2 | 1 << 4,
GLM_EULER_ZYX = 2 << 0 | 1 << 2 | 0 << 4
} glm_euler_seq;
typedef glm_euler_seq glm_euler_sq;
CGLM_INLINE
glm_euler_seq
glm_euler_order(int ord[3]) {
return (glm_euler_seq)(ord[0] << 0 | ord[1] << 2 | ord[2] << 4);
}
/*!
* @brief extract euler angles (in radians) using xyz order
*
* @param[in] m affine transform
* @param[out] dest angles vector [x, y, z]
*/
CGLM_INLINE
void
glm_euler_angles(mat4 m, vec3 dest) {
float m00, m01, m10, m11, m20, m21, m22;
float thetaX, thetaY, thetaZ;
m00 = m[0][0]; m10 = m[1][0]; m20 = m[2][0];
m01 = m[0][1]; m11 = m[1][1]; m21 = m[2][1];
m22 = m[2][2];
if (m20 < 1.0f) {
if (m20 > -1.0f) {
thetaY = asinf(m20);
thetaX = atan2f(-m21, m22);
thetaZ = atan2f(-m10, m00);
} else { /* m20 == -1 */
/* Not a unique solution */
thetaY = -GLM_PI_2f;
thetaX = -atan2f(m01, m11);
thetaZ = 0.0f;
}
} else { /* m20 == +1 */
thetaY = GLM_PI_2f;
thetaX = atan2f(m01, m11);
thetaZ = 0.0f;
}
dest[0] = thetaX;
dest[1] = thetaY;
dest[2] = thetaZ;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_xyz(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, czsx, cxcz, sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
czsx = cz * sx;
cxcz = cx * cz;
sysz = sy * sz;
dest[0][0] = cy * cz;
dest[0][1] = czsx * sy + cx * sz;
dest[0][2] = -cxcz * sy + sx * sz;
dest[1][0] = -cy * sz;
dest[1][1] = cxcz - sx * sysz;
dest[1][2] = czsx + cx * sysz;
dest[2][0] = sy;
dest[2][1] = -cy * sx;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler(vec3 angles, mat4 dest) {
glm_euler_xyz(angles, dest);
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_xzy(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, sxsy, cysx, cxsy, cxcy;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
sxsy = sx * sy;
cysx = cy * sx;
cxsy = cx * sy;
cxcy = cx * cy;
dest[0][0] = cy * cz;
dest[0][1] = sxsy + cxcy * sz;
dest[0][2] = -cxsy + cysx * sz;
dest[1][0] = -sz;
dest[1][1] = cx * cz;
dest[1][2] = cz * sx;
dest[2][0] = cz * sy;
dest[2][1] = -cysx + cxsy * sz;
dest[2][2] = cxcy + sxsy * sz;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_yxz(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, cycz, sysz, czsy, cysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
cycz = cy * cz;
sysz = sy * sz;
czsy = cz * sy;
cysz = cy * sz;
dest[0][0] = cycz + sx * sysz;
dest[0][1] = cx * sz;
dest[0][2] = -czsy + cysz * sx;
dest[1][0] = -cysz + czsy * sx;
dest[1][1] = cx * cz;
dest[1][2] = cycz * sx + sysz;
dest[2][0] = cx * sy;
dest[2][1] = -sx;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_yzx(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, sxsy, cxcy, cysx, cxsy;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
sxsy = sx * sy;
cxcy = cx * cy;
cysx = cy * sx;
cxsy = cx * sy;
dest[0][0] = cy * cz;
dest[0][1] = sz;
dest[0][2] = -cz * sy;
dest[1][0] = sxsy - cxcy * sz;
dest[1][1] = cx * cz;
dest[1][2] = cysx + cxsy * sz;
dest[2][0] = cxsy + cysx * sz;
dest[2][1] = -cz * sx;
dest[2][2] = cxcy - sxsy * sz;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_zxy(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, cycz, sxsy, cysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
cycz = cy * cz;
sxsy = sx * sy;
cysz = cy * sz;
dest[0][0] = cycz - sxsy * sz;
dest[0][1] = cz * sxsy + cysz;
dest[0][2] = -cx * sy;
dest[1][0] = -cx * sz;
dest[1][1] = cx * cz;
dest[1][2] = sx;
dest[2][0] = cz * sy + cysz * sx;
dest[2][1] = -cycz * sx + sy * sz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_zyx(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, czsx, cxcz, sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
czsx = cz * sx;
cxcz = cx * cz;
sysz = sy * sz;
dest[0][0] = cy * cz;
dest[0][1] = cy * sz;
dest[0][2] = -sy;
dest[1][0] = czsx * sy - cx * sz;
dest[1][1] = cxcz + sx * sysz;
dest[1][2] = cy * sx;
dest[2][0] = cxcz * sy + sx * sz;
dest[2][1] = -czsx + cx * sysz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[in] ord euler order
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_by_order(vec3 angles, glm_euler_seq ord, mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
float cycz, cysz, cysx, cxcy,
czsy, cxcz, czsx, cxsz,
sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
cycz = cy * cz; cysz = cy * sz;
cysx = cy * sx; cxcy = cx * cy;
czsy = cz * sy; cxcz = cx * cz;
czsx = cz * sx; cxsz = cx * sz;
sysz = sy * sz;
switch (ord) {
case GLM_EULER_XZY:
dest[0][0] = cycz;
dest[0][1] = sx * sy + cx * cysz;
dest[0][2] = -cx * sy + cysx * sz;
dest[1][0] = -sz;
dest[1][1] = cxcz;
dest[1][2] = czsx;
dest[2][0] = czsy;
dest[2][1] = -cysx + cx * sysz;
dest[2][2] = cxcy + sx * sysz;
break;
case GLM_EULER_XYZ:
dest[0][0] = cycz;
dest[0][1] = czsx * sy + cxsz;
dest[0][2] = -cx * czsy + sx * sz;
dest[1][0] = -cysz;
dest[1][1] = cxcz - sx * sysz;
dest[1][2] = czsx + cx * sysz;
dest[2][0] = sy;
dest[2][1] = -cysx;
dest[2][2] = cxcy;
break;
case GLM_EULER_YXZ:
dest[0][0] = cycz + sx * sysz;
dest[0][1] = cxsz;
dest[0][2] = -czsy + cysx * sz;
dest[1][0] = czsx * sy - cysz;
dest[1][1] = cxcz;
dest[1][2] = cycz * sx + sysz;
dest[2][0] = cx * sy;
dest[2][1] = -sx;
dest[2][2] = cxcy;
break;
case GLM_EULER_YZX:
dest[0][0] = cycz;
dest[0][1] = sz;
dest[0][2] = -czsy;
dest[1][0] = sx * sy - cx * cysz;
dest[1][1] = cxcz;
dest[1][2] = cysx + cx * sysz;
dest[2][0] = cx * sy + cysx * sz;
dest[2][1] = -czsx;
dest[2][2] = cxcy - sx * sysz;
break;
case GLM_EULER_ZXY:
dest[0][0] = cycz - sx * sysz;
dest[0][1] = czsx * sy + cysz;
dest[0][2] = -cx * sy;
dest[1][0] = -cxsz;
dest[1][1] = cxcz;
dest[1][2] = sx;
dest[2][0] = czsy + cysx * sz;
dest[2][1] = -cycz * sx + sysz;
dest[2][2] = cxcy;
break;
case GLM_EULER_ZYX:
dest[0][0] = cycz;
dest[0][1] = cysz;
dest[0][2] = -sy;
dest[1][0] = czsx * sy - cxsz;
dest[1][1] = cxcz + sx * sysz;
dest[1][2] = cysx;
dest[2][0] = cx * czsy + sx * sz;
dest[2][1] = -czsx + cx * sysz;
dest[2][2] = cxcy;
break;
}
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
#endif /* cglm_euler_h */