/* * Copyright (c), Recep Aslantas. * * MIT License (MIT), http://opensource.org/licenses/MIT * Full license can be found in the LICENSE file */ #ifndef cglm_euler_h #define cglm_euler_h #include "cglm-common.h" /*! * @brief euler angles (in radian) using xyz sequence * * @param[in] m affine transform * @param[out] pitch x * @param[out] yaw y * @param[out] roll z */ CGLM_INLINE void glm_euler_angles(mat4 m, float * __restrict pitch, float * __restrict yaw, float * __restrict roll) { if (m[2][0] < 1.0f) { if (m[2][0] > -1.0f) { vec3 a[2]; float cy1, cy2; int path; a[0][1] = asinf(m[2][0]); a[1][1] = M_PI - a[0][1]; cy1 = cosf(a[0][1]); cy2 = cosf(a[1][1]); a[0][0] = atan2f(-m[2][1] / cy1, m[2][2] / cy1); a[1][0] = atan2f(-m[2][1] / cy2, m[2][2] / cy2); a[0][2] = atan2f(-m[1][0] / cy1, m[0][0] / cy1); a[1][2] = atan2f(-m[1][0] / cy2, m[0][0] / cy2); path = (fabsf(a[0][0]) + fabsf(a[0][1]) + fabsf(a[0][2])) > (fabsf(a[1][0]) + fabsf(a[1][1]) + fabsf(a[1][2])); *pitch = a[path][0]; *yaw = a[path][1]; *roll = a[path][2]; } else { *pitch = -atan2(m[0][1], m[2][1]); *yaw = -M_PI_2; *roll = 0.0f; } } else { *pitch = atan2f(m[0][1], m[1][1]); *yaw = M_PI_2; *roll = 0.0f; } } /*! * @brief euler angles (in radian) using xyz sequence * * @param[in] m affine transform * @param[out] v angles vector [x, y, z] */ CGLM_INLINE void glm_euler_anglesv(mat4 m, vec3 v) { if (m[2][0] < 1.0f) { if (m[2][0] > -1.0f) { vec3 a[2]; float cy1, cy2; int path; a[0][1] = asinf(m[2][0]); a[1][1] = M_PI - a[0][1]; cy1 = cosf(a[0][1]); cy2 = cosf(a[1][1]); a[0][0] = atan2f(-m[2][1] / cy1, m[2][2] / cy1); a[1][0] = atan2f(-m[2][1] / cy2, m[2][2] / cy2); a[0][2] = atan2f(-m[1][0] / cy1, m[0][0] / cy1); a[1][2] = atan2f(-m[1][0] / cy2, m[0][0] / cy2); path = (fabsf(a[0][0]) + fabsf(a[0][1]) + fabsf(a[0][2])) > (fabsf(a[1][0]) + fabsf(a[1][1]) + fabsf(a[1][2])); glm_vec_dup(a[path], v); } else { v[0] = -atan2(m[0][1], m[2][1]); v[1] = -M_PI_2; v[3] = 0.0f; } } else { v[0] = atan2f(m[0][1], m[1][1]); v[1] = M_PI_2; v[2] = 0; } } /*! * @brief build rotation matrix from euler angles(xyz) */ CGLM_INLINE void glm_euler(float pitch, float yaw, float roll, mat4 dest) { float cx, cy, cz, sx, sy, sz; sx = sinf(pitch); cx = cosf(pitch); sy = sinf(yaw); cy = cosf(yaw); sz = sinf(roll); cz = cosf(roll); dest[0][0] = cy * cz; dest[0][1] = cz * sx * sy + cx * sz; dest[0][2] =-cx * cz * sy + sx * sz; dest[1][0] =-cy * sz; dest[1][1] = cx * cz - sx * sy * sz; dest[1][2] = cz * sx + cx * sy * sz; dest[2][0] = sy; dest[2][1] =-cy * sx; dest[2][2] = cx * cy; dest[0][3] = 0.0f; dest[1][3] = 0.0f; dest[2][3] = 0.0f; dest[3][0] = 0.0f; dest[3][1] = 0.0f; dest[3][2] = 0.0f; dest[3][3] = 1.0f; } /*! * @brief build rotation matrix from euler angles(xyz) * * @param[in] angles angles as vector [x, y, z] * @param[out] dest rotation matrix */ CGLM_INLINE void glm_eulerv(vec3 angles, mat4 dest) { float cx, cy, cz, sx, sy, sz; sx = sinf(angles[0]); cx = cosf(angles[0]); sy = sinf(angles[1]); cy = cosf(angles[1]); sz = sinf(angles[2]); cz = cosf(angles[2]); dest[0][0] = cy * cz; dest[0][1] = cz * sx * sy + cx * sz; dest[0][2] =-cx * cz * sy + sx * sz; dest[1][0] =-cy * sz; dest[1][1] = cx * cz - sx * sy * sz; dest[1][2] = cz * sx + cx * sy * sz; dest[2][0] = sy; dest[2][1] =-cy * sx; dest[2][2] = cx * cy; dest[0][3] = 0.0f; dest[1][3] = 0.0f; dest[2][3] = 0.0f; dest[3][0] = 0.0f; dest[3][1] = 0.0f; dest[3][2] = 0.0f; dest[3][3] = 1.0f; } /*! * @brief build rotation matrix from euler angles (zyx) */ CGLM_INLINE void glm_euler_zyx(float yaw, float pitch, float roll, mat4 dest) { float cx, cy, cz, sx, sy, sz; sx = sinf(pitch); cx = cosf(pitch); sy = sinf(yaw); cy = cosf(yaw); sz = sinf(roll); cz = cosf(roll); dest[0][0] = cy * cz; dest[0][1] = cy * sz; dest[0][2] =-sy; dest[1][0] = cz * sx * sy - cx * sz; dest[1][1] = cx * cz + sx * sy * sz; dest[1][2] = cy * sx; dest[2][0] = cx * cz * sy + sx * sz; dest[2][1] =-cz * sx + cx * sy * sz; dest[2][2] = cx * cy; dest[0][3] = 0.0f; dest[1][3] = 0.0f; dest[2][3] = 0.0f; dest[3][0] = 0.0f; dest[3][1] = 0.0f; dest[3][2] = 0.0f; dest[3][3] = 1.0f; } /*! * @brief build rotation matrix from euler angles (zxy) */ CGLM_INLINE void glm_euler_zxy(float yaw, float pitch, float roll, mat4 dest) { float cx, cy, cz, sx, sy, sz; sx = sinf(pitch); cx = cosf(pitch); sy = sinf(yaw); cy = cosf(yaw); sz = sinf(roll); cz = cosf(roll); dest[0][0] = cy * cz - sx * sy * sz; dest[0][1] = cz * sx * sy + cy + sz; dest[0][2] =-cx * sy; dest[1][0] =-cx * sz; dest[1][1] = cx * cz; dest[1][2] = sx; dest[2][0] = cz * sy + cy * sx * sz; dest[2][1] =-cy * cz * sx + sy * sz; dest[2][2] = cx * cy; dest[0][3] = 0.0f; dest[1][3] = 0.0f; dest[2][3] = 0.0f; dest[3][0] = 0.0f; dest[3][1] = 0.0f; dest[3][2] = 0.0f; dest[3][3] = 1.0f; } #endif /* cglm_euler_h */