Compare commits

...

31 Commits

Author SHA1 Message Date
Recep Aslantas
bf4c5b4e26 dont use I macro defined in standard 2024-03-31 13:24:50 +03:00
Recep Aslantas
f388df7f3e fix typos 2024-03-31 04:40:42 +03:00
Recep Aslantas
4c872238d9 dont use I macro defined in standard 2024-03-31 04:22:42 +03:00
Recep Aslantas
edfb5e3984 docs: alignment 2024-03-29 08:42:07 +03:00
Recep Aslantas
4d43241a69 docs: add note to enable config where may not work is some environments 2024-03-29 08:21:14 +03:00
Recep Aslantas
1337e9cdfb docs: ray sphere docs improvements 2024-03-29 08:10:56 +03:00
Recep Aslantas
9df36ce005 docs: ray sphere docs improvements 2024-03-29 08:05:10 +03:00
Recep Aslantas
55521ecd61 Merge pull request #402 from nitrix/fix/struct-api-ray-at
Struct API glms_ray_at incorrect dir param.
2024-03-29 07:55:28 +03:00
Recep Aslantas
829b7dddce now working on v0.9.4 2024-03-29 07:53:48 +03:00
Alex Belanger
2fced7181a Struct API glms_ray_at incorrect dir param. 2024-03-28 14:22:39 -04:00
Recep Aslantas
1de373a9bd normalize: norm == 0.0f to norm < FLT_EPSILON, improving handling of very small vectors to prevent instability and overflow 2024-03-25 02:22:46 +03:00
Recep Aslantas
6a7d03bafb suppress warnings 2024-03-25 02:17:03 +03:00
Recep Aslantas
aad5223da0 change signature of refraction to let caller know if refraction occurs or not 2024-03-24 06:31:29 +03:00
Recep Aslantas
707bff021c Merge pull request #399 from recp/ray
Some missing ray functions
2024-03-23 11:26:17 +03:00
Recep Aslantas
e4c38ccc4c docs: update ray sphere intersection brief 2024-03-22 23:49:05 +03:00
Recep Aslantas
ceaa54aef8 tests: test for ray, reflect, refract and faceforward 2024-03-22 23:44:43 +03:00
Recep Aslantas
da57558078 docs for new ray functions 2024-03-22 22:30:22 +03:00
Recep Aslantas
6ad0aca7e0 fix refract 2024-03-22 21:59:10 +03:00
Recep Aslantas
96e415daa4 build: add missing file 2024-03-22 10:42:29 +03:00
Recep Aslantas
3701305c9e suppress warnings 2024-03-22 10:36:28 +03:00
Recep Aslantas
2b78f9ab47 refract 2024-03-22 00:18:55 +03:00
Recep Aslantas
41d1a8b9eb faceforward 2024-03-21 02:21:28 +03:00
Recep Aslantas
8ea2fd1cd1 reflect missing stuff 2024-03-21 02:21:07 +03:00
Recep Aslantas
8c81443f24 reflect 2024-03-21 00:18:02 +03:00
Recep Aslantas
608e7d9c2c Update CREDITS 2024-03-20 07:33:43 +03:00
Recep Aslantas
73a4fc76d7 ray: point along a ray at a parameter t 2024-03-20 07:24:07 +03:00
Recep Aslantas
aa45d081fc ray: ray sphere intersection 2024-03-20 07:22:36 +03:00
Recep Aslantas
f1d4aea69b win: add missing files to vsproj 2024-03-20 07:16:17 +03:00
Recep Aslantas
0ef8ebe84e Merge pull request #397 from recp/affine-docs
clarify some rotation rules
2024-03-20 01:05:18 +03:00
Recep Aslantas
0fbad944c5 Merge pull request #398 from waywardmonkeys/make-const-floats
Allow passing `const float*` to `make` functions.
2024-03-18 16:48:02 +03:00
Bruce Mitchener
182c28faf8 Allow passing const float* to make functions. 2024-03-18 19:49:50 +07:00
90 changed files with 1232 additions and 140 deletions

View File

@@ -1,6 +1,6 @@
cmake_minimum_required(VERSION 3.8.2)
project(cglm
VERSION 0.9.3
VERSION 0.9.4
HOMEPAGE_URL https://github.com/recp/cglm
DESCRIPTION "OpenGL Mathematics (glm) for C"
LANGUAGES C

14
CREDITS
View File

@@ -82,3 +82,17 @@ http://github.com/microsoft/DirectXMath
17. Pick Matrix
glu project -> project.c
18. Ray sphere intersection
RAY TRACING GEMS
HIGH-QUALITY AND REAL-TIME RENDERING WITH DXR AND OTHER APIS
CHAPTER 7
Precision Improvements for Ray/Sphere Intersection
Eric Haines (1), Johannes Günther (2), and Tomas Akenine-Möller (1)
(1) NVIDIA
(2) Intel
Wyman, C., and Haines, E. Getting Started with RTX Ray Tracing.
https://github.com/NVIDIAGameWorks/GettingStartedWithRTXRayTracing

View File

@@ -216,7 +216,8 @@ cglm_struct_HEADERS = include/cglm/struct/mat4.h \
include/cglm/struct/project.h \
include/cglm/struct/sphere.h \
include/cglm/struct/color.h \
include/cglm/struct/curve.h
include/cglm/struct/curve.h \
include/cglm/struct/ray.h
cglm_struct_clipspacedir=$(includedir)/cglm/struct/clipspace
cglm_struct_clipspace_HEADERS = include/cglm/struct/clipspace/persp_lh_no.h \

View File

@@ -2,7 +2,7 @@ Pod::Spec.new do |s|
# Description
s.name = "cglm"
s.version = "0.9.2"
s.version = "0.9.3"
s.summary = "📽 Highly Optimized Graphics Math (glm) for C"
s.description = <<-DESC
cglm is math library for graphics programming for C. See the documentation or README for all features.

View File

@@ -7,7 +7,7 @@
#*****************************************************************************
AC_PREREQ([2.69])
AC_INIT([cglm], [0.9.3], [info@recp.me])
AC_INIT([cglm], [0.9.4], [info@recp.me])
AM_INIT_AUTOMAKE([-Wall foreign subdir-objects serial-tests])
# Don't use the default cflags (-O2 -g), we set ours manually in Makefile.am.

View File

@@ -91,6 +91,9 @@ To configure the Struct API namespace, you can define the following macros befor
- **CGLM_STRUCT_API_NS**: define name space for struct api, DEFAULT is **glms**
- **CGLM_STRUCT_API_NAME_SUFFIX**: define name suffix, DEFAULT is **empty** e.g defining it as #define CGLM_STRUCT_API_NAME_SUFFIX s will add s suffix to mat4_mul -> mat4s_mul
❗️ IMPORTANT ❗️
It's a good idea to set up your config macros in build settings like CMake, Xcode, or Visual Studio. This is especially important if you're using features like Modules in Xcode, where adding macros directly before the **cglm** headers might not work.
Detailed documentation for Struct API:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@@ -62,9 +62,9 @@ author = u'Recep Aslantas'
# built documents.
#
# The short X.Y version.
version = u'0.9.2'
version = u'0.9.4'
# The full version, including alpha/beta/rc tags.
release = u'0.9.2'
release = u'0.9.4'
# The language for content autogenerated by Sphinx. Refer to documentation
# for a list of supported languages.

View File

@@ -180,7 +180,7 @@ Functions documentation
Returns:
scalar value e.g. Matrix1x1
.. c:function:: void glm_mat2_make(float * __restrict src, mat2 dest)
.. c:function:: void glm_mat2_make(const float * __restrict src, mat2 dest)
Create mat2 matrix from pointer

View File

@@ -41,7 +41,7 @@ Functions documentation
Parameters:
| *[in,out]* **mat** matrix
.. c:function:: void glm_mat2x3_make(float * __restrict src, mat2x3 dest)
.. c:function:: void glm_mat2x3_make(const float * __restrict src, mat2x3 dest)
Create mat2x3 matrix from pointer

View File

@@ -41,7 +41,7 @@ Functions documentation
Parameters:
| *[in,out]* **mat** matrix
.. c:function:: void glm_mat2x4_make(float * __restrict src, mat2x4 dest)
.. c:function:: void glm_mat2x4_make(const float * __restrict src, mat2x4 dest)
Create mat2x4 matrix from pointer

View File

@@ -190,7 +190,7 @@ Functions documentation
Returns:
scalar value e.g. Matrix1x1
.. c:function:: void glm_mat3_make(float * __restrict src, mat3 dest)
.. c:function:: void glm_mat3_make(const float * __restrict src, mat3 dest)
Create mat3 matrix from pointer

View File

@@ -41,7 +41,7 @@ Functions documentation
Parameters:
| *[in,out]* **mat** matrix
.. c:function:: void glm_mat3x2_make(float * __restrict src, mat3x2 dest)
.. c:function:: void glm_mat3x2_make(const float * __restrict src, mat3x2 dest)
Create mat3x2 matrix from pointer

View File

@@ -41,7 +41,7 @@ Functions documentation
Parameters:
| *[in,out]* **mat** matrix
.. c:function:: void glm_mat3x4_make(float * __restrict src, mat3x4 dest)
.. c:function:: void glm_mat3x4_make(const float * __restrict src, mat3x4 dest)
Create mat3x4 matrix from pointer

View File

@@ -304,7 +304,7 @@ Functions documentation
Returns:
scalar value e.g. Matrix1x1
.. c:function:: void glm_mat4_make(float * __restrict src, mat4 dest)
.. c:function:: void glm_mat4_make(const float * __restrict src, mat4 dest)
Create mat4 matrix from pointer

View File

@@ -41,7 +41,7 @@ Functions documentation
Parameters:
| *[in,out]* **mat** matrix
.. c:function:: void glm_mat4x2_make(float * __restrict src, mat4x2 dest)
.. c:function:: void glm_mat4x2_make(const float * __restrict src, mat4x2 dest)
Create mat4x2 matrix from pointer

View File

@@ -41,7 +41,7 @@ Functions documentation
Parameters:
| *[in,out]* **mat** matrix
.. c:function:: void glm_mat4x3_make(float * __restrict src, mat4x3 dest)
.. c:function:: void glm_mat4x3_make(const float * __restrict src, mat4x3 dest)
Create mat4x3 matrix from pointer

View File

@@ -5,35 +5,33 @@
A few options are provided via macros.
❗️ IMPORTANT ❗️
It's a good idea to set up your config macros in build settings like CMake, Xcode, or Visual Studio. This is especially important if you're using features like Modules in Xcode, where adding macros directly before the **cglm** headers might not work.
Alignment Option
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As default, cglm requires types to be aligned. Alignment requirements:
By default, **cglm** requires types to be aligned with specific byte requirements:
vec3: 8 byte
vec4: 16 byte
mat4: 16 byte
versor: 16 byte
- vec3: 8 bytes
- vec4: 16 bytes
- mat4: 16 bytes (32 on AVX)
- versor: 16 bytes
By starting **v0.4.5** cglm provides an option to disable alignment requirement.
To enable this option define **CGLM_ALL_UNALIGNED** macro before all headers.
You can define it in Xcode, Visual Studio (or other IDEs) or you can also prefer
to define it in build system. If you use pre-compiled versions then you
have to compile cglm with **CGLM_ALL_UNALIGNED** macro.
Starting with **v0.4.5**, **cglm** offers an option to relax these alignment requirements. To use this option, define the **CGLM_ALL_UNALIGNED** macro before including any headers. This definition can be made within Xcode, Visual Studio, other IDEs, or directly in your build system. If using pre-compiled versions of **cglm**, you'll need to compile them with the **CGLM_ALL_UNALIGNED** macro.
**VERY VERY IMPORTANT:** If you use cglm in multiple projects and
those projects are depends on each other, then
**NOTE:❗️** If you're using **cglm** across multiple interdependent projects:
| *ALWAYS* or *NEVER USE* **CGLM_ALL_UNALIGNED** macro in linked projects
- Always or never use the **CGLM_ALL_UNALIGNED** macro in all linked projects to avoid configuration conflicts. A **cglm** header from one project could require alignment, while a header from another might not, leading to **cglm** functions accessing invalid memory locations.
if you do not know what you are doing. Because a cglm header included
via 'project A' may force types to be aligned and another cglm header
included via 'project B' may not require alignment. In this case
cglm functions will read from and write to **INVALID MEMORY LOCATIONSNs**.
- **Key Point:** Maintain the same **cglm** configuration across all your projects. For example, if you activate **CGLM_ALL_UNALIGNED** in one project, ensure it's set in the others too.
ALWAYS USE SAME CONFIGURATION / OPTION for **cglm** if you have multiple projects.
**❗NOTE:❗️**
For instance if you set CGLM_ALL_UNALIGNED in a project then set it in other projects too
While **CGLM_ALL_UNALIGNED** allows for flexibility in alignment, it doesn't override C's fundamental alignment rules. For example, an array like *vec4* decays to a pointer (float*) in functions, which must adhere to the alignment requirements of a float pointer (4 bytes). This adherence is crucial because **cglm** directly dereferences these pointers instead of copying data, and failing to meet alignment requirements can lead to unpredictable errors, such as crashes.
You can use `CGLM_ALIGN` and `CGLM_ALIGN_MAT` macros for aligning local variables or struct members. However, when dealing with dynamic memory allocation or custom memory locations, you'll need to ensure alignment requirements are met appropriately for those cases
Clipspace Option[s]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

View File

@@ -422,7 +422,7 @@ Functions documentation
| *[in]* **q** quaternion
| *[in]* **pivot** pivot
.. c:function:: void glm_quat_make(float * __restrict src, versor dest)
.. c:function:: void glm_quat_make(const float * __restrict src, versor dest)
Create quaternion from pointer

View File

@@ -13,6 +13,8 @@ Table of contents (click to go):
Functions:
1. :c:func:`glm_ray_triangle`
#. :c:func:`glm_ray_sphere`
#. :c:func:`glm_ray_at`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
@@ -29,3 +31,39 @@ Functions documentation
| *[in]* **v2** third vertex of triangle
| *[in, out]* **d** float pointer to save distance to intersection
| *[out]* **intersection** whether there is intersection
.. c:function:: bool glm_ray_sphere(vec3 origin, vec3 dir, vec4 s, float * __restrict t1, float * __restrict t2)
ray sphere intersection
returns false if there is no intersection if true:
- t1 > 0, t2 > 0: ray intersects the sphere at t1 and t2 both ahead of the origin
- t1 < 0, t2 > 0: ray starts inside the sphere, exits at t2
- t1 < 0, t2 < 0: no intersection ahead of the ray ( returns false )
- the caller can check if the intersection points (t1 and t2) fall within a
specific range (for example, tmin < t1, t2 < tmax) to determine if the
intersections are within a desired segment of the ray
Parameters:
| *[in]* **origin** ray origin
| *[in]* **dir** normalized ray direction
| *[in]* **s** sphere [center.x, center.y, center.z, radii]
| *[out]* **t1** near point1 (closer to origin)
| *[out]* **t2** far point2 (farther from origin)
Return:
| whether there is intersection
.. c:function:: bool glm_ray_at(vec3 orig, vec3 dir, float t, vec3 point)
point using t by 𝐏(𝑡)=𝐀+𝑡𝐛
Parameters:
| *[in]* **origin** ray origin
| *[in]* **dir** ray direction
| *[out]* **t** parameter
| *[out]* **point** point at t
Return:
| point at t

View File

@@ -53,6 +53,8 @@ Functions:
#. :c:func:`glm_vec2_clamp`
#. :c:func:`glm_vec2_lerp`
#. :c:func:`glm_vec2_make`
#. :c:func:`glm_vec2_reflect`
#. :c:func:`glm_vec2_refract`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
@@ -385,7 +387,7 @@ Functions documentation
| *[in]* **t** interpolant (amount) clamped between 0 and 1
| *[out]* **dest** destination
.. c:function:: void glm_vec2_make(float * __restrict src, vec2 dest)
.. c:function:: void glm_vec2_make(const float * __restrict src, vec2 dest)
Create two dimensional vector from pointer
@@ -394,3 +396,29 @@ Functions documentation
Parameters:
| *[in]* **src** pointer to an array of floats
| *[out]* **dest** destination vector
.. c:function:: void glm_vec2_reflect(vec2 v, vec2 n, vec2 dest)
Reflection vector using an incident ray and a surface normal
Parameters:
| *[in]* **v** incident vector
| *[in]* **n** *❗️ normalized ❗️* normal vector
| *[out]* **dest** destination: reflection result
.. c:function:: bool glm_vec2_refract(vec2 v, vec2 n, float eta, vec2 dest)
Computes refraction vector for an incident vector and a surface normal.
Calculates the refraction vector based on Snell's law. If total internal reflection
occurs (angle too great given eta), dest is set to zero and returns false.
Otherwise, computes refraction vector, stores it in dest, and returns true.
Parameters:
| *[in]* **v** *❗️ normalized ❗️* incident vector
| *[in]* **n** *❗️ normalized ❗️* normal vector
| *[in]* **eta** ratio of indices of refraction (incident/transmitted)
| *[out]* **dest** refraction vector if refraction occurs; zero vector otherwise
Returns:
returns true if refraction occurs; false if total internal reflection occurs.

View File

@@ -80,6 +80,9 @@ Functions:
#. :c:func:`glm_vec3_clamp`
#. :c:func:`glm_vec3_lerp`
#. :c:func:`glm_vec3_make`
#. :c:func:`glm_vec3_faceforward`
#. :c:func:`glm_vec3_reflect`
#. :c:func:`glm_vec3_refract`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
@@ -503,7 +506,7 @@ Functions documentation
| *[in]* **t** interpolant (amount) clamped between 0 and 1
| *[out]* **dest** destination
.. c:function:: void glm_vec3_make(float * __restrict src, vec3 dest)
.. c:function:: void glm_vec3_make(const float * __restrict src, vec3 dest)
Create three dimensional vector from pointer
@@ -512,3 +515,40 @@ Functions documentation
Parameters:
| *[in]* **src** pointer to an array of floats
| *[out]* **dest** destination vector
.. c:function:: void glm_vec3_faceforward(vec3 n, vec3 v, vec3 nref, vec3 dest)
A vector pointing in the same direction as another
Parameters:
| *[in]* **n** vector to orient
| *[in]* **v** incident vector
| *[in]* **nref** reference vector
| *[out]* **dest** destination: oriented vector, pointing away from the surface.
.. c:function:: void glm_vec3_reflect(vec3 v, vec3 n, vec3 dest)
Reflection vector using an incident ray and a surface normal
Parameters:
| *[in]* **v** incident vector
| *[in]* **n** *❗️ normalized ❗️* normal vector
| *[out]* **dest** destination: reflection result
.. c:function:: bool glm_vec3_refract(vec3 v, vec3 n, float eta, vec3 dest)
Computes refraction vector for an incident vector and a surface normal.
Calculates the refraction vector based on Snell's law. If total internal reflection
occurs (angle too great given eta), dest is set to zero and returns false.
Otherwise, computes refraction vector, stores it in dest, and returns true.
Parameters:
| *[in]* **v** *❗️ normalized ❗️* incident vector
| *[in]* **n** *❗️ normalized ❗️* normal vector
| *[in]* **eta** ratio of indices of refraction (incident/transmitted)
| *[out]* **dest** refraction vector if refraction occurs; zero vector otherwise
Returns:
returns true if refraction occurs; false if total internal reflection occurs.

View File

@@ -60,6 +60,8 @@ Functions:
#. :c:func:`glm_vec4_lerp`
#. :c:func:`glm_vec4_cubic`
#. :c:func:`glm_vec4_make`
#. :c:func:`glm_vec4_reflect`
#. :c:func:`glm_vec4_refract`
Functions documentation
~~~~~~~~~~~~~~~~~~~~~~~
@@ -415,7 +417,7 @@ Functions documentation
| *[in]* **s** parameter
| *[out]* **dest** destination
.. c:function:: void glm_vec4_make(float * __restrict src, vec4 dest)
.. c:function:: void glm_vec4_make(const float * __restrict src, vec4 dest)
Create four dimensional vector from pointer
@@ -424,3 +426,33 @@ Functions documentation
Parameters:
| *[in]* **src** pointer to an array of floats
| *[out]* **dest** destination vector
.. c:function:: bool glm_vec4_reflect(vec4 v, vec4 n, vec4 dest)
Reflection vector using an incident ray and a surface normal
Parameters:
| *[in]* **v** incident vector
| *[in]* **n** *❗️ normalized ❗️* normal vector
| *[out]* **dest** destination: reflection result
.. c:function:: bool glm_vec4_refract(vec4 v, vec4 n, float eta, vec4 dest)
computes refraction vector for an incident vector and a surface normal.
Calculates the refraction vector based on Snell's law. If total internal reflection
occurs (angle too great given eta), dest is set to zero and returns false.
Otherwise, computes refraction vector, stores it in dest, and returns true.
This implementation does not explicitly preserve the 'w' component of the
incident vector 'I' in the output 'dest', users requiring the preservation of
the 'w' component should manually adjust 'dest' after calling this function.
Parameters:
| *[in]* **v** *❗️ normalized ❗️* incident vector
| *[in]* **n** *❗️ normalized ❗️* normal vector
| *[in]* **eta** ratio of indices of refraction (incident/transmitted)
| *[out]* **dest** refraction vector if refraction occurs; zero vector otherwise
Returns:
returns true if refraction occurs; false if total internal reflection occurs.

View File

@@ -75,7 +75,7 @@ glmc_mat2_rmc(vec2 r, mat2 m, vec2 c);
CGLM_EXPORT
void
glmc_mat2_make(float * __restrict src, mat2 dest);
glmc_mat2_make(const float * __restrict src, mat2 dest);
#ifdef __cplusplus
}

View File

@@ -23,7 +23,7 @@ glmc_mat2x3_zero(mat2x3 mat);
CGLM_EXPORT
void
glmc_mat2x3_make(float * __restrict src, mat2x3 dest);
glmc_mat2x3_make(const float * __restrict src, mat2x3 dest);
CGLM_EXPORT
void

View File

@@ -23,7 +23,7 @@ glmc_mat2x4_zero(mat2x4 mat);
CGLM_EXPORT
void
glmc_mat2x4_make(float * __restrict src, mat2x4 dest);
glmc_mat2x4_make(const float * __restrict src, mat2x4 dest);
CGLM_EXPORT
void

View File

@@ -82,7 +82,7 @@ glmc_mat3_rmc(vec3 r, mat3 m, vec3 c);
CGLM_EXPORT
void
glmc_mat3_make(float * __restrict src, mat3 dest);
glmc_mat3_make(const float * __restrict src, mat3 dest);
#ifdef __cplusplus
}

View File

@@ -23,7 +23,7 @@ glmc_mat3x2_zero(mat3x2 mat);
CGLM_EXPORT
void
glmc_mat3x2_make(float * __restrict src, mat3x2 dest);
glmc_mat3x2_make(const float * __restrict src, mat3x2 dest);
CGLM_EXPORT
void

View File

@@ -23,7 +23,7 @@ glmc_mat3x4_zero(mat3x4 mat);
CGLM_EXPORT
void
glmc_mat3x4_make(float * __restrict src, mat3x4 dest);
glmc_mat3x4_make(const float * __restrict src, mat3x4 dest);
CGLM_EXPORT
void

View File

@@ -123,7 +123,7 @@ glmc_mat4_rmc(vec4 r, mat4 m, vec4 c);
CGLM_EXPORT
void
glmc_mat4_make(float * __restrict src, mat4 dest);
glmc_mat4_make(const float * __restrict src, mat4 dest);
#ifdef __cplusplus
}

View File

@@ -23,7 +23,7 @@ glmc_mat4x2_zero(mat4x2 mat);
CGLM_EXPORT
void
glmc_mat4x2_make(float * __restrict src, mat4x2 dest);
glmc_mat4x2_make(const float * __restrict src, mat4x2 dest);
CGLM_EXPORT
void

View File

@@ -23,7 +23,7 @@ glmc_mat4x3_zero(mat4x3 mat);
CGLM_EXPORT
void
glmc_mat4x3_make(float * __restrict src, mat4x3 dest);
glmc_mat4x3_make(const float * __restrict src, mat4x3 dest);
CGLM_EXPORT
void

View File

@@ -163,7 +163,7 @@ glmc_quat_rotate_atm(mat4 m, versor q, vec3 pivot);
CGLM_EXPORT
void
glmc_quat_make(float * __restrict src, versor dest);
glmc_quat_make(const float * __restrict src, versor dest);
#ifdef __cplusplus
}

View File

@@ -21,6 +21,18 @@ glmc_ray_triangle(vec3 origin,
vec3 v2,
float *d);
CGLM_EXPORT
bool
glmc_ray_sphere(vec3 origin,
vec3 dir,
vec4 s,
float * __restrict t1,
float * __restrict t2);
CGLM_EXPORT
void
glmc_ray_at(vec3 orig, vec3 dir, float t, vec3 point);
#ifdef __cplusplus
}
#endif

View File

@@ -195,7 +195,15 @@ glmc_vec2_complex_conjugate(vec2 a, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_make(float * __restrict src, vec2 dest);
glmc_vec2_make(const float * __restrict src, vec2 dest);
CGLM_EXPORT
void
glmc_vec2_reflect(vec2 v, vec2 n, vec2 dest);
CGLM_EXPORT
bool
glmc_vec2_refract(vec2 v, vec2 n, float eta, vec2 dest);
#ifdef __cplusplus
}

View File

@@ -332,7 +332,19 @@ glmc_vec3_sqrt(vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_make(float * __restrict src, vec3 dest);
glmc_vec3_make(const float * __restrict src, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_faceforward(vec3 n, vec3 v, vec3 nref, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_reflect(vec3 v, vec3 n, vec3 dest);
CGLM_EXPORT
bool
glmc_vec3_refract(vec3 v, vec3 n, float eta, vec3 dest);
#ifdef __cplusplus
}

View File

@@ -309,7 +309,15 @@ glmc_vec4_sqrt(vec4 v, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_make(float * __restrict src, vec4 dest);
glmc_vec4_make(const float * __restrict src, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_reflect(vec4 v, vec4 n, vec4 dest);
CGLM_EXPORT
bool
glmc_vec4_refract(vec4 v, vec4 n, float eta, vec4 dest);
#ifdef __cplusplus
}

View File

@@ -37,6 +37,14 @@
# define CGLM_INLINE static inline __attribute((always_inline))
#endif
#if defined(__GNUC__) || defined(__clang__)
# define CGLM_UNLIKELY(expr) __builtin_expect(!!(expr), 0)
# define CGLM_LIKELY(expr) __builtin_expect(!!(expr), 1)
#else
# define CGLM_UNLIKELY(expr) (expr)
# define CGLM_LIKELY(expr) (expr)
#endif
#define GLM_SHUFFLE4(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
#define GLM_SHUFFLE3(z, y, x) (((z) << 4) | ((y) << 2) | (x))

View File

@@ -354,7 +354,7 @@ glm_mat2_rmc(vec2 r, mat2 m, vec2 c) {
*/
CGLM_INLINE
void
glm_mat2_make(float * __restrict src, mat2 dest) {
glm_mat2_make(const float * __restrict src, mat2 dest) {
dest[0][0] = src[0];
dest[0][1] = src[1];
dest[1][0] = src[2];

View File

@@ -13,7 +13,7 @@
Functions:
CGLM_INLINE void glm_mat2x3_copy(mat2x3 mat, mat2x3 dest);
CGLM_INLINE void glm_mat2x3_zero(mat2x3 mat);
CGLM_INLINE void glm_mat2x3_make(float * __restrict src, mat2x3 dest);
CGLM_INLINE void glm_mat2x3_make(const float * __restrict src, mat2x3 dest);
CGLM_INLINE void glm_mat2x3_mul(mat2x3 m1, mat3x2 m2, mat2 dest);
CGLM_INLINE void glm_mat2x3_mulv(mat2x3 m, vec3 v, vec2 dest);
CGLM_INLINE void glm_mat2x3_transpose(mat2x3 m, mat3x2 dest);
@@ -68,7 +68,7 @@ glm_mat2x3_zero(mat2x3 mat) {
*/
CGLM_INLINE
void
glm_mat2x3_make(float * __restrict src, mat2x3 dest) {
glm_mat2x3_make(const float * __restrict src, mat2x3 dest) {
dest[0][0] = src[0];
dest[0][1] = src[1];
dest[0][2] = src[2];

View File

@@ -13,7 +13,7 @@
Functions:
CGLM_INLINE void glm_mat2x4_copy(mat2x4 mat, mat2x4 dest);
CGLM_INLINE void glm_mat2x4_zero(mat2x4 mat);
CGLM_INLINE void glm_mat2x4_make(float * __restrict src, mat2x4 dest);
CGLM_INLINE void glm_mat2x4_make(const float * __restrict src, mat2x4 dest);
CGLM_INLINE void glm_mat2x4_mul(mat2x4 m1, mat4x2 m2, mat2 dest);
CGLM_INLINE void glm_mat2x4_mulv(mat2x4 m, vec4 v, vec2 dest);
CGLM_INLINE void glm_mat2x4_transpose(mat2x4 m, mat4x2 dest);
@@ -64,7 +64,7 @@ glm_mat2x4_zero(mat2x4 mat) {
*/
CGLM_INLINE
void
glm_mat2x4_make(float * __restrict src, mat2x4 dest) {
glm_mat2x4_make(const float * __restrict src, mat2x4 dest) {
dest[0][0] = src[0];
dest[0][1] = src[1];
dest[0][2] = src[2];

View File

@@ -436,7 +436,7 @@ glm_mat3_rmc(vec3 r, mat3 m, vec3 c) {
*/
CGLM_INLINE
void
glm_mat3_make(float * __restrict src, mat3 dest) {
glm_mat3_make(const float * __restrict src, mat3 dest) {
dest[0][0] = src[0];
dest[0][1] = src[1];
dest[0][2] = src[2];

View File

@@ -13,7 +13,7 @@
Functions:
CGLM_INLINE void glm_mat3x2_copy(mat3x2 mat, mat3x2 dest);
CGLM_INLINE void glm_mat3x2_zero(mat3x2 mat);
CGLM_INLINE void glm_mat3x2_make(float * __restrict src, mat3x2 dest);
CGLM_INLINE void glm_mat3x2_make(const float * __restrict src, mat3x2 dest);
CGLM_INLINE void glm_mat3x2_mul(mat3x2 m1, mat2x3 m2, mat3 dest);
CGLM_INLINE void glm_mat3x2_mulv(mat3x2 m, vec2 v, vec3 dest);
CGLM_INLINE void glm_mat3x2_transpose(mat3x2 m, mat2x3 dest);
@@ -69,7 +69,7 @@ glm_mat3x2_zero(mat3x2 mat) {
*/
CGLM_INLINE
void
glm_mat3x2_make(float * __restrict src, mat3x2 dest) {
glm_mat3x2_make(const float * __restrict src, mat3x2 dest) {
dest[0][0] = src[0];
dest[0][1] = src[1];

View File

@@ -13,7 +13,7 @@
Functions:
CGLM_INLINE void glm_mat3x4_copy(mat3x4 mat, mat3x4 dest);
CGLM_INLINE void glm_mat3x4_zero(mat3x4 mat);
CGLM_INLINE void glm_mat3x4_make(float * __restrict src, mat3x4 dest);
CGLM_INLINE void glm_mat3x4_make(const float * __restrict src, mat3x4 dest);
CGLM_INLINE void glm_mat3x4_mul(mat3x4 m1, mat4x3 m2, mat3 dest);
CGLM_INLINE void glm_mat3x4_mulv(mat3x4 m, vec4 v, vec3 dest);
CGLM_INLINE void glm_mat3x4_transpose(mat3x4 m, mat4x3 dest);
@@ -66,7 +66,7 @@ glm_mat3x4_zero(mat3x4 mat) {
*/
CGLM_INLINE
void
glm_mat3x4_make(float * __restrict src, mat3x4 dest) {
glm_mat3x4_make(const float * __restrict src, mat3x4 dest) {
dest[0][0] = src[0];
dest[0][1] = src[1];
dest[0][2] = src[2];

View File

@@ -790,7 +790,7 @@ glm_mat4_rmc(vec4 r, mat4 m, vec4 c) {
*/
CGLM_INLINE
void
glm_mat4_make(float * __restrict src, mat4 dest) {
glm_mat4_make(const float * __restrict src, mat4 dest) {
dest[0][0] = src[0]; dest[1][0] = src[4];
dest[0][1] = src[1]; dest[1][1] = src[5];
dest[0][2] = src[2]; dest[1][2] = src[6];

View File

@@ -13,7 +13,7 @@
Functions:
CGLM_INLINE void glm_mat4x2_copy(mat4x2 mat, mat4x2 dest);
CGLM_INLINE void glm_mat4x2_zero(mat4x2 mat);
CGLM_INLINE void glm_mat4x2_make(float * __restrict src, mat4x2 dest);
CGLM_INLINE void glm_mat4x2_make(const float * __restrict src, mat4x2 dest);
CGLM_INLINE void glm_mat4x2_mul(mat4x2 m1, mat2x4 m2, mat4 dest);
CGLM_INLINE void glm_mat4x2_mulv(mat4x2 m, vec2 v, vec4 dest);
CGLM_INLINE void glm_mat4x2_transpose(mat4x2 m, mat2x4 dest);
@@ -72,7 +72,7 @@ glm_mat4x2_zero(mat4x2 mat) {
*/
CGLM_INLINE
void
glm_mat4x2_make(float * __restrict src, mat4x2 dest) {
glm_mat4x2_make(const float * __restrict src, mat4x2 dest) {
dest[0][0] = src[0];
dest[0][1] = src[1];

View File

@@ -13,7 +13,7 @@
Functions:
CGLM_INLINE void glm_mat4x3_copy(mat4x3 mat, mat4x3 dest);
CGLM_INLINE void glm_mat4x3_zero(mat4x3 mat);
CGLM_INLINE void glm_mat4x3_make(float * __restrict src, mat4x3 dest);
CGLM_INLINE void glm_mat4x3_make(const float * __restrict src, mat4x3 dest);
CGLM_INLINE void glm_mat4x3_mul(mat4x3 m1, mat3x4 m2, mat4 dest);
CGLM_INLINE void glm_mat4x3_mulv(mat4x3 m, vec3 v, vec4 dest);
CGLM_INLINE void glm_mat4x3_transpose(mat4x3 m, mat3x4 dest);
@@ -77,7 +77,7 @@ glm_mat4x3_zero(mat4x3 mat) {
*/
CGLM_INLINE
void
glm_mat4x3_make(float * __restrict src, mat4x3 dest) {
glm_mat4x3_make(const float * __restrict src, mat4x3 dest) {
dest[0][0] = src[0];
dest[0][1] = src[1];
dest[0][2] = src[2];

View File

@@ -33,7 +33,7 @@ void
glm_plane_normalize(vec4 plane) {
float norm;
if ((norm = glm_vec3_norm(plane)) == 0.0f) {
if (CGLM_UNLIKELY((norm = glm_vec3_norm(plane)) < FLT_EPSILON)) {
glm_vec4_zero(plane);
return;
}

View File

@@ -894,7 +894,7 @@ glm_quat_rotate_atm(mat4 m, versor q, vec3 pivot) {
*/
CGLM_INLINE
void
glm_quat_make(float * __restrict src, versor dest) {
glm_quat_make(const float * __restrict src, versor dest) {
dest[0] = src[0]; dest[1] = src[1];
dest[2] = src[2]; dest[3] = src[3];
}

View File

@@ -7,12 +7,18 @@
/*
Functions:
CGLM_INLINE bool glm_line_triangle_intersect(vec3 origin,
vec3 direction,
vec3 v0,
vec3 v1,
vec3 v2,
float *d);
CGLM_INLINE bool glm_ray_triangle(vec3 origin,
vec3 direction,
vec3 v0,
vec3 v1,
vec3 v2,
float *d);
CGLM_INLINE bool glm_ray_sphere(vec3 origin,
vec3 dir,
vec4 s,
float * __restrict t1,
float * __restrict t2)
CGLM_INLINE void glm_ray_at(vec3 orig, vec3 dir, float t, vec3 point);
*/
#ifndef cglm_ray_h
@@ -31,7 +37,6 @@
* @param[in, out] d distance to intersection
* @return whether there is intersection
*/
CGLM_INLINE
bool
glm_ray_triangle(vec3 origin,
@@ -74,4 +79,96 @@ glm_ray_triangle(vec3 origin,
return dist > epsilon;
}
/*!
* @brief ray sphere intersection
*
* returns false if there is no intersection if true:
*
* - t1 > 0, t2 > 0: ray intersects the sphere at t1 and t2 both ahead of the origin
* - t1 < 0, t2 > 0: ray starts inside the sphere, exits at t2
* - t1 < 0, t2 < 0: no intersection ahead of the ray ( returns false )
* - the caller can check if the intersection points (t1 and t2) fall within a
* specific range (for example, tmin < t1, t2 < tmax) to determine if the
* intersections are within a desired segment of the ray
*
* @param[in] origin ray origin
* @param[out] dir normalized ray direction
* @param[in] s sphere [center.x, center.y, center.z, radii]
* @param[in] t1 near point1 (closer to origin)
* @param[in] t2 far point2 (farther from origin)
*
* @returns whether there is intersection
*/
CGLM_INLINE
bool
glm_ray_sphere(vec3 origin,
vec3 dir,
vec4 s,
float * __restrict t1,
float * __restrict t2) {
vec3 dp;
float r2, ddp, dpp, dscr, q, tmp, _t1, _t2;
glm_vec3_sub(s, origin, dp);
ddp = glm_vec3_dot(dir, dp);
dpp = glm_vec3_norm2(dp);
/* compute the remedy term for numerical stability */
glm_vec3_mulsubs(dir, ddp, dp); /* dp: remedy term */
r2 = s[3] * s[3];
dscr = r2 - glm_vec3_norm2(dp);
if (dscr < 0.0f) {
/* no intersection */
return false;
}
dscr = sqrtf(dscr);
q = (ddp >= 0.0f) ? (ddp + dscr) : (ddp - dscr);
/*
include Press, William H., Saul A. Teukolsky,
William T. Vetterling, and Brian P. Flannery,
"Numerical Recipes in C," Cambridge University Press, 1992.
*/
_t1 = q;
_t2 = (dpp - r2) / q;
/* adjust t1 and t2 to ensure t1 is the closer intersection */
if (_t1 > _t2) {
tmp = _t1;
_t1 = _t2;
_t2 = tmp;
}
*t1 = _t1;
*t2 = _t2;
/* check if the closest intersection (t1) is behind the ray's origin */
if (_t1 < 0.0f && _t2 < 0.0f) {
/* both intersections are behind the ray, no visible intersection */
return false;
}
return true;
}
/*!
* @brief point using t by 𝐏(𝑡)=𝐀+𝑡𝐛
*
* @param[in] orig origin of ray
* @param[in] dir direction of ray
* @param[in] t parameter
* @param[out] point point at t
*/
CGLM_INLINE
void
glm_ray_at(vec3 orig, vec3 dir, float t, vec3 point) {
vec3 dst;
glm_vec3_scale(dir, t, dst);
glm_vec3_add(orig, dst, point);
}
#endif

View File

@@ -41,6 +41,7 @@ extern "C" {
#include "struct/sphere.h"
#include "struct/curve.h"
#include "struct/affine2d.h"
#include "struct/ray.h"
#ifdef __cplusplus
}

View File

@@ -27,7 +27,7 @@
CGLM_INLINE void glms_mat2_swap_col(mat2 mat, int col1, int col2)
CGLM_INLINE void glms_mat2_swap_row(mat2 mat, int row1, int row2)
CGLM_INLINE float glms_mat2_rmc(vec2 r, mat2 m, vec2 c)
CGLM_INLINE mat2s glms_mat2_make(float * __restrict src);
CGLM_INLINE mat2s glms_mat2_make(const float * __restrict src);
*/
#ifndef cglms_mat2_h
@@ -267,7 +267,7 @@ glms_mat2_(rmc)(vec2s r, mat2s m, vec2s c) {
*/
CGLM_INLINE
mat2s
glms_mat2_(make)(float * __restrict src) {
glms_mat2_(make)(const float * __restrict src) {
mat2s r;
glm_mat2_make(src, r.raw);
return r;

View File

@@ -12,7 +12,7 @@
Functions:
CGLM_INLINE mat2x3s glms_mat2x3_zero(void);
CGLM_INLINE mat2x3s glms_mat2x3_make(float * __restrict src);
CGLM_INLINE mat2x3s glms_mat2x3_make(const float * __restrict src);
CGLM_INLINE mat2s glms_mat2x3_mul(mat2x3s m1, mat3x2s m2);
CGLM_INLINE vec2s glms_mat2x3_mulv(mat2x3s m, vec3s v);
CGLM_INLINE mat3x2s glms_mat2x3_transpose(mat2x3s m);
@@ -55,7 +55,7 @@ glms_mat2x3_(zero)(void) {
*/
CGLM_INLINE
mat2x3s
glms_mat2x3_(make)(float * __restrict src) {
glms_mat2x3_(make)(const float * __restrict src) {
mat2x3s r;
glm_mat2x3_make(src, r.raw);
return r;

View File

@@ -12,7 +12,7 @@
Functions:
CGLM_INLINE mat2x4s glms_mat2x4_zero(void);
CGLM_INLINE mat2x4s glms_mat2x4_make(float * __restrict src);
CGLM_INLINE mat2x4s glms_mat2x4_make(const float * __restrict src);
CGLM_INLINE mat2s glms_mat2x4_mul(mat2x4s m1, mat4x2s m2);
CGLM_INLINE vec2s glms_mat2x4_mulv(mat2x4s m, vec4s v);
CGLM_INLINE mat4x2s glms_mat2x4_transpose(mat2x4s m);
@@ -55,7 +55,7 @@ glms_mat2x4_(zero)(void) {
*/
CGLM_INLINE
mat2x4s
glms_mat2x4_(make)(float * __restrict src) {
glms_mat2x4_(make)(const float * __restrict src) {
mat2x4s r;
glm_mat2x4_make(src, r.raw);
return r;

View File

@@ -28,7 +28,7 @@
CGLM_INLINE mat3s glms_mat3_swap_col(mat3s mat, int col1, int col2);
CGLM_INLINE mat3s glms_mat3_swap_row(mat3s mat, int row1, int row2);
CGLM_INLINE float glms_mat3_rmc(vec3s r, mat3s m, vec3s c);
CGLM_INLINE mat3s glms_mat3_make(float * __restrict src);
CGLM_INLINE mat3s glms_mat3_make(const float * __restrict src);
*/
#ifndef cglms_mat3s_h
@@ -294,7 +294,7 @@ glms_mat3_(rmc)(vec3s r, mat3s m, vec3s c) {
*/
CGLM_INLINE
mat3s
glms_mat3_(make)(float * __restrict src) {
glms_mat3_(make)(const float * __restrict src) {
mat3s r;
glm_mat3_make(src, r.raw);
return r;

View File

@@ -12,7 +12,7 @@
Functions:
CGLM_INLINE mat3x2s glms_mat3x2_zero(void);
CGLM_INLINE mat3x2s glms_mat3x2_make(float * __restrict src);
CGLM_INLINE mat3x2s glms_mat3x2_make(const float * __restrict src);
CGLM_INLINE mat3s glms_mat3x2_mul(mat3x2s m1, mat2x3s m2);
CGLM_INLINE vec3s glms_mat3x2_mulv(mat3x2s m, vec2s v);
CGLM_INLINE mat2x3s glms_mat3x2_transpose(mat3x2s m);
@@ -55,7 +55,7 @@ glms_mat3x2_(zero)(void) {
*/
CGLM_INLINE
mat3x2s
glms_mat3x2_(make)(float * __restrict src) {
glms_mat3x2_(make)(const float * __restrict src) {
mat3x2s r;
glm_mat3x2_make(src, r.raw);
return r;

View File

@@ -12,7 +12,7 @@
Functions:
CGLM_INLINE mat3x4s glms_mat3x4_zero(void);
CGLM_INLINE mat3x4s glms_mat3x4_make(float * __restrict src);
CGLM_INLINE mat3x4s glms_mat3x4_make(const float * __restrict src);
CGLM_INLINE mat3s glms_mat3x4_mul(mat3x4s m1, mat4x3s m2);
CGLM_INLINE vec3s glms_mat3x4_mulv(mat3x4s m, vec4s v);
CGLM_INLINE mat4x3s glms_mat3x4_transpose(mat3x4s m);
@@ -55,7 +55,7 @@ glms_mat3x4_(zero)(void) {
*/
CGLM_INLINE
mat3x4s
glms_mat3x4_(make)(float * __restrict src) {
glms_mat3x4_(make)(const float * __restrict src) {
mat3x4s r;
glm_mat3x4_make(src, r.raw);
return r;

View File

@@ -42,7 +42,7 @@
CGLM_INLINE mat4s glms_mat4_swap_col(mat4s mat, int col1, int col2);
CGLM_INLINE mat4s glms_mat4_swap_row(mat4s mat, int row1, int row2);
CGLM_INLINE float glms_mat4_rmc(vec4s r, mat4s m, vec4s c);
CGLM_INLINE mat4s glms_mat4_make(float * __restrict src);
CGLM_INLINE mat4s glms_mat4_make(const float * __restrict src);
*/
#ifndef cglms_mat4s_h
@@ -468,7 +468,7 @@ glms_mat4_(rmc)(vec4s r, mat4s m, vec4s c) {
*/
CGLM_INLINE
mat4s
glms_mat4_(make)(float * __restrict src) {
glms_mat4_(make)(const float * __restrict src) {
mat4s r;
glm_mat4_make(src, r.raw);
return r;

View File

@@ -12,7 +12,7 @@
Functions:
CGLM_INLINE mat4x2s glms_mat4x2_zero(void);
CGLM_INLINE mat4x2s glms_mat4x2_make(float * __restrict src);
CGLM_INLINE mat4x2s glms_mat4x2_make(const float * __restrict src);
CGLM_INLINE mat4s glms_mat4x2_mul(mat4x2s m1, mat2x4s m2);
CGLM_INLINE vec4s glms_mat4x2_mulv(mat4x2s m, vec2s v);
CGLM_INLINE mat2x4s glms_mat4x2_transpose(mat4x2s m);
@@ -56,7 +56,7 @@ glms_mat4x2_(zero)(void) {
*/
CGLM_INLINE
mat4x2s
glms_mat4x2_(make)(float * __restrict src) {
glms_mat4x2_(make)(const float * __restrict src) {
mat4x2s r;
glm_mat4x2_make(src, r.raw);
return r;

View File

@@ -12,7 +12,7 @@
Functions:
CGLM_INLINE mat4x3s glms_mat4x3_zero(void);
CGLM_INLINE mat4x3s glms_mat4x3_make(float * __restrict src);
CGLM_INLINE mat4x3s glms_mat4x3_make(const float * __restrict src);
CGLM_INLINE mat4s glms_mat4x3_mul(mat4x3s m1, mat3x4s m2);
CGLM_INLINE vec4s glms_mat4x3_mulv(mat4x3s m, vec3s v);
CGLM_INLINE mat3x4s glms_mat4x3_transpose(mat4x3s m);
@@ -55,7 +55,7 @@ glms_mat4x3_(zero)(void) {
*/
CGLM_INLINE
mat4x3s
glms_mat4x3_(make)(float * __restrict src) {
glms_mat4x3_(make)(const float * __restrict src) {
mat4x3s r;
glm_mat4x3_make(src, r.raw);
return r;

View File

@@ -574,7 +574,7 @@ glms_quat_(rotate_atm)(versors q, vec3s pivot) {
*/
CGLM_INLINE
versors
glms_quat_(make)(float * __restrict src) {
glms_quat_(make)(const float * __restrict src) {
versors dest;
glm_quat_make(src, dest.raw);
return dest;

86
include/cglm/struct/ray.h Normal file
View File

@@ -0,0 +1,86 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglms_ray_h
#define cglms_ray_h
#include "../common.h"
#include "../types-struct.h"
#include "../ray.h"
/* api definition */
#define glms_ray_(NAME) CGLM_STRUCTAPI(ray, NAME)
/*!
* @brief MöllerTrumbore ray-triangle intersection algorithm
*
* @param[in] origin origin of ray
* @param[in] direction direction of ray
* @param[in] v0 first vertex of triangle
* @param[in] v1 second vertex of triangle
* @param[in] v2 third vertex of triangle
* @param[in, out] d distance to intersection
* @return whether there is intersection
*/
CGLM_INLINE
bool
glms_ray_(triangle)(vec3s origin,
vec3s direction,
vec3s v0,
vec3s v1,
vec3s v2,
float *d) {
return glm_ray_triangle(origin.raw, direction.raw, v0.raw, v1.raw, v2.raw, d);
}
/*!
* @brief ray sphere intersection
*
* returns false if there is no intersection if true:
*
* - t1 > 0, t2 > 0: ray intersects the sphere at t1 and t2 both ahead of the origin
* - t1 < 0, t2 > 0: ray starts inside the sphere, exits at t2
* - t1 < 0, t2 < 0: no intersection ahead of the ray ( returns false )
* - the caller can check if the intersection points (t1 and t2) fall within a
* specific range (for example, tmin < t1, t2 < tmax) to determine if the
* intersections are within a desired segment of the ray
*
* @param[in] origin ray origin
* @param[out] dir normalized ray direction
* @param[in] s sphere [center.x, center.y, center.z, radii]
* @param[in] t1 near point1 (closer to origin)
* @param[in] t2 far point2 (farther from origin)
*
* @returns whether there is intersection
*/
CGLM_INLINE
bool
glms_ray_(sphere)(vec3s origin,
vec3s dir,
vec4s s,
float * __restrict t1,
float * __restrict t2) {
return glm_ray_sphere(origin.raw, dir.raw, s.raw, t1, t2);
}
/*!
* @brief point using t by 𝐏(𝑡)=𝐀+𝑡𝐛
*
* @param[in] orig origin of ray
* @param[in] dir direction of ray
* @param[in] t parameter
* @returns point point at t
*/
CGLM_INLINE
vec3s
glms_ray_(at)(vec3s orig, vec3s dir, float t) {
vec3s r;
glm_ray_at(orig.raw, dir.raw, t, r.raw);
return r;
}
#endif /* cglms_ray_h */

View File

@@ -54,6 +54,8 @@
CGLM_INLINE vec2s glms_vec2_clamp(vec2s v, float minVal, float maxVal)
CGLM_INLINE vec2s glms_vec2_lerp(vec2s from, vec2s to, float t)
CGLM_INLINE vec2s glms_vec2_make(float * restrict src)
CGLM_INLINE vec2s glms_vec2_reflect(vec2s v, vec2s n)
CGLM_INLINE bool glms_vec2_refract(vec2s v, vec2s n, float eta, vec2s *dest)
*/
#ifndef cglms_vec2s_h
@@ -685,10 +687,45 @@ glms_vec2_(lerp)(vec2s from, vec2s to, float t) {
*/
CGLM_INLINE
vec2s
glms_vec2_(make)(float * __restrict src) {
glms_vec2_(make)(const float * __restrict src) {
vec2s dest;
glm_vec2_make(src, dest.raw);
return dest;
}
/*!
* @brief reflection vector using an incident ray and a surface normal
*
* @param[in] I incident vector
* @param[in] N normalized normal vector
* @returns reflection result
*/
CGLM_INLINE
vec2s
glms_vec2_(reflect)(vec2s v, vec2s n) {
vec2s dest;
glm_vec2_reflect(v.raw, n.raw, dest.raw);
return dest;
}
/*!
* @brief computes refraction vector for an incident vector and a surface normal.
*
* calculates the refraction vector based on Snell's law. If total internal reflection
* occurs (angle too great given eta), dest is set to zero and returns false.
* Otherwise, computes refraction vector, stores it in dest, and returns true.
*
* @param[in] v normalized incident vector
* @param[in] n normalized normal vector
* @param[in] eta ratio of indices of refraction (incident/transmitted)
* @param[out] dest refraction vector if refraction occurs; zero vector otherwise
*
* @returns true if refraction occurs; false if total internal reflection occurs.
*/
CGLM_INLINE
bool
glms_vec2_(refract)(vec2s v, vec2s n, float eta, vec2s * __restrict dest) {
return glm_vec2_refract(v.raw, n.raw, eta, dest->raw);
}
#endif /* cglms_vec2s_h */

View File

@@ -76,6 +76,9 @@
CGLM_INLINE vec3s glms_vec3_smoothinterpc(vec3s from, vec3s to, float t);
CGLM_INLINE vec3s glms_vec3_swizzle(vec3s v, int mask);
CGLM_INLINE vec3s glms_vec3_make(float * restrict src);
CGLM_INLINE vec3s glms_vec3_faceforward(vec3s n, vec3s v, vec3s nref);
CGLM_INLINE vec3s glms_vec3_reflect(vec3s v, vec3s n);
CGLM_INLINE bool glms_vec3_refract(vec3s v, vec3s n, float eta, vec3s *dest)
Convenient:
CGLM_INLINE vec3s glms_cross(vec3s a, vec3s b);
@@ -1077,10 +1080,63 @@ glms_vec3_(swizzle)(vec3s v, int mask) {
*/
CGLM_INLINE
vec3s
glms_vec3_(make)(float * __restrict src) {
glms_vec3_(make)(const float * __restrict src) {
vec3s dest;
glm_vec3_make(src, dest.raw);
return dest;
}
/*!
* @brief a vector pointing in the same direction as another
*
* orients a vector to point away from a surface as defined by its normal
*
* @param[in] n vector to orient.
* @param[in] v incident vector
* @param[in] nref reference vector
* @returns oriented vector, pointing away from the surface.
*/
CGLM_INLINE
vec3s
glms_vec3_(faceforward)(vec3s n, vec3s v, vec3s nref) {
vec3s dest;
glm_vec3_faceforward(n.raw, v.raw, nref.raw, dest.raw);
return dest;
}
/*!
* @brief reflection vector using an incident ray and a surface normal
*
* @param[in] I incident vector
* @param[in] N normalized normal vector
* @returns reflection result
*/
CGLM_INLINE
vec3s
glms_vec3_(reflect)(vec3s v, vec3s n) {
vec3s dest;
glm_vec3_reflect(v.raw, n.raw, dest.raw);
return dest;
}
/*!
* @brief computes refraction vector for an incident vector and a surface normal.
*
* calculates the refraction vector based on Snell's law. If total internal reflection
* occurs (angle too great given eta), dest is set to zero and returns false.
* Otherwise, computes refraction vector, stores it in dest, and returns true.
*
* @param[in] v normalized incident vector
* @param[in] n normalized normal vector
* @param[in] eta ratio of indices of refraction (incident/transmitted)
* @param[out] dest refraction vector if refraction occurs; zero vector otherwise
*
* @returns true if refraction occurs; false if total internal reflection occurs.
*/
CGLM_INLINE
bool
glms_vec3_(refract)(vec3s v, vec3s n, float eta, vec3s * __restrict dest) {
return glm_vec3_refract(v.raw, n.raw, eta, dest->raw);
}
#endif /* cglms_vec3s_h */

View File

@@ -67,6 +67,8 @@
CGLM_INLINE vec4s glms_vec4_cubic(float s);
CGLM_INLINE vec4s glms_vec4_swizzle(vec4s v, int mask);
CGLM_INLINE vec4s glms_vec4_make(float * restrict src);
CGLM_INLINE vec4s glms_vec4_reflect(vec4s v, vec4s n);
CGLM_INLINE bool glms_vec4_refract(vec4s v, vec4s n, float eta, vec4s *dest)
*/
#ifndef cglms_vec4s_h
@@ -921,10 +923,49 @@ glms_vec4_(swizzle)(vec4s v, int mask) {
*/
CGLM_INLINE
vec4s
glms_vec4_(make)(float * __restrict src) {
glms_vec4_(make)(const float * __restrict src) {
vec4s dest;
glm_vec4_make(src, dest.raw);
return dest;
}
/*!
* @brief reflection vector using an incident ray and a surface normal
*
* @param[in] v incident vector
* @param[in] n normalized normal vector
* @returns reflection result
*/
CGLM_INLINE
vec4s
glms_vec4_(reflect)(vec4s v, vec4s n) {
vec4s dest;
glm_vec4_reflect(v.raw, n.raw, dest.raw);
return dest;
}
/*!
* @brief computes refraction vector for an incident vector and a surface normal.
*
* calculates the refraction vector based on Snell's law. If total internal reflection
* occurs (angle too great given eta), dest is set to zero and returns false.
* Otherwise, computes refraction vector, stores it in dest, and returns true.
*
* this implementation does not explicitly preserve the 'w' component of the
* incident vector 'I' in the output 'dest', users requiring the preservation of
* the 'w' component should manually adjust 'dest' after calling this function.
*
* @param[in] v normalized incident vector
* @param[in] n normalized normal vector
* @param[in] eta ratio of indices of refraction (incident/transmitted)
* @param[out] dest refraction vector if refraction occurs; zero vector otherwise
*
* @returns true if refraction occurs; false if total internal reflection occurs.
*/
CGLM_INLINE
bool
glms_vec4_(refract)(vec4s v, vec4s n, float eta, vec4s * __restrict dest) {
return glm_vec4_refract(v.raw, n.raw, eta, dest->raw);
}
#endif /* cglms_vec4s_h */

View File

@@ -55,7 +55,8 @@
CGLM_INLINE void glm_vec2_clamp(vec2 v, float minVal, float maxVal)
CGLM_INLINE void glm_vec2_lerp(vec2 from, vec2 to, float t, vec2 dest)
CGLM_INLINE void glm_vec2_make(float * restrict src, vec2 dest)
CGLM_INLINE void glm_vec2_reflect(vec2 v, vec2 n, vec2 dest)
CGLM_INLINE void glm_vec2_refract(vec2 v, vec2 n, float eta, vec2 dest)
*/
#ifndef cglm_vec2_h
@@ -277,7 +278,7 @@ glm_vec2_scale_as(vec2 v, float s, vec2 dest) {
float norm;
norm = glm_vec2_norm(v);
if (norm == 0.0f) {
if (CGLM_UNLIKELY(norm < FLT_EPSILON)) {
glm_vec2_zero(dest);
return;
}
@@ -541,7 +542,7 @@ glm_vec2_normalize(vec2 v) {
norm = glm_vec2_norm(v);
if (norm == 0.0f) {
if (CGLM_UNLIKELY(norm < FLT_EPSILON)) {
v[0] = v[1] = 0.0f;
return;
}
@@ -562,7 +563,7 @@ glm_vec2_normalize_to(vec2 v, vec2 dest) {
norm = glm_vec2_norm(v);
if (norm == 0.0f) {
if (CGLM_UNLIKELY(norm < FLT_EPSILON)) {
glm_vec2_zero(dest);
return;
}
@@ -708,8 +709,56 @@ glm_vec2_lerp(vec2 from, vec2 to, float t, vec2 dest) {
*/
CGLM_INLINE
void
glm_vec2_make(float * __restrict src, vec2 dest) {
glm_vec2_make(const float * __restrict src, vec2 dest) {
dest[0] = src[0]; dest[1] = src[1];
}
/*!
* @brief reflection vector using an incident ray and a surface normal
*
* @param[in] v incident vector
* @param[in] n normalized normal vector
* @param[out] dest destination vector for the reflection result
*/
CGLM_INLINE
void
glm_vec2_reflect(vec2 v, vec2 n, vec2 dest) {
vec2 temp;
glm_vec2_scale(n, 2.0f * glm_vec2_dot(v, n), temp);
glm_vec2_sub(v, temp, dest);
}
/*!
* @brief computes refraction vector for an incident vector and a surface normal.
*
* calculates the refraction vector based on Snell's law. If total internal reflection
* occurs (angle too great given eta), dest is set to zero and returns false.
* Otherwise, computes refraction vector, stores it in dest, and returns true.
*
* @param[in] v normalized incident vector
* @param[in] n normalized normal vector
* @param[in] eta ratio of indices of refraction (incident/transmitted)
* @param[out] dest refraction vector if refraction occurs; zero vector otherwise
*
* @returns true if refraction occurs; false if total internal reflection occurs.
*/
CGLM_INLINE
bool
glm_vec2_refract(vec2 v, vec2 n, float eta, vec2 dest) {
float ndi, eni, k;
ndi = glm_vec2_dot(n, v);
eni = eta * ndi;
k = 1.0f + eta * eta - eni * eni;
if (k < 0.0f) {
glm_vec2_zero(dest);
return false;
}
glm_vec2_scale(v, eta, dest);
glm_vec2_mulsubs(n, eni + sqrtf(k), dest);
return true;
}
#endif /* cglm_vec2_h */

View File

@@ -80,6 +80,9 @@
CGLM_INLINE void glm_vec3_smoothinterpc(vec3 from, vec3 to, float t, vec3 dest);
CGLM_INLINE void glm_vec3_swizzle(vec3 v, int mask, vec3 dest);
CGLM_INLINE void glm_vec3_make(float * restrict src, vec3 dest);
CGLM_INLINE void glm_vec3_faceforward(vec3 n, vec3 v, vec3 nref, vec3 dest);
CGLM_INLINE void glm_vec3_reflect(vec3 v, vec3 n, vec3 dest);
CGLM_INLINE void glm_vec3_refract(vec3 v, vec3 n, float eta, vec3 dest);
Convenient:
CGLM_INLINE void glm_cross(vec3 a, vec3 b, vec3 d);
@@ -369,7 +372,7 @@ glm_vec3_scale_as(vec3 v, float s, vec3 dest) {
float norm;
norm = glm_vec3_norm(v);
if (norm == 0.0f) {
if (CGLM_UNLIKELY(norm < FLT_EPSILON)) {
glm_vec3_zero(dest);
return;
}
@@ -648,7 +651,7 @@ glm_vec3_normalize(vec3 v) {
norm = glm_vec3_norm(v);
if (norm == 0.0f) {
if (CGLM_UNLIKELY(norm < FLT_EPSILON)) {
v[0] = v[1] = v[2] = 0.0f;
return;
}
@@ -669,7 +672,7 @@ glm_vec3_normalize_to(vec3 v, vec3 dest) {
norm = glm_vec3_norm(v);
if (norm == 0.0f) {
if (CGLM_UNLIKELY(norm < FLT_EPSILON)) {
glm_vec3_zero(dest);
return;
}
@@ -1196,10 +1199,80 @@ glm_normalize_to(vec3 v, vec3 dest) {
*/
CGLM_INLINE
void
glm_vec3_make(float * __restrict src, vec3 dest) {
glm_vec3_make(const float * __restrict src, vec3 dest) {
dest[0] = src[0];
dest[1] = src[1];
dest[2] = src[2];
}
/*!
* @brief a vector pointing in the same direction as another
*
* orients a vector to point away from a surface as defined by its normal
*
* @param[in] n vector to orient
* @param[in] v incident vector
* @param[in] nref reference vector
* @param[out] dest oriented vector, pointing away from the surface
*/
CGLM_INLINE
void
glm_vec3_faceforward(vec3 n, vec3 v, vec3 nref, vec3 dest) {
if (glm_vec3_dot(v, nref) < 0.0f) {
/* N is facing away from I */
glm_vec3_copy(n, dest);
} else {
/* N is facing towards I, negate it */
glm_vec3_negate_to(n, dest);
}
}
/*!
* @brief reflection vector using an incident ray and a surface normal
*
* @param[in] v incident vector
* @param[in] n normalized normal vector
* @param[out] dest reflection result
*/
CGLM_INLINE
void
glm_vec3_reflect(vec3 v, vec3 n, vec3 dest) {
vec3 temp;
glm_vec3_scale(n, 2.0f * glm_vec3_dot(v, n), temp);
glm_vec3_sub(v, temp, dest);
}
/*!
* @brief computes refraction vector for an incident vector and a surface normal.
*
* calculates the refraction vector based on Snell's law. If total internal reflection
* occurs (angle too great given eta), dest is set to zero and returns false.
* Otherwise, computes refraction vector, stores it in dest, and returns true.
*
* @param[in] v normalized incident vector
* @param[in] n normalized normal vector
* @param[in] eta ratio of indices of refraction (incident/transmitted)
* @param[out] dest refraction vector if refraction occurs; zero vector otherwise
*
* @returns true if refraction occurs; false if total internal reflection occurs.
*/
CGLM_INLINE
bool
glm_vec3_refract(vec3 v, vec3 n, float eta, vec3 dest) {
float ndi, eni, k;
ndi = glm_vec3_dot(n, v);
eni = eta * ndi;
k = 1.0f + eta * eta - eni * eni;
if (k < 0.0f) {
glm_vec3_zero(dest);
return false;
}
glm_vec3_scale(v, eta, dest);
glm_vec3_mulsubs(n, eni + sqrtf(k), dest);
return true;
}
#endif /* cglm_vec3_h */

View File

@@ -65,6 +65,8 @@
CGLM_INLINE void glm_vec4_smoothinterpc(vec4 from, vec4 to, float t, vec4 dest);
CGLM_INLINE void glm_vec4_swizzle(vec4 v, int mask, vec4 dest);
CGLM_INLINE void glm_vec4_make(float * restrict src, vec4 dest);
CGLM_INLINE void glm_vec4_reflect(vec4 v, vec4 n, vec4 dest);
CGLM_INLINE void glm_vec4_refract(vec4 v, vec4 n, float eta, vec4 dest);
DEPRECATED:
glm_vec4_dup
@@ -485,7 +487,7 @@ glm_vec4_scale_as(vec4 v, float s, vec4 dest) {
float norm;
norm = glm_vec4_norm(v);
if (norm == 0.0f) {
if (CGLM_UNLIKELY(norm < FLT_EPSILON)) {
glm_vec4_zero(dest);
return;
}
@@ -916,7 +918,7 @@ glm_vec4_normalize_to(vec4 v, vec4 dest) {
/* dot = _mm_cvtss_f32(xdot); */
dot = wasm_f32x4_extract_lane(xdot, 0);
if (dot == 0.0f) {
if (CGLM_UNLIKELY(dot < FLT_EPSILON)) {
glmm_store(dest, wasm_f32x4_const_splat(0.f));
return;
}
@@ -930,7 +932,7 @@ glm_vec4_normalize_to(vec4 v, vec4 dest) {
xdot = glmm_vdot(x0, x0);
dot = _mm_cvtss_f32(xdot);
if (dot == 0.0f) {
if (CGLM_UNLIKELY(dot < FLT_EPSILON)) {
glmm_store(dest, _mm_setzero_ps());
return;
}
@@ -941,7 +943,7 @@ glm_vec4_normalize_to(vec4 v, vec4 dest) {
norm = glm_vec4_norm(v);
if (norm == 0.0f) {
if (CGLM_UNLIKELY(norm < FLT_EPSILON)) {
glm_vec4_zero(dest);
return;
}
@@ -1299,9 +1301,65 @@ glm_vec4_swizzle(vec4 v, int mask, vec4 dest) {
*/
CGLM_INLINE
void
glm_vec4_make(float * __restrict src, vec4 dest) {
glm_vec4_make(const float * __restrict src, vec4 dest) {
dest[0] = src[0]; dest[1] = src[1];
dest[2] = src[2]; dest[3] = src[3];
}
/*!
* @brief reflection vector using an incident ray and a surface normal
*
* @param[in] v incident vector
* @param[in] n normalized normal vector
* @param[out] dest destination vector for the reflection result
*/
CGLM_INLINE
void
glm_vec4_reflect(vec4 v, vec4 n, vec4 dest) {
vec4 temp;
/* TODO: direct simd touch */
glm_vec4_scale(n, 2.0f * glm_vec4_dot(v, n), temp);
glm_vec4_sub(v, temp, dest);
dest[3] = v[3];
}
/*!
* @brief computes refraction vector for an incident vector and a surface normal.
*
* calculates the refraction vector based on Snell's law. If total internal reflection
* occurs (angle too great given eta), dest is set to zero and returns false.
* Otherwise, computes refraction vector, stores it in dest, and returns true.
*
* this implementation does not explicitly preserve the 'w' component of the
* incident vector 'I' in the output 'dest', users requiring the preservation of
* the 'w' component should manually adjust 'dest' after calling this function.
*
* @param[in] v normalized incident vector
* @param[in] n normalized normal vector
* @param[in] eta ratio of indices of refraction (incident/transmitted)
* @param[out] dest refraction vector if refraction occurs; zero vector otherwise
*
* @returns true if refraction occurs; false if total internal reflection occurs.
*/
CGLM_INLINE
bool
glm_vec4_refract(vec4 v, vec4 n, float eta, vec4 dest) {
float ndi, eni, k;
ndi = glm_vec4_dot(n, v);
eni = eta * ndi;
k = 1.0f + eta * eta - eni * eni;
if (k < 0.0f) {
glm_vec4_zero(dest);
return false;
}
glm_vec4_scale(v, eta, dest);
glm_vec4_mulsubs(n, eni + sqrtf(k), dest);
return true;
}
#endif /* cglm_vec4_h */

View File

@@ -10,6 +10,6 @@
#define CGLM_VERSION_MAJOR 0
#define CGLM_VERSION_MINOR 9
#define CGLM_VERSION_PATCH 3
#define CGLM_VERSION_PATCH 4
#endif /* cglm_version_h */

View File

@@ -1,5 +1,5 @@
project('cglm', 'c',
version : '0.9.3',
version : '0.9.4',
license : 'mit',
default_options : [
'c_std=c11',

View File

@@ -100,6 +100,6 @@ glmc_mat2_rmc(vec2 r, mat2 m, vec2 c) {
CGLM_EXPORT
void
glmc_mat2_make(float * __restrict src, mat2 dest) {
glmc_mat2_make(const float * __restrict src, mat2 dest) {
glm_mat2_make(src, dest);
}

View File

@@ -22,7 +22,7 @@ glmc_mat2x3_zero(mat2x3 mat) {
CGLM_EXPORT
void
glmc_mat2x3_make(float * __restrict src, mat2x3 dest) {
glmc_mat2x3_make(const float * __restrict src, mat2x3 dest) {
glm_mat2x3_make(src, dest);
}

View File

@@ -22,7 +22,7 @@ glmc_mat2x4_zero(mat2x4 mat) {
CGLM_EXPORT
void
glmc_mat2x4_make(float * __restrict src, mat2x4 dest) {
glmc_mat2x4_make(const float * __restrict src, mat2x4 dest) {
glm_mat2x4_make(src, dest);
}

View File

@@ -106,6 +106,6 @@ glmc_mat3_rmc(vec3 r, mat3 m, vec3 c) {
CGLM_EXPORT
void
glmc_mat3_make(float * __restrict src, mat3 dest) {
glmc_mat3_make(const float * __restrict src, mat3 dest) {
glm_mat3_make(src, dest);
}

View File

@@ -22,7 +22,7 @@ glmc_mat3x2_zero(mat3x2 mat) {
CGLM_EXPORT
void
glmc_mat3x2_make(float * __restrict src, mat3x2 dest) {
glmc_mat3x2_make(const float * __restrict src, mat3x2 dest) {
glm_mat3x2_make(src, dest);
}

View File

@@ -22,7 +22,7 @@ glmc_mat3x4_zero(mat3x4 mat) {
CGLM_EXPORT
void
glmc_mat3x4_make(float * __restrict src, mat3x4 dest) {
glmc_mat3x4_make(const float * __restrict src, mat3x4 dest) {
glm_mat3x4_make(src, dest);
}

View File

@@ -166,6 +166,6 @@ glmc_mat4_rmc(vec4 r, mat4 m, vec4 c) {
CGLM_EXPORT
void
glmc_mat4_make(float * __restrict src, mat4 dest) {
glmc_mat4_make(const float * __restrict src, mat4 dest) {
glm_mat4_make(src, dest);
}

View File

@@ -22,7 +22,7 @@ glmc_mat4x2_zero(mat4x2 mat) {
CGLM_EXPORT
void
glmc_mat4x2_make(float * __restrict src, mat4x2 dest) {
glmc_mat4x2_make(const float * __restrict src, mat4x2 dest) {
glm_mat4x2_make(src, dest);
}

View File

@@ -22,7 +22,7 @@ glmc_mat4x3_zero(mat4x3 mat) {
CGLM_EXPORT
void
glmc_mat4x3_make(float * __restrict src, mat4x3 dest) {
glmc_mat4x3_make(const float * __restrict src, mat4x3 dest) {
glm_mat4x3_make(src, dest);
}

View File

@@ -232,6 +232,6 @@ glmc_quat_rotate_atm(mat4 m, versor q, vec3 pivot) {
CGLM_EXPORT
void
glmc_quat_make(float * __restrict src, versor dest) {
glmc_quat_make(const float * __restrict src, versor dest) {
glm_quat_make(src, dest);
}

View File

@@ -9,5 +9,21 @@ glmc_ray_triangle(vec3 origin,
vec3 v1,
vec3 v2,
float *d) {
return glm_ray_triangle(origin, direction, v0, v1, v2, d);
return glm_ray_triangle(origin, direction, v0, v1, v2, d);
}
CGLM_EXPORT
bool
glmc_ray_sphere(vec3 origin,
vec3 dir,
vec4 s,
float * __restrict t1,
float * __restrict t2) {
return glm_ray_sphere(origin, dir, s, t1, t2);
}
CGLM_EXPORT
void
glmc_ray_at(vec3 orig, vec3 dir, float t, vec3 point) {
glm_ray_at(orig, dir, t, point);
}

View File

@@ -299,6 +299,18 @@ glmc_vec2_complex_conjugate(vec2 a, vec2 dest) {
CGLM_EXPORT
void
glmc_vec2_make(float * __restrict src, vec2 dest) {
glmc_vec2_make(const float * __restrict src, vec2 dest) {
glm_vec2_make(src, dest);
}
CGLM_EXPORT
void
glmc_vec2_reflect(vec2 v, vec2 n, vec2 dest) {
glm_vec2_reflect(v, n, dest);
}
CGLM_EXPORT
bool
glmc_vec2_refract(vec2 v, vec2 n, float eta, vec2 dest) {
return glm_vec2_refract(v, n, eta, dest);
}

View File

@@ -456,6 +456,24 @@ glmc_vec3_sqrt(vec3 v, vec3 dest) {
CGLM_EXPORT
void
glmc_vec3_make(float * __restrict src, vec3 dest) {
glmc_vec3_make(const float * __restrict src, vec3 dest) {
glm_vec3_make(src, dest);
}
CGLM_EXPORT
void
glmc_vec3_faceforward(vec3 n, vec3 v, vec3 nref, vec3 dest) {
glm_vec3_faceforward(n, v, nref, dest);
}
CGLM_EXPORT
void
glmc_vec3_reflect(vec3 v, vec3 n, vec3 dest) {
glm_vec3_reflect(v, n, dest);
}
CGLM_EXPORT
bool
glmc_vec3_refract(vec3 v, vec3 n, float eta, vec3 dest) {
return glm_vec3_refract(v, n, eta, dest);
}

View File

@@ -420,6 +420,18 @@ glmc_vec4_sqrt(vec4 v, vec4 dest) {
CGLM_EXPORT
void
glmc_vec4_make(float * __restrict src, vec4 dest) {
glmc_vec4_make(const float * __restrict src, vec4 dest) {
glm_vec4_make(src, dest);
}
CGLM_EXPORT
void
glmc_vec4_reflect(vec4 v, vec4 n, vec4 dest) {
glm_vec4_reflect(v, n, dest);
}
CGLM_EXPORT
bool
glmc_vec4_refract(vec4 v, vec4 n, float eta, vec4 dest) {
return glm_vec4_refract(v, n, eta, dest);
}

View File

@@ -32,3 +32,43 @@ TEST_IMPL(GLM_PREFIX, ray_triangle) {
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, ray_sphere) {
vec4 sphere = {5.0f, 0.0f, 0.0f, 1.0f}; /* Sphere: center at (5, 0, 0) with radius 1 */
float t1, t2;
bool hit;
/* Case 1: Ray misses the sphere */
hit = GLM(ray_sphere)((vec3){10.0f, 3.0f, 0.0f}, (vec3){1.0f, 0.0f, 0.0f}, sphere, &t1, &t2);
ASSERT(!hit); /* Expect no intersection */
/* Case 2: Ray starts inside the sphere */
hit = GLM(ray_sphere)((vec3){5.0f, 0.5f, 0.0f}, (vec3){1.0f, 0.0f, 0.0f}, sphere, &t1, &t2);
ASSERT(hit); /* Expect an intersection */
ASSERT(t1 < 0 && t2 > 0); /* Ray exits at t2 */
/* Case 3: Ray intersects the sphere from outside */
hit = GLM(ray_sphere)((vec3){0.0f, 0.0f, 0.0f}, (vec3){1.0f, 0.0f, 0.0f}, sphere, &t1, &t2);
ASSERT(hit); /* Expect an intersection */
ASSERT(t1 > 0 && t2 > 0); /* Intersections at t1 and t2 */
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, ray_at) {
vec3 origin = {0.0f, 0.0f, 0.0f};
vec3 direction = {1.0f, 1.0f, 1.0f}; /* Diagonal direction */
float distance = sqrtf(3.0f); /* Distance along the ray; sqrt(3) for unit length due to direction normalization */
vec3 result;
/* Normalize the direction to ensure accurate distance measurement */
glm_vec3_normalize(direction);
GLM(ray_at)(origin, direction, distance, result);
ASSERT(fabsf(result[0] - 1.0f) <= 0.0000009); /* Expecting to be 1 unit along the x-axis */
ASSERT(fabsf(result[1] - 1.0f) <= 0.0000009); /* Expecting to be 1 unit along the y-axis */
ASSERT(fabsf(result[2] - 1.0f) <= 0.0000009); /* Expecting to be 1 unit along the z-axis */
TEST_SUCCESS
}

View File

@@ -241,7 +241,7 @@ TEST_IMPL(GLM_PREFIX, vec2_scale_as) {
GLM(vec2_scale_as)(v1, s, v2);
norm = sqrtf(v1[0] * v1[0] + v1[1] * v1[1]);
if (norm == 0.0f) {
if (norm < FLT_EPSILON) {
ASSERT(test_eq(v1[0], 0.0f))
ASSERT(test_eq(v1[1], 0.0f))
@@ -492,7 +492,7 @@ TEST_IMPL(GLM_PREFIX, vec2_normalize) {
GLM(vec2_normalize)(v2);
norm = sqrtf(v1[0] * v1[0] + v1[1] * v1[1]);
if (norm == 0.0f) {
if (norm < FLT_EPSILON) {
ASSERT(test_eq(v1[0], 0.0f))
ASSERT(test_eq(v1[1], 0.0f))
@@ -519,7 +519,7 @@ TEST_IMPL(GLM_PREFIX, vec2_normalize_to) {
GLM(vec2_normalize_to)(v1, v2);
norm = sqrtf(v1[0] * v1[0] + v1[1] * v1[1]);
if (norm == 0.0f) {
if (norm < FLT_EPSILON) {
ASSERT(test_eq(v1[0], 0.0f))
ASSERT(test_eq(v1[1], 0.0f))
@@ -752,3 +752,75 @@ TEST_IMPL(GLM_PREFIX, vec2_make) {
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec2_reflect) {
vec2 dest;
/* Reflecting off a "horizontal" surface in 2D */
vec2 I1 = {1.0f, -1.0f}; /* Incoming vector */
vec2 N1 = {0.0f, 1.0f}; /* Normal vector */
GLM(vec2_reflect)(I1, N1, dest);
ASSERT(fabsf(dest[0] - 1.0f) < 0.00001f &&
fabsf(dest[1] - 1.0f) < 0.00001f); /* Expect reflection upwards */
/* Reflecting at an angle in 2D */
vec2 I2 = {sqrtf(2)/2, -sqrtf(2)/2}; /* Incoming vector at 45 degrees */
vec2 N2 = {0.0f, 1.0f}; /* Upwards normal vector */
GLM(vec2_reflect)(I2, N2, dest);
ASSERT(fabsf(dest[0] - sqrtf(2)/2) < 0.00001f &&
fabsf(dest[1] - sqrtf(2)/2) < 0.00001f); /* Expect reflection upwards */
/* Reflecting off a line in 2D representing a "vertical" surface analogy */
vec2 I3 = {1.0f, 0.0f}; /* Incoming vector */
vec2 N3 = {-1.0f, 0.0f}; /* Normal vector representing a "vertical" line */
GLM(vec2_reflect)(I3, N3, dest);
ASSERT(fabsf(dest[0] + 1.0f) < 0.00001f &&
fabsf(dest[1]) < 0.00001f); /* Expect reflection to the left */
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec2_refract) {
vec2 v = {sqrtf(0.5f), -sqrtf(0.5f)}; /* Incoming vector at 45 degrees to normal */
vec2 N = {0.0f, 1.0f}; /* Surface normal */
vec2 dest;
float eta;
float r;
/* Water to Air (eta = 1.33/1.0) */
eta = 1.33f / 1.0f;
r = GLM(vec2_refract)(v, N, eta, dest);
// In 2D, we expect a similar bending behavior as in 3D, so we check dest[1]
if (!(dest[0] == 0.0f && dest[1] == 0.0f)) {
ASSERT(dest[1] < -sqrtf(0.5f)); // Refracted ray bends away from the normal
ASSERT(r == true);
} else {
ASSERT(dest[0] == 0.0f && dest[1] == 0.0f); // Total internal reflection
ASSERT(r == false);
}
/* Air to Glass (eta = 1.0 / 1.5) */
eta = 1.0f / 1.5f;
r = GLM(vec2_refract)(v, N, eta, dest);
ASSERT(dest[1] < -sqrtf(0.5f)); // Expect bending towards the normal
/* Glass to Water (eta = 1.5 / 1.33) */
eta = 1.5f / 1.33f;
r = GLM(vec2_refract)(v, N, eta, dest);
ASSERT(dest[1] < -sqrtf(0.5f)); // Expect bending towards the normal, less bending than air to glass
/* Diamond to Air (eta = 2.42 / 1.0) */
eta = 2.42f / 1.0f;
r = GLM(vec2_refract)(v, N, eta, dest);
if (!(dest[0] == 0.0f && dest[1] == 0.0f)) {
/* High potential for total internal reflection, but if it occurs, expect significant bending */
ASSERT(dest[1] < -sqrtf(0.5f));
ASSERT(r == true);
} else {
ASSERT(dest[0] == 0.0f && dest[1] == 0.0f); // Total internal reflection
ASSERT(r == false);
}
TEST_SUCCESS
}

View File

@@ -433,7 +433,7 @@ TEST_IMPL(GLM_PREFIX, vec3_scale_as) {
GLM(vec3_scale_as)(v1, s, v2);
norm = sqrtf(v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2]);
if (norm == 0.0f) {
if (norm < FLT_EPSILON) {
ASSERT(test_eq(v1[0], 0.0f))
ASSERT(test_eq(v1[1], 0.0f))
ASSERT(test_eq(v1[2], 0.0f))
@@ -704,7 +704,7 @@ TEST_IMPL(GLM_PREFIX, vec3_normalize) {
GLM(vec3_normalize)(v2);
norm = sqrtf(v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2]);
if (norm == 0.0f) {
if (norm < FLT_EPSILON) {
ASSERT(test_eq(v1[0], 0.0f))
ASSERT(test_eq(v1[1], 0.0f))
ASSERT(test_eq(v1[2], 0.0f))
@@ -733,7 +733,7 @@ TEST_IMPL(GLM_PREFIX, vec3_normalize_to) {
GLM(vec3_normalize_to)(v1, v2);
norm = sqrtf(v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2]);
if (norm == 0.0f) {
if (norm < FLT_EPSILON) {
ASSERT(test_eq(v1[0], 0.0f))
ASSERT(test_eq(v1[1], 0.0f))
ASSERT(test_eq(v1[2], 0.0f))
@@ -764,7 +764,7 @@ TEST_IMPL(GLM_PREFIX, normalize) {
GLM(vec3_normalize)(v2);
norm = sqrtf(v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2]);
if (norm == 0.0f) {
if (norm < FLT_EPSILON) {
ASSERT(test_eq(v1[0], 0.0f))
ASSERT(test_eq(v1[1], 0.0f))
ASSERT(test_eq(v1[2], 0.0f))
@@ -795,7 +795,7 @@ TEST_IMPL(GLM_PREFIX, normalize_to) {
GLM(vec3_normalize_to)(v1, v2);
norm = sqrtf(v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2]);
if (norm == 0.0f) {
if (norm < FLT_EPSILON) {
ASSERT(test_eq(v1[0], 0.0f))
ASSERT(test_eq(v1[1], 0.0f))
ASSERT(test_eq(v1[2], 0.0f))
@@ -1840,3 +1840,94 @@ TEST_IMPL(GLM_PREFIX, vec3_make) {
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec3_faceforward) {
vec3 N = {0.0f, 1.0f, 0.0f};
vec3 v = {1.0f, -1.0f, 0.0f};
vec3 Nref = {0.0f, -1.0f, 0.0f};
vec3 dest;
GLM(vec3_faceforward)(N, v, Nref, dest);
ASSERT(dest[0] == 0.0f
&& dest[1] == -1.0f
&& dest[2] == 0.0f); /* Expect N flipped */
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec3_reflect) {
vec3 dest;
/* Original test: Reflecting off a horizontal surface */
vec3 I1 = {1.0f, -1.0f, 0.0f}; /* Incoming vector */
vec3 N1 = {0.0f, 1.0f, 0.0f}; /* Normal vector */
GLM(vec3_reflect)(I1, N1, dest);
ASSERT(fabsf(dest[0] - 1.0f) < 0.00001f
&& fabsf(dest[1] - 1.0f) < 0.00001f
&& fabsf(dest[2] - 0.0f) < 0.00001f); /* Expect reflection */
/* Scenario 2: Reflecting off a vertical surface */
vec3 I2 = {1.0f, 0.0f, 0.0f}; /* Incoming vector */
vec3 N2 = {-1.0f, 0.0f, 0.0f}; /* Normal vector */
GLM(vec3_reflect)(I2, N2, dest);
ASSERT(fabsf(dest[0] + 1.0f) < 0.00001f
&& fabsf(dest[1]) < 0.00001f
&& fabsf(dest[2]) < 0.00001f); /* Expect reflection to the left */
/* Scenario 3: Reflecting at an angle */
vec3 I3 = {sqrtf(2)/2, -sqrtf(2)/2, 0.0f}; /* Incoming vector at 45 degrees */
vec3 N3 = {0.0f, 1.0f, 0.0f}; /* Upwards normal vector */
GLM(vec3_reflect)(I3, N3, dest);
ASSERT(fabsf(dest[0] - sqrtf(2)/2) < 0.00001f
&& fabsf(dest[1] - sqrtf(2)/2) < 0.00001f
&& fabsf(dest[2]) < 0.00001f); /* Expect reflection upwards */
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec3_refract) {
vec3 v = {sqrtf(0.5f), -sqrtf(0.5f), 0.0f}; /* Incoming vector at 45 degrees to normal */
vec3 N = {0.0f, 1.0f, 0.0f}; /* Surface normal */
vec3 dest;
float eta;
bool r;
/* Water to Air (eta = 1.33/1.0) */
eta = 1.33f / 1.0f;
r = GLM(vec3_refract)(v, N, eta, dest);
if (!(dest[0] == 0.0f && dest[1] == 0.0f && dest[2] == 0.0f)) {
ASSERT(dest[1] < -sqrtf(0.5f));
ASSERT(r == true);
} else {
ASSERT(dest[0] == 0.0f && dest[1] == 0.0f && dest[2] == 0.0f);
ASSERT(r == false);
}
/* Air to Glass (eta = 1.0 / 1.5) */
eta = 1.0f / 1.5f;
r = GLM(vec3_refract)(v, N, eta, dest);
/* Expect bending towards the normal */
ASSERT(dest[1] < -sqrtf(0.5f));
/* Glass to Water (eta = 1.5 / 1.33) */
eta = 1.5f / 1.33f;
r = GLM(vec3_refract)(v, N, eta, dest);
/* Expect bending towards the normal, less bending than air to glass */
ASSERT(dest[1] < -sqrtf(0.5f));
/* Diamond to Air (eta = 2.42 / 1.0) */
eta = 2.42f / 1.0f;
r = GLM(vec3_refract)(v, N, eta, dest);
if (!(dest[0] == 0.0f && dest[1] == 0.0f && dest[2] == 0.0f)) {
/* High potential for total internal reflection, but if it occurs, expect significant bending */
ASSERT(dest[1] < -sqrtf(0.5f));
ASSERT(r == true);
} else {
ASSERT(dest[0] == 0.0f && dest[1] == 0.0f && dest[2] == 0.0f);
ASSERT(r == false);
}
TEST_SUCCESS
}

View File

@@ -410,7 +410,7 @@ TEST_IMPL(GLM_PREFIX, vec4_scale_as) {
GLM(vec4_scale_as)(v1, s, v2);
norm = sqrtf(v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2] + v1[3] * v1[3]);
if (norm == 0.0f) {
if (norm < FLT_EPSILON) {
ASSERT(test_eq(v1[0], 0.0f))
ASSERT(test_eq(v1[1], 0.0f))
ASSERT(test_eq(v1[2], 0.0f))
@@ -701,7 +701,7 @@ TEST_IMPL(GLM_PREFIX, vec4_normalize) {
GLM(vec4_normalize)(v2);
norm = sqrtf(v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2] + v1[3] * v1[3]);
if (norm == 0.0f) {
if (norm < FLT_EPSILON) {
ASSERT(test_eq(v1[0], 0.0f))
ASSERT(test_eq(v1[1], 0.0f))
ASSERT(test_eq(v1[2], 0.0f))
@@ -732,7 +732,7 @@ TEST_IMPL(GLM_PREFIX, vec4_normalize_to) {
GLM(vec4_normalize_to)(v1, v2);
norm = sqrtf(v1[0] * v1[0] + v1[1] * v1[1] + v1[2] * v1[2] + v1[3] * v1[3]);
if (norm == 0.0f) {
if (norm < FLT_EPSILON) {
ASSERT(test_eq(v1[0], 0.0f))
ASSERT(test_eq(v1[1], 0.0f))
ASSERT(test_eq(v1[2], 0.0f))
@@ -1536,3 +1536,80 @@ TEST_IMPL(GLM_PREFIX, vec4_make) {
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec4_reflect) {
vec4 dest;
/* Original test: Reflecting off a horizontal surface */
vec4 I1 = {1.0f, -1.0f, 0.0f, 0.0f}; /* Incoming vector */
vec4 N1 = {0.0f, 1.0f, 0.0f, 0.0f}; /* Normal vector */
GLM(vec4_reflect)(I1, N1, dest);
ASSERT(fabsf(dest[0] - 1.0f) < 0.00001f &&
fabsf(dest[1] - 1.0f) < 0.00001f &&
fabsf(dest[2] - 0.0f) < 0.00001f &&
fabsf(dest[3] - 0.0f) < 0.00001f); /* Expect reflection */
/* Scenario 2: Reflecting off a vertical surface */
vec4 I2 = {1.0f, 0.0f, 0.0f, 0.0f}; /* Incoming vector */
vec4 N2 = {-1.0f, 0.0f, 0.0f, 0.0f}; /* Normal vector */
GLM(vec4_reflect)(I2, N2, dest);
ASSERT(fabsf(dest[0] + 1.0f) < 0.00001f &&
fabsf(dest[1]) < 0.00001f &&
fabsf(dest[2]) < 0.00001f &&
fabsf(dest[3] - 0.0f) < 0.00001f); /* Expect reflection to the left */
/* Scenario 3: Reflecting at an angle */
vec4 I3 = {sqrtf(2)/2, -sqrtf(2)/2, 0.0f, 0.0f}; /* Incoming vector at 45 degrees */
vec4 N3 = {0.0f, 1.0f, 0.0f, 0.0f}; /* Upwards normal vector */
GLM(vec4_reflect)(I3, N3, dest);
ASSERT(fabsf(dest[0] - sqrtf(2)/2) < 0.00001f &&
fabsf(dest[1] - sqrtf(2)/2) < 0.00001f &&
fabsf(dest[2]) < 0.00001f &&
fabsf(dest[3] - 0.0f) < 0.00001f); /* Expect reflection upwards */
TEST_SUCCESS
}
TEST_IMPL(GLM_PREFIX, vec4_refract) {
vec4 v = {sqrtf(0.5f), -sqrtf(0.5f), 0.0f, 0.0f}; /* Incoming vector */
vec4 N = {0.0f, 1.0f, 0.0f, 0.0f}; /* Surface normal */
vec4 dest;
float eta;
float r;
/* Water to Air (eta = 1.33/1.0) */
eta = 1.33f / 1.0f;
r = GLM(vec4_refract)(v, N, eta, dest);
if (!(dest[0] == 0.0f && dest[1] == 0.0f && dest[2] == 0.0f && dest[3] == 0.0f)) {
ASSERT(dest[1] < -sqrtf(0.5f));
ASSERT(r == true);
} else {
ASSERT(dest[0] == 0.0f && dest[1] == 0.0f && dest[2] == 0.0f && dest[3] == 0.0f);
ASSERT(r == false);
}
/* Air to Glass (eta = 1.0 / 1.5) */
eta = 1.0f / 1.5f;
r = GLM(vec4_refract)(v, N, eta, dest);
ASSERT(dest[1] < -sqrtf(0.5f)); // Expect bending towards the normal
/* Glass to Water (eta = 1.5 / 1.33) */
eta = 1.5f / 1.33f;
r = GLM(vec4_refract)(v, N, eta, dest);
ASSERT(dest[1] < -sqrtf(0.5f)); // Expect bending towards the normal, less bending than air to glass
/* Diamond to Air (eta = 2.42 / 1.0) */
eta = 2.42f / 1.0f;
r = GLM(vec4_refract)(v, N, eta, dest);
if (!(dest[0] == 0.0f && dest[1] == 0.0f && dest[2] == 0.0f && dest[3] == 0.0f)) {
/* High potential for total internal reflection, but if it occurs, expect significant bending */
ASSERT(dest[1] < -sqrtf(0.5f));
ASSERT(r == true);
} else {
ASSERT(dest[0] == 0.0f && dest[1] == 0.0f && dest[2] == 0.0f && dest[3] == 0.0f);
ASSERT(r == false);
}
TEST_SUCCESS
}

View File

@@ -392,7 +392,12 @@ TEST_DECLARE(euler)
/* ray */
TEST_DECLARE(glm_ray_triangle)
TEST_DECLARE(glm_ray_sphere)
TEST_DECLARE(glm_ray_at)
TEST_DECLARE(glmc_ray_triangle)
TEST_DECLARE(glmc_ray_sphere)
TEST_DECLARE(glmc_ray_at)
/* quat */
TEST_DECLARE(MACRO_GLM_QUAT_IDENTITY_INIT)
@@ -530,6 +535,8 @@ TEST_DECLARE(glm_vec2_lerp)
TEST_DECLARE(glm_vec2_complex_mul)
TEST_DECLARE(glm_vec2_complex_div)
TEST_DECLARE(glm_vec2_make)
TEST_DECLARE(glm_vec2_reflect)
TEST_DECLARE(glm_vec2_refract)
TEST_DECLARE(glmc_vec2)
TEST_DECLARE(glmc_vec2_copy)
@@ -576,6 +583,8 @@ TEST_DECLARE(glmc_vec2_lerp)
TEST_DECLARE(glmc_vec2_complex_mul)
TEST_DECLARE(glmc_vec2_complex_div)
TEST_DECLARE(glmc_vec2_make)
TEST_DECLARE(glmc_vec2_reflect)
TEST_DECLARE(glmc_vec2_refract)
/* vec3 */
TEST_DECLARE(MACRO_GLM_VEC3_ONE_INIT)
@@ -678,6 +687,9 @@ TEST_DECLARE(glm_vec3_fract)
TEST_DECLARE(glm_vec3_hadd)
TEST_DECLARE(glm_vec3_sqrt)
TEST_DECLARE(glm_vec3_make)
TEST_DECLARE(glm_vec3_faceforward)
TEST_DECLARE(glm_vec3_reflect)
TEST_DECLARE(glm_vec3_refract)
TEST_DECLARE(glmc_vec3)
TEST_DECLARE(glmc_vec3_copy)
@@ -754,6 +766,9 @@ TEST_DECLARE(glmc_vec3_fract)
TEST_DECLARE(glmc_vec3_hadd)
TEST_DECLARE(glmc_vec3_sqrt)
TEST_DECLARE(glmc_vec3_make)
TEST_DECLARE(glmc_vec3_faceforward)
TEST_DECLARE(glmc_vec3_reflect)
TEST_DECLARE(glmc_vec3_refract)
/* vec4 */
TEST_DECLARE(MACRO_GLM_VEC4_ONE_INIT)
@@ -842,6 +857,8 @@ TEST_DECLARE(glm_vec4_fract)
TEST_DECLARE(glm_vec4_hadd)
TEST_DECLARE(glm_vec4_sqrt)
TEST_DECLARE(glm_vec4_make)
TEST_DECLARE(glm_vec4_reflect)
TEST_DECLARE(glm_vec4_refract)
TEST_DECLARE(glmc_vec4)
TEST_DECLARE(glmc_vec4_copy3)
@@ -914,6 +931,8 @@ TEST_DECLARE(glmc_vec4_fract)
TEST_DECLARE(glmc_vec4_hadd)
TEST_DECLARE(glmc_vec4_sqrt)
TEST_DECLARE(glmc_vec4_make)
TEST_DECLARE(glmc_vec4_reflect)
TEST_DECLARE(glmc_vec4_refract)
/* ivec2 */
TEST_DECLARE(glm_ivec2)
@@ -1551,7 +1570,12 @@ TEST_LIST {
/* ray */
TEST_ENTRY(glm_ray_triangle)
TEST_ENTRY(glm_ray_sphere)
TEST_ENTRY(glm_ray_at)
TEST_ENTRY(glmc_ray_triangle)
TEST_ENTRY(glmc_ray_sphere)
TEST_ENTRY(glmc_ray_at)
/* quat */
TEST_ENTRY(MACRO_GLM_QUAT_IDENTITY_INIT)
@@ -1688,6 +1712,8 @@ TEST_LIST {
TEST_ENTRY(glm_vec2_complex_mul)
TEST_ENTRY(glm_vec2_complex_div)
TEST_ENTRY(glm_vec2_make)
TEST_ENTRY(glm_vec2_reflect)
TEST_ENTRY(glm_vec2_refract)
TEST_ENTRY(glmc_vec2)
TEST_ENTRY(glmc_vec2_copy)
@@ -1734,6 +1760,8 @@ TEST_LIST {
TEST_ENTRY(glmc_vec2_complex_mul)
TEST_ENTRY(glmc_vec2_complex_div)
TEST_ENTRY(glmc_vec2_make)
TEST_ENTRY(glmc_vec2_reflect)
TEST_ENTRY(glmc_vec2_refract)
/* vec3 */
TEST_ENTRY(MACRO_GLM_VEC3_ONE_INIT)
@@ -1835,6 +1863,9 @@ TEST_LIST {
TEST_ENTRY(glm_vec3_hadd)
TEST_ENTRY(glm_vec3_sqrt)
TEST_ENTRY(glm_vec3_make)
TEST_ENTRY(glm_vec3_faceforward)
TEST_ENTRY(glm_vec3_reflect)
TEST_ENTRY(glm_vec3_refract)
TEST_ENTRY(glmc_vec3)
TEST_ENTRY(glmc_vec3_copy)
@@ -1911,6 +1942,9 @@ TEST_LIST {
TEST_ENTRY(glmc_vec3_hadd)
TEST_ENTRY(glmc_vec3_sqrt)
TEST_ENTRY(glmc_vec3_make)
TEST_ENTRY(glmc_vec3_faceforward)
TEST_ENTRY(glmc_vec3_reflect)
TEST_ENTRY(glmc_vec3_refract)
/* vec4 */
TEST_ENTRY(MACRO_GLM_VEC4_ONE_INIT)
@@ -1999,6 +2033,8 @@ TEST_LIST {
TEST_ENTRY(glm_vec4_hadd)
TEST_ENTRY(glm_vec4_sqrt)
TEST_ENTRY(glm_vec4_make)
TEST_ENTRY(glm_vec4_reflect)
TEST_ENTRY(glm_vec4_refract)
TEST_ENTRY(glmc_vec4)
TEST_ENTRY(glmc_vec4_copy3)
@@ -2071,6 +2107,8 @@ TEST_LIST {
TEST_ENTRY(glmc_vec4_hadd)
TEST_ENTRY(glmc_vec4_sqrt)
TEST_ENTRY(glmc_vec4_make)
TEST_ENTRY(glmc_vec4_reflect)
TEST_ENTRY(glmc_vec4_refract)
/* ivec2 */
TEST_ENTRY(glm_ivec2)

View File

@@ -238,6 +238,9 @@
<ClInclude Include="..\include\cglm\struct\handed\euler_to_quat_lh.h" />
<ClInclude Include="..\include\cglm\struct\handed\euler_to_quat_rh.h" />
<ClInclude Include="..\include\cglm\struct\io.h" />
<ClInclude Include="..\include\cglm\struct\ivec2.h" />
<ClInclude Include="..\include\cglm\struct\ivec3.h" />
<ClInclude Include="..\include\cglm\struct\ivec4.h" />
<ClInclude Include="..\include\cglm\struct\mat2.h" />
<ClInclude Include="..\include\cglm\struct\mat2x3.h" />
<ClInclude Include="..\include\cglm\struct\mat2x4.h" />
@@ -250,6 +253,7 @@
<ClInclude Include="..\include\cglm\struct\plane.h" />
<ClInclude Include="..\include\cglm\struct\project.h" />
<ClInclude Include="..\include\cglm\struct\quat.h" />
<ClInclude Include="..\include\cglm\struct\ray.h" />
<ClInclude Include="..\include\cglm\struct\sphere.h" />
<ClInclude Include="..\include\cglm\struct\vec2-ext.h" />
<ClInclude Include="..\include\cglm\struct\vec2.h" />

View File

@@ -720,5 +720,17 @@
<ClInclude Include="..\include\cglm\struct\handed\euler_to_quat_rh.h">
<Filter>include\cglm\struct\handed</Filter>
</ClInclude>
<ClInclude Include="..\include\cglm\struct\ivec2.h">
<Filter>include\cglm\struct</Filter>
</ClInclude>
<ClInclude Include="..\include\cglm\struct\ivec3.h">
<Filter>include\cglm\struct</Filter>
</ClInclude>
<ClInclude Include="..\include\cglm\struct\ivec4.h">
<Filter>include\cglm\struct</Filter>
</ClInclude>
<ClInclude Include="..\include\cglm\struct\ray.h">
<Filter>include\cglm\struct</Filter>
</ClInclude>
</ItemGroup>
</Project>