Merge branch 'master' into swizzle

This commit is contained in:
Recep Aslantas
2019-06-06 12:58:55 +03:00
committed by GitHub
145 changed files with 17376 additions and 1853 deletions

View File

@@ -16,6 +16,7 @@
#include "common.h"
#include "mat4.h"
#include "mat3.h"
#ifdef CGLM_SSE_FP
# include "simd/sse2/affine.h"
@@ -81,6 +82,59 @@ glm_mul(mat4 m1, mat4 m2, mat4 dest) {
#endif
}
/*!
* @brief this is similar to glm_mat4_mul but specialized to affine transform
*
* Right Matrix format should be:
* R R R 0
* R R R 0
* R R R 0
* 0 0 0 1
*
* this reduces some multiplications. It should be faster than mat4_mul.
* if you are not sure about matrix format then DON'T use this! use mat4_mul
*
* @param[in] m1 affine matrix 1
* @param[in] m2 affine matrix 2
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mul_rot_sse2(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3],
a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3],
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2];
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02;
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12;
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22;
dest[3][0] = a30;
dest[3][1] = a31;
dest[3][2] = a32;
dest[3][3] = a33;
#endif
}
/*!
* @brief inverse orthonormal rotation + translation matrix (ridig-body)
*
@@ -97,8 +151,8 @@ glm_inv_tr(mat4 mat) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_inv_tr_sse2(mat);
#else
CGLM_ALIGN(16) mat3 r;
CGLM_ALIGN(16) vec3 t;
CGLM_ALIGN_MAT mat3 r;
CGLM_ALIGN(8) vec3 t;
/* rotate */
glm_mat4_pick3t(mat, r);
@@ -106,8 +160,8 @@ glm_inv_tr(mat4 mat) {
/* translate */
glm_mat3_mulv(r, mat[3], t);
glm_vec_flipsign(t);
glm_vec_copy(t, mat[3]);
glm_vec3_negate(t);
glm_vec3_copy(t, mat[3]);
#endif
}

View File

@@ -16,15 +16,14 @@
CGLM_INLINE void glm_scale_to(mat4 m, vec3 v, mat4 dest);
CGLM_INLINE void glm_scale_make(mat4 m, vec3 v);
CGLM_INLINE void glm_scale(mat4 m, vec3 v);
CGLM_INLINE void glm_scale1(mat4 m, float s);
CGLM_INLINE void glm_scale_uni(mat4 m, float s);
CGLM_INLINE void glm_rotate_x(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_y(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_z(mat4 m, float angle, mat4 dest);
CGLM_INLINE void glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc);
CGLM_INLINE void glm_rotate_make(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_ndc(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate(mat4 m, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_INLINE void glm_decompose_scalev(mat4 m, vec3 s);
CGLM_INLINE bool glm_uniscaled(mat4 m);
CGLM_INLINE void glm_decompose_rs(mat4 m, mat4 r, vec3 s);
@@ -35,51 +34,15 @@
#define cglm_affine_h
#include "common.h"
#include "vec4.h"
#include "affine-mat.h"
#include "util.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
#include "affine-mat.h"
/*!
* @brief translate existing transform matrix by v vector
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] v translate vector [x, y, z]
* @param[out] dest translated matrix
*/
CGLM_INLINE
void
glm_translate_to(mat4 m, vec3 v, mat4 dest) {
mat4 t = GLM_MAT4_IDENTITY_INIT;
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_load_ps(t[0]),
_mm_set1_ps(v[0])),
_mm_mul_ps(_mm_load_ps(t[1]),
_mm_set1_ps(v[1]))),
_mm_add_ps(_mm_mul_ps(_mm_load_ps(t[2]),
_mm_set1_ps(v[2])),
_mm_load_ps(t[3]))))
;
_mm_store_ps(dest[0], _mm_load_ps(m[0]));
_mm_store_ps(dest[1], _mm_load_ps(m[1]));
_mm_store_ps(dest[2], _mm_load_ps(m[2]));
#else
vec4 v1, v2, v3;
glm_vec4_scale(t[0], v[0], v1);
glm_vec4_scale(t[1], v[1], v2);
glm_vec4_scale(t[2], v[2], v3);
glm_vec4_add(v1, t[3], t[3]);
glm_vec4_add(v2, t[3], t[3]);
glm_vec4_add(v3, t[3], t[3]);
glm__memcpy(float, dest, t, sizeof(mat4));
#endif
}
glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest);
/*!
* @brief translate existing transform matrix by v vector
@@ -92,14 +55,14 @@ CGLM_INLINE
void
glm_translate(mat4 m, vec3 v) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(m[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]),
_mm_set1_ps(v[0])),
_mm_mul_ps(_mm_load_ps(m[1]),
_mm_set1_ps(v[1]))),
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]),
_mm_set1_ps(v[2])),
_mm_load_ps(m[3]))))
glmm_store(m[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_load(m[0]),
_mm_set1_ps(v[0])),
_mm_mul_ps(glmm_load(m[1]),
_mm_set1_ps(v[1]))),
_mm_add_ps(_mm_mul_ps(glmm_load(m[2]),
_mm_set1_ps(v[2])),
glmm_load(m[3]))))
;
#else
vec4 v1, v2, v3;
@@ -114,6 +77,23 @@ glm_translate(mat4 m, vec3 v) {
#endif
}
/*!
* @brief translate existing transform matrix by v vector
* and store result in dest
*
* source matrix will remain same
*
* @param[in] m affine transfrom
* @param[in] v translate vector [x, y, z]
* @param[out] dest translated matrix
*/
CGLM_INLINE
void
glm_translate_to(mat4 m, vec3 v, mat4 dest) {
glm_mat4_copy(m, dest);
glm_translate(dest, v);
}
/*!
* @brief translate existing transform matrix by x factor
*
@@ -124,10 +104,10 @@ CGLM_INLINE
void
glm_translate_x(mat4 m, float x) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(m[3],
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]),
_mm_set1_ps(x)),
_mm_load_ps(m[3])))
glmm_store(m[3],
_mm_add_ps(_mm_mul_ps(glmm_load(m[0]),
_mm_set1_ps(x)),
glmm_load(m[3])))
;
#else
vec4 v1;
@@ -146,10 +126,10 @@ CGLM_INLINE
void
glm_translate_y(mat4 m, float y) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(m[3],
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[1]),
_mm_set1_ps(y)),
_mm_load_ps(m[3])))
glmm_store(m[3],
_mm_add_ps(_mm_mul_ps(glmm_load(m[1]),
_mm_set1_ps(y)),
glmm_load(m[3])))
;
#else
vec4 v1;
@@ -168,10 +148,10 @@ CGLM_INLINE
void
glm_translate_z(mat4 m, float z) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(m[3],
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]),
_mm_set1_ps(z)),
_mm_load_ps(m[3])))
glmm_store(m[3],
_mm_add_ps(_mm_mul_ps(glmm_load(m[2]),
_mm_set1_ps(z)),
glmm_load(m[3])))
;
#else
vec4 v1;
@@ -189,8 +169,8 @@ glm_translate_z(mat4 m, float z) {
CGLM_INLINE
void
glm_translate_make(mat4 m, vec3 v) {
mat4 t = GLM_MAT4_IDENTITY_INIT;
glm_translate_to(t, v, m);
glm_mat4_identity(m);
glm_vec3_copy(v, m[3]);
}
/*!
@@ -220,8 +200,10 @@ glm_scale_to(mat4 m, vec3 v, mat4 dest) {
CGLM_INLINE
void
glm_scale_make(mat4 m, vec3 v) {
mat4 t = GLM_MAT4_IDENTITY_INIT;
glm_scale_to(t, v, m);
glm_mat4_identity(m);
m[0][0] = v[0];
m[1][1] = v[1];
m[2][2] = v[2];
}
/*!
@@ -237,16 +219,6 @@ glm_scale(mat4 m, vec3 v) {
glm_scale_to(m, v, m);
}
/*!
* @brief DEPRECATED! Use glm_scale_uni
*/
CGLM_INLINE
void
glm_scale1(mat4 m, float s) {
vec3 v = { s, s, s };
glm_scale_to(m, v, m);
}
/*!
* @brief applies uniform scale to existing transform matrix v = [s, s, s]
* and stores result in same matrix
@@ -257,7 +229,7 @@ glm_scale1(mat4 m, float s) {
CGLM_INLINE
void
glm_scale_uni(mat4 m, float s) {
vec3 v = { s, s, s };
CGLM_ALIGN(8) vec3 v = { s, s, s };
glm_scale_to(m, v, m);
}
@@ -272,19 +244,18 @@ glm_scale_uni(mat4 m, float s) {
CGLM_INLINE
void
glm_rotate_x(mat4 m, float angle, mat4 dest) {
float cosVal;
float sinVal;
mat4 t = GLM_MAT4_IDENTITY_INIT;
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
cosVal = cosf(angle);
sinVal = sinf(angle);
c = cosf(angle);
s = sinf(angle);
t[1][1] = cosVal;
t[1][2] = sinVal;
t[2][1] = -sinVal;
t[2][2] = cosVal;
t[1][1] = c;
t[1][2] = s;
t[2][1] = -s;
t[2][2] = c;
glm_mat4_mul(m, t, dest);
glm_mul_rot(m, t, dest);
}
/*!
@@ -298,19 +269,18 @@ glm_rotate_x(mat4 m, float angle, mat4 dest) {
CGLM_INLINE
void
glm_rotate_y(mat4 m, float angle, mat4 dest) {
float cosVal;
float sinVal;
mat4 t = GLM_MAT4_IDENTITY_INIT;
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
cosVal = cosf(angle);
sinVal = sinf(angle);
c = cosf(angle);
s = sinf(angle);
t[0][0] = cosVal;
t[0][2] = -sinVal;
t[2][0] = sinVal;
t[2][2] = cosVal;
t[0][0] = c;
t[0][2] = -s;
t[2][0] = s;
t[2][2] = c;
glm_mat4_mul(m, t, dest);
glm_mul_rot(m, t, dest);
}
/*!
@@ -324,67 +294,24 @@ glm_rotate_y(mat4 m, float angle, mat4 dest) {
CGLM_INLINE
void
glm_rotate_z(mat4 m, float angle, mat4 dest) {
float cosVal;
float sinVal;
mat4 t = GLM_MAT4_IDENTITY_INIT;
cosVal = cosf(angle);
sinVal = sinf(angle);
t[0][0] = cosVal;
t[0][1] = sinVal;
t[1][0] = -sinVal;
t[1][1] = cosVal;
glm_mat4_mul(m, t, dest);
}
/*!
* @brief creates NEW rotation matrix by angle and axis
*
* this name may change in the future. axis must be is normalized
*
* @param[out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis_ndc normalized axis
*/
CGLM_INLINE
void
glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc) {
/* https://www.opengl.org/sdk/docs/man2/xhtml/glRotate.xml */
vec3 v, vs;
float c;
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
float c, s;
c = cosf(angle);
s = sinf(angle);
glm_vec_scale(axis_ndc, 1.0f - c, v);
glm_vec_scale(axis_ndc, sinf(angle), vs);
t[0][0] = c;
t[0][1] = s;
t[1][0] = -s;
t[1][1] = c;
glm_vec_scale(axis_ndc, v[0], m[0]);
glm_vec_scale(axis_ndc, v[1], m[1]);
glm_vec_scale(axis_ndc, v[2], m[2]);
m[0][0] += c;
m[0][1] += vs[2];
m[0][2] -= vs[1];
m[1][0] -= vs[2];
m[1][1] += c;
m[1][2] += vs[0];
m[2][0] += vs[1];
m[2][1] -= vs[0];
m[2][2] += c;
m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0f;
m[3][3] = 1.0f;
glm_mul_rot(m, t, dest);
}
/*!
* @brief creates NEW rotation matrix by angle and axis
*
* this name may change in the future. axis must be is normalized
* axis will be normalized so you don't need to normalize it
*
* @param[out] m affine transfrom
* @param[in] angle angle (radians)
@@ -393,53 +320,29 @@ glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc) {
CGLM_INLINE
void
glm_rotate_make(mat4 m, float angle, vec3 axis) {
vec3 axis_ndc;
CGLM_ALIGN(8) vec3 axisn, v, vs;
float c;
glm_vec_normalize_to(axis, axis_ndc);
glm_rotate_ndc_make(m, angle, axis_ndc);
c = cosf(angle);
glm_vec3_normalize_to(axis, axisn);
glm_vec3_scale(axisn, 1.0f - c, v);
glm_vec3_scale(axisn, sinf(angle), vs);
glm_vec3_scale(axisn, v[0], m[0]);
glm_vec3_scale(axisn, v[1], m[1]);
glm_vec3_scale(axisn, v[2], m[2]);
m[0][0] += c; m[1][0] -= vs[2]; m[2][0] += vs[1];
m[0][1] += vs[2]; m[1][1] += c; m[2][1] -= vs[0];
m[0][2] -= vs[1]; m[1][2] += vs[0]; m[2][2] += c;
m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0f;
m[3][3] = 1.0f;
}
/*!
* @brief rotate existing transform matrix around Z axis by angle and axis
*
* this name may change in the future, axis must be normalized.
*
* @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis_ndc normalized axis
*/
CGLM_INLINE
void
glm_rotate_ndc(mat4 m, float angle, vec3 axis_ndc) {
mat4 rot, tmp;
glm_rotate_ndc_make(rot, angle, axis_ndc);
glm_vec4_scale(m[0], rot[0][0], tmp[1]);
glm_vec4_scale(m[1], rot[0][1], tmp[0]);
glm_vec4_add(tmp[1], tmp[0], tmp[1]);
glm_vec4_scale(m[2], rot[0][2], tmp[0]);
glm_vec4_add(tmp[1], tmp[0], tmp[1]);
glm_vec4_scale(m[0], rot[1][0], tmp[2]);
glm_vec4_scale(m[1], rot[1][1], tmp[0]);
glm_vec4_add(tmp[2], tmp[0], tmp[2]);
glm_vec4_scale(m[2], rot[1][2], tmp[0]);
glm_vec4_add(tmp[2], tmp[0], tmp[2]);
glm_vec4_scale(m[0], rot[2][0], tmp[3]);
glm_vec4_scale(m[1], rot[2][1], tmp[0]);
glm_vec4_add(tmp[3], tmp[0], tmp[3]);
glm_vec4_scale(m[2], rot[2][2], tmp[0]);
glm_vec4_add(tmp[3], tmp[0], tmp[3]);
glm_vec4_copy(tmp[1], m[0]);
glm_vec4_copy(tmp[2], m[1]);
glm_vec4_copy(tmp[3], m[2]);
}
/*!
* @brief rotate existing transform matrix around Z axis by angle and axis
* @brief rotate existing transform matrix around given axis by angle
*
* @param[in, out] m affine transfrom
* @param[in] angle angle (radians)
@@ -448,10 +351,55 @@ glm_rotate_ndc(mat4 m, float angle, vec3 axis_ndc) {
CGLM_INLINE
void
glm_rotate(mat4 m, float angle, vec3 axis) {
vec3 axis_ndc;
CGLM_ALIGN_MAT mat4 rot;
glm_rotate_make(rot, angle, axis);
glm_mul_rot(m, rot, m);
}
glm_vec_normalize_to(axis, axis_ndc);
glm_rotate_ndc(m, angle, axis_ndc);
/*!
* @brief rotate existing transform
* around given axis by angle at given pivot point (rotation center)
*
* @param[in, out] m affine transfrom
* @param[in] pivot rotation center
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translate(m, pivot);
glm_rotate(m, angle, axis);
glm_translate(m, pivotInv);
}
/*!
* @brief creates NEW rotation matrix by angle and axis at given point
*
* this creates rotation matrix, it assumes you don't have a matrix
*
* this should work faster than glm_rotate_at because it reduces
* one glm_translate.
*
* @param[out] m affine transfrom
* @param[in] pivot rotation center
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translate_make(m, pivot);
glm_rotate(m, angle, axis);
glm_translate(m, pivotInv);
}
/*!
@@ -463,13 +411,13 @@ glm_rotate(mat4 m, float angle, vec3 axis) {
CGLM_INLINE
void
glm_decompose_scalev(mat4 m, vec3 s) {
s[0] = glm_vec_norm(m[0]);
s[1] = glm_vec_norm(m[1]);
s[2] = glm_vec_norm(m[2]);
s[0] = glm_vec3_norm(m[0]);
s[1] = glm_vec3_norm(m[1]);
s[2] = glm_vec3_norm(m[2]);
}
/*!
* @brief returns true if matrix is uniform scaled. This is helpful for
* @brief returns true if matrix is uniform scaled. This is helpful for
* creating normal matrix.
*
* @param[in] m m
@@ -479,10 +427,9 @@ glm_decompose_scalev(mat4 m, vec3 s) {
CGLM_INLINE
bool
glm_uniscaled(mat4 m) {
vec3 s;
CGLM_ALIGN(8) vec3 s;
glm_decompose_scalev(m, s);
return glm_vec_eq_all(s);
return glm_vec3_eq_all(s);
}
/*!
@@ -496,17 +443,17 @@ glm_uniscaled(mat4 m) {
CGLM_INLINE
void
glm_decompose_rs(mat4 m, mat4 r, vec3 s) {
vec4 t = {0.0f, 0.0f, 0.0f, 1.0f};
vec3 v;
CGLM_ALIGN(16) vec4 t = {0.0f, 0.0f, 0.0f, 1.0f};
CGLM_ALIGN(8) vec3 v;
glm_vec4_copy(m[0], r[0]);
glm_vec4_copy(m[1], r[1]);
glm_vec4_copy(m[2], r[2]);
glm_vec4_copy(t, r[3]);
s[0] = glm_vec_norm(m[0]);
s[1] = glm_vec_norm(m[1]);
s[2] = glm_vec_norm(m[2]);
s[0] = glm_vec3_norm(m[0]);
s[1] = glm_vec3_norm(m[1]);
s[2] = glm_vec3_norm(m[2]);
glm_vec4_scale(r[0], 1.0f/s[0], r[0]);
glm_vec4_scale(r[1], 1.0f/s[1], r[1]);
@@ -515,12 +462,12 @@ glm_decompose_rs(mat4 m, mat4 r, vec3 s) {
/* Note from Apple Open Source (asume that the matrix is orthonormal):
check for a coordinate system flip. If the determinant
is -1, then negate the matrix and the scaling factors. */
glm_vec_cross(m[0], m[1], v);
if (glm_vec_dot(v, m[2]) < 0.0f) {
glm_vec4_flipsign(r[0]);
glm_vec4_flipsign(r[1]);
glm_vec4_flipsign(r[2]);
glm_vec_flipsign(s);
glm_vec3_cross(m[0], m[1], v);
if (glm_vec3_dot(v, m[2]) < 0.0f) {
glm_vec4_negate(r[0]);
glm_vec4_negate(r[1]);
glm_vec4_negate(r[2]);
glm_vec3_negate(s);
}
}

154
include/cglm/bezier.h Normal file
View File

@@ -0,0 +1,154 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_bezier_h
#define cglm_bezier_h
#include "common.h"
#define GLM_BEZIER_MAT_INIT {{-1.0f, 3.0f, -3.0f, 1.0f}, \
{ 3.0f, -6.0f, 3.0f, 0.0f}, \
{-3.0f, 3.0f, 0.0f, 0.0f}, \
{ 1.0f, 0.0f, 0.0f, 0.0f}}
#define GLM_HERMITE_MAT_INIT {{ 2.0f, -3.0f, 0.0f, 1.0f}, \
{-2.0f, 3.0f, 0.0f, 0.0f}, \
{ 1.0f, -2.0f, 1.0f, 0.0f}, \
{ 1.0f, -1.0f, 0.0f, 0.0f}}
/* for C only */
#define GLM_BEZIER_MAT ((mat4)GLM_BEZIER_MAT_INIT)
#define GLM_HERMITE_MAT ((mat4)GLM_HERMITE_MAT_INIT)
#define CGLM_DECASTEL_EPS 1e-9
#define CGLM_DECASTEL_MAX 1000
#define CGLM_DECASTEL_SMALL 1e-20
/*!
* @brief cubic bezier interpolation
*
* Formula:
* B(s) = P0*(1-s)^3 + 3*C0*s*(1-s)^2 + 3*C1*s^2*(1-s) + P1*s^3
*
* similar result using matrix:
* B(s) = glm_smc(t, GLM_BEZIER_MAT, (vec4){p0, c0, c1, p1})
*
* glm_eq(glm_smc(...), glm_bezier(...)) should return TRUE
*
* @param[in] s parameter between 0 and 1
* @param[in] p0 begin point
* @param[in] c0 control point 1
* @param[in] c1 control point 2
* @param[in] p1 end point
*
* @return B(s)
*/
CGLM_INLINE
float
glm_bezier(float s, float p0, float c0, float c1, float p1) {
float x, xx, ss, xs3, a;
x = 1.0f - s;
xx = x * x;
ss = s * s;
xs3 = (s - ss) * 3.0f;
a = p0 * xx + c0 * xs3;
return a + s * (c1 * xs3 + p1 * ss - a);
}
/*!
* @brief cubic hermite interpolation
*
* Formula:
* H(s) = P0*(2*s^3 - 3*s^2 + 1) + T0*(s^3 - 2*s^2 + s)
* + P1*(-2*s^3 + 3*s^2) + T1*(s^3 - s^2)
*
* similar result using matrix:
* H(s) = glm_smc(t, GLM_HERMITE_MAT, (vec4){p0, p1, c0, c1})
*
* glm_eq(glm_smc(...), glm_hermite(...)) should return TRUE
*
* @param[in] s parameter between 0 and 1
* @param[in] p0 begin point
* @param[in] t0 tangent 1
* @param[in] t1 tangent 2
* @param[in] p1 end point
*
* @return H(s)
*/
CGLM_INLINE
float
glm_hermite(float s, float p0, float t0, float t1, float p1) {
float ss, d, a, b, c, e, f;
ss = s * s;
a = ss + ss;
c = a + ss;
b = a * s;
d = s * ss;
f = d - ss;
e = b - c;
return p0 * (e + 1.0f) + t0 * (f - ss + s) + t1 * f - p1 * e;
}
/*!
* @brief iterative way to solve cubic equation
*
* @param[in] prm parameter between 0 and 1
* @param[in] p0 begin point
* @param[in] c0 control point 1
* @param[in] c1 control point 2
* @param[in] p1 end point
*
* @return parameter to use in cubic equation
*/
CGLM_INLINE
float
glm_decasteljau(float prm, float p0, float c0, float c1, float p1) {
float u, v, a, b, c, d, e, f;
int i;
if (prm - p0 < CGLM_DECASTEL_SMALL)
return 0.0f;
if (p1 - prm < CGLM_DECASTEL_SMALL)
return 1.0f;
u = 0.0f;
v = 1.0f;
for (i = 0; i < CGLM_DECASTEL_MAX; i++) {
/* de Casteljau Subdivision */
a = (p0 + c0) * 0.5f;
b = (c0 + c1) * 0.5f;
c = (c1 + p1) * 0.5f;
d = (a + b) * 0.5f;
e = (b + c) * 0.5f;
f = (d + e) * 0.5f; /* this one is on the curve! */
/* The curve point is close enough to our wanted t */
if (fabsf(f - prm) < CGLM_DECASTEL_EPS)
return glm_clamp_zo((u + v) * 0.5f);
/* dichotomy */
if (f < prm) {
p0 = f;
c0 = e;
c1 = c;
u = (u + v) * 0.5f;
} else {
c0 = a;
c1 = d;
p1 = f;
v = (u + v) * 0.5f;
}
}
return glm_clamp_zo((u + v) * 0.5f);
}
#endif /* cglm_bezier_h */

View File

@@ -11,6 +11,7 @@
#include "common.h"
#include "vec3.h"
#include "vec4.h"
#include "util.h"
/*!
* @brief apply transform to Axis-Aligned Bounding Box
@@ -22,35 +23,31 @@
CGLM_INLINE
void
glm_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]) {
vec3 v[2], xa, xb, ya, yb, za, zb, tmp;
vec3 v[2], xa, xb, ya, yb, za, zb;
glm_vec_scale(m[0], box[0][0], xa);
glm_vec_scale(m[0], box[1][0], xb);
glm_vec3_scale(m[0], box[0][0], xa);
glm_vec3_scale(m[0], box[1][0], xb);
glm_vec_scale(m[1], box[0][1], ya);
glm_vec_scale(m[1], box[1][1], yb);
glm_vec3_scale(m[1], box[0][1], ya);
glm_vec3_scale(m[1], box[1][1], yb);
glm_vec_scale(m[2], box[0][2], za);
glm_vec_scale(m[2], box[1][2], zb);
glm_vec3_scale(m[2], box[0][2], za);
glm_vec3_scale(m[2], box[1][2], zb);
/* min(xa, xb) + min(ya, yb) + min(za, zb) + translation */
glm_vec_minv(xa, xb, v[0]);
glm_vec_minv(ya, yb, tmp);
glm_vec_add(v[0], tmp, v[0]);
glm_vec_minv(za, zb, tmp);
glm_vec_add(v[0], tmp, v[0]);
glm_vec_add(v[0], m[3], v[0]);
/* translation + min(xa, xb) + min(ya, yb) + min(za, zb) */
glm_vec3(m[3], v[0]);
glm_vec3_minadd(xa, xb, v[0]);
glm_vec3_minadd(ya, yb, v[0]);
glm_vec3_minadd(za, zb, v[0]);
/* max(xa, xb) + max(ya, yb) + max(za, zb) + translation */
glm_vec_maxv(xa, xb, v[1]);
glm_vec_maxv(ya, yb, tmp);
glm_vec_add(v[1], tmp, v[1]);
glm_vec_maxv(za, zb, tmp);
glm_vec_add(v[1], tmp, v[1]);
glm_vec_add(v[1], m[3], v[1]);
/* translation + max(xa, xb) + max(ya, yb) + max(za, zb) */
glm_vec3(m[3], v[1]);
glm_vec3_maxadd(xa, xb, v[1]);
glm_vec3_maxadd(ya, yb, v[1]);
glm_vec3_maxadd(za, zb, v[1]);
glm_vec_copy(v[0], dest[0]);
glm_vec_copy(v[1], dest[1]);
glm_vec3_copy(v[0], dest[0]);
glm_vec3_copy(v[1], dest[1]);
}
/*!
@@ -153,4 +150,130 @@ glm_aabb_frustum(vec3 box[2], vec4 planes[6]) {
return true;
}
/*!
* @brief invalidate AABB min and max values
*
* @param[in, out] box bounding box
*/
CGLM_INLINE
void
glm_aabb_invalidate(vec3 box[2]) {
glm_vec3_broadcast(FLT_MAX, box[0]);
glm_vec3_broadcast(-FLT_MAX, box[1]);
}
/*!
* @brief check if AABB is valid or not
*
* @param[in] box bounding box
*/
CGLM_INLINE
bool
glm_aabb_isvalid(vec3 box[2]) {
return glm_vec3_max(box[0]) != FLT_MAX
&& glm_vec3_min(box[1]) != -FLT_MAX;
}
/*!
* @brief distance between of min and max
*
* @param[in] box bounding box
*/
CGLM_INLINE
float
glm_aabb_size(vec3 box[2]) {
return glm_vec3_distance(box[0], box[1]);
}
/*!
* @brief radius of sphere which surrounds AABB
*
* @param[in] box bounding box
*/
CGLM_INLINE
float
glm_aabb_radius(vec3 box[2]) {
return glm_aabb_size(box) * 0.5f;
}
/*!
* @brief computes center point of AABB
*
* @param[in] box bounding box
* @param[out] dest center of bounding box
*/
CGLM_INLINE
void
glm_aabb_center(vec3 box[2], vec3 dest) {
glm_vec3_center(box[0], box[1], dest);
}
/*!
* @brief check if two AABB intersects
*
* @param[in] box bounding box
* @param[in] other other bounding box
*/
CGLM_INLINE
bool
glm_aabb_aabb(vec3 box[2], vec3 other[2]) {
return (box[0][0] <= other[1][0] && box[1][0] >= other[0][0])
&& (box[0][1] <= other[1][1] && box[1][1] >= other[0][1])
&& (box[0][2] <= other[1][2] && box[1][2] >= other[0][2]);
}
/*!
* @brief check if AABB intersects with sphere
*
* https://github.com/erich666/GraphicsGems/blob/master/gems/BoxSphere.c
* Solid Box - Solid Sphere test.
*
* @param[in] box solid bounding box
* @param[in] s solid sphere
*/
CGLM_INLINE
bool
glm_aabb_sphere(vec3 box[2], vec4 s) {
float dmin;
int a, b, c;
a = s[0] >= box[0][0];
b = s[1] >= box[0][1];
c = s[2] >= box[0][2];
dmin = glm_pow2(s[0] - box[a][0])
+ glm_pow2(s[1] - box[b][1])
+ glm_pow2(s[2] - box[c][2]);
return dmin <= glm_pow2(s[3]);
}
/*!
* @brief check if point is inside of AABB
*
* @param[in] box bounding box
* @param[in] point point
*/
CGLM_INLINE
bool
glm_aabb_point(vec3 box[2], vec3 point) {
return (point[0] >= box[0][0] && point[0] <= box[1][0])
&& (point[1] >= box[0][1] && point[1] <= box[1][1])
&& (point[2] >= box[0][2] && point[2] <= box[1][2]);
}
/*!
* @brief check if AABB contains other AABB
*
* @param[in] box bounding box
* @param[in] other other bounding box
*/
CGLM_INLINE
bool
glm_aabb_contains(vec3 box[2], vec3 other[2]) {
return (box[0][0] <= other[0][0] && box[1][0] >= other[1][0])
&& (box[0][1] <= other[0][1] && box[1][1] >= other[1][1])
&& (box[0][2] <= other[0][2] && box[1][2] >= other[1][2]);
}
#endif /* cglm_box_h */

View File

@@ -24,6 +24,11 @@ extern "C" {
#include "call/frustum.h"
#include "call/box.h"
#include "call/io.h"
#include "call/project.h"
#include "call/sphere.h"
#include "call/ease.h"
#include "call/curve.h"
#include "call/bezier.h"
#ifdef __cplusplus
}

View File

@@ -13,6 +13,10 @@ extern "C" {
#include "../cglm.h"
CGLM_EXPORT
void
glmc_translate_make(mat4 m, vec3 v);
CGLM_EXPORT
void
glmc_translate_to(mat4 m, vec3 v, mat4 dest);
@@ -33,6 +37,10 @@ CGLM_EXPORT
void
glmc_translate_z(mat4 m, float to);
CGLM_EXPORT
void
glmc_scale_make(mat4 m, vec3 v);
CGLM_EXPORT
void
glmc_scale_to(mat4 m, vec3 v, mat4 dest);
@@ -43,7 +51,7 @@ glmc_scale(mat4 m, vec3 v);
CGLM_EXPORT
void
glmc_scale1(mat4 m, float s);
glmc_scale_uni(mat4 m, float s);
CGLM_EXPORT
void
@@ -57,26 +65,30 @@ CGLM_EXPORT
void
glmc_rotate_z(mat4 m, float rad, mat4 dest);
CGLM_EXPORT
void
glmc_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc);
CGLM_EXPORT
void
glmc_rotate_make(mat4 m, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_rotate_ndc(mat4 m, float angle, vec3 axis_ndc);
CGLM_EXPORT
void
glmc_rotate(mat4 m, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_decompose_scalev(mat4 m, vec3 s);
CGLM_EXPORT
bool
glmc_uniscaled(mat4 m);
CGLM_EXPORT
void
glmc_decompose_rs(mat4 m, mat4 r, vec3 s);
@@ -85,6 +97,20 @@ CGLM_EXPORT
void
glmc_decompose(mat4 m, vec4 t, mat4 r, vec3 s);
/* affine-mat */
CGLM_EXPORT
void
glmc_mul(mat4 m1, mat4 m2, mat4 dest);
CGLM_EXPORT
void
glmc_mul_rot(mat4 m1, mat4 m2, mat4 dest);
CGLM_EXPORT
void
glmc_inv_tr(mat4 mat);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,31 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_bezier_h
#define cglmc_bezier_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
float
glmc_bezier(float s, float p0, float c0, float c1, float p1);
CGLM_EXPORT
float
glmc_hermite(float s, float p0, float t0, float t1, float p1);
CGLM_EXPORT
float
glmc_decasteljau(float prm, float p0, float c0, float c1, float p1);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_bezier_h */

View File

@@ -32,6 +32,46 @@ glmc_aabb_crop_until(vec3 box[2],
vec3 clampBox[2],
vec3 dest[2]);
CGLM_EXPORT
bool
glmc_aabb_frustum(vec3 box[2], vec4 planes[6]);
CGLM_EXPORT
void
glmc_aabb_invalidate(vec3 box[2]);
CGLM_EXPORT
bool
glmc_aabb_isvalid(vec3 box[2]);
CGLM_EXPORT
float
glmc_aabb_size(vec3 box[2]);
CGLM_EXPORT
float
glmc_aabb_radius(vec3 box[2]);
CGLM_EXPORT
void
glmc_aabb_center(vec3 box[2], vec3 dest);
CGLM_EXPORT
bool
glmc_aabb_aabb(vec3 box[2], vec3 other[2]);
CGLM_EXPORT
bool
glmc_aabb_point(vec3 box[2], vec3 point);
CGLM_EXPORT
bool
glmc_aabb_contains(vec3 box[2], vec3 other[2]);
CGLM_EXPORT
bool
glmc_aabb_sphere(vec3 box[2], vec4 s);
#ifdef __cplusplus
}
#endif

View File

@@ -33,6 +33,26 @@ glmc_ortho(float left,
float farVal,
mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb(vec3 box[2], mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_p(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_ortho_default_s(float aspect, float size, mat4 dest);
CGLM_EXPORT
void
glmc_perspective(float fovy,
@@ -41,6 +61,18 @@ glmc_perspective(float fovy,
float farVal,
mat4 dest);
CGLM_EXPORT
void
glmc_persp_move_far(mat4 proj, float deltaFar);
CGLM_EXPORT
void
glmc_perspective_default(float aspect, mat4 dest);
CGLM_EXPORT
void
glmc_perspective_resize(float aspect, mat4 proj);
CGLM_EXPORT
void
glmc_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest);
@@ -53,6 +85,58 @@ CGLM_EXPORT
void
glmc_look_anyup(vec3 eye, vec3 dir, mat4 dest);
CGLM_EXPORT
void
glmc_persp_decomp(mat4 proj,
float * __restrict nearVal,
float * __restrict farVal,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decompv(mat4 proj, float dest[6]);
CGLM_EXPORT
void
glmc_persp_decomp_x(mat4 proj,
float * __restrict left,
float * __restrict right);
CGLM_EXPORT
void
glmc_persp_decomp_y(mat4 proj,
float * __restrict top,
float * __restrict bottom);
CGLM_EXPORT
void
glmc_persp_decomp_z(mat4 proj,
float * __restrict nearVal,
float * __restrict farVal);
CGLM_EXPORT
void
glmc_persp_decomp_far(mat4 proj, float * __restrict farVal);
CGLM_EXPORT
void
glmc_persp_decomp_near(mat4 proj, float * __restrict nearVal);
CGLM_EXPORT
float
glmc_persp_fovy(mat4 proj);
CGLM_EXPORT
float
glmc_persp_aspect(mat4 proj);
CGLM_EXPORT
void
glmc_persp_sizes(mat4 proj, float fovy, vec4 dest);
#ifdef __cplusplus
}
#endif

23
include/cglm/call/curve.h Normal file
View File

@@ -0,0 +1,23 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_curve_h
#define cglmc_curve_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
float
glmc_smc(float s, mat4 m, vec4 c);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_curve_h */

143
include/cglm/call/ease.h Normal file
View File

@@ -0,0 +1,143 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_ease_h
#define cglmc_ease_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
float
glmc_ease_linear(float t);
CGLM_EXPORT
float
glmc_ease_sine_in(float t);
CGLM_EXPORT
float
glmc_ease_sine_out(float t);
CGLM_EXPORT
float
glmc_ease_sine_inout(float t);
CGLM_EXPORT
float
glmc_ease_quad_in(float t);
CGLM_EXPORT
float
glmc_ease_quad_out(float t);
CGLM_EXPORT
float
glmc_ease_quad_inout(float t);
CGLM_EXPORT
float
glmc_ease_cubic_in(float t);
CGLM_EXPORT
float
glmc_ease_cubic_out(float t);
CGLM_EXPORT
float
glmc_ease_cubic_inout(float t);
CGLM_EXPORT
float
glmc_ease_quart_in(float t);
CGLM_EXPORT
float
glmc_ease_quart_out(float t);
CGLM_EXPORT
float
glmc_ease_quart_inout(float t);
CGLM_EXPORT
float
glmc_ease_quint_in(float t);
CGLM_EXPORT
float
glmc_ease_quint_out(float t);
CGLM_EXPORT
float
glmc_ease_quint_inout(float t);
CGLM_EXPORT
float
glmc_ease_exp_in(float t);
CGLM_EXPORT
float
glmc_ease_exp_out(float t);
CGLM_EXPORT
float
glmc_ease_exp_inout(float t);
CGLM_EXPORT
float
glmc_ease_circ_in(float t);
CGLM_EXPORT
float
glmc_ease_circ_out(float t);
CGLM_EXPORT
float
glmc_ease_circ_inout(float t);
CGLM_EXPORT
float
glmc_ease_back_in(float t);
CGLM_EXPORT
float
glmc_ease_back_out(float t);
CGLM_EXPORT
float
glmc_ease_back_inout(float t);
CGLM_EXPORT
float
glmc_ease_elast_in(float t);
CGLM_EXPORT
float
glmc_ease_elast_out(float t);
CGLM_EXPORT
float
glmc_ease_elast_inout(float t);
CGLM_EXPORT
float
glmc_ease_bounce_out(float t);
CGLM_EXPORT
float
glmc_ease_bounce_in(float t);
CGLM_EXPORT
float
glmc_ease_bounce_inout(float t);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_ease_h */

View File

@@ -21,6 +21,10 @@ CGLM_EXPORT
void
glmc_euler(vec3 angles, mat4 dest);
CGLM_EXPORT
void
glmc_euler_xyz(vec3 angles, mat4 dest);
CGLM_EXPORT
void
glmc_euler_zyx(vec3 angles, mat4 dest);

View File

@@ -24,6 +24,10 @@ CGLM_EXPORT
void
glmc_mat3_identity(mat3 mat);
CGLM_EXPORT
void
glmc_mat3_identity_array(mat3 * __restrict mat, size_t count);
CGLM_EXPORT
void
glmc_mat3_mul(mat3 m1, mat3 m2, mat3 dest);
@@ -40,6 +44,14 @@ CGLM_EXPORT
void
glmc_mat3_mulv(mat3 m, vec3 v, vec3 dest);
CGLM_EXPORT
float
glmc_mat3_trace(mat3 m);
CGLM_EXPORT
void
glmc_mat3_quat(mat3 m, versor dest);
CGLM_EXPORT
void
glmc_mat3_scale(mat3 m, float s);
@@ -60,6 +72,10 @@ CGLM_EXPORT
void
glmc_mat3_swap_row(mat3 mat, int row1, int row2);
CGLM_EXPORT
float
glmc_mat3_rmc(vec3 r, mat3 m, vec3 c);
#ifdef __cplusplus
}
#endif

View File

@@ -29,6 +29,10 @@ CGLM_EXPORT
void
glmc_mat4_identity(mat4 mat);
CGLM_EXPORT
void
glmc_mat4_identity_array(mat4 * __restrict mat, size_t count);
CGLM_EXPORT
void
glmc_mat4_pick3(mat4 mat, mat3 dest);
@@ -47,12 +51,28 @@ glmc_mat4_mul(mat4 m1, mat4 m2, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest);
glmc_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_mulv(mat4 m, vec4 v, vec4 dest);
CGLM_EXPORT
void
glmc_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest);
CGLM_EXPORT
float
glmc_mat4_trace(mat4 m);
CGLM_EXPORT
float
glmc_mat4_trace3(mat4 m);
CGLM_EXPORT
void
glmc_mat4_quat(mat4 m, versor dest);
CGLM_EXPORT
void
glmc_mat4_transpose_to(mat4 m, mat4 dest);
@@ -81,6 +101,10 @@ CGLM_EXPORT
void
glmc_mat4_inv_precise(mat4 mat, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_inv_fast(mat4 mat, mat4 dest);
CGLM_EXPORT
void
glmc_mat4_swap_col(mat4 mat, int col1, int col2);
@@ -89,6 +113,10 @@ CGLM_EXPORT
void
glmc_mat4_swap_row(mat4 mat, int row1, int row2);
CGLM_EXPORT
float
glmc_mat4_rmc(vec4 r, mat4 m, vec4 c);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,33 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_project_h
#define cglmc_project_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
void
glmc_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest);
CGLM_EXPORT
void
glmc_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest);
CGLM_EXPORT
void
glmc_project(vec3 pos, mat4 m, vec4 vp, vec3 dest);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_project_h */

View File

@@ -19,33 +19,83 @@ glmc_quat_identity(versor q);
CGLM_EXPORT
void
glmc_quat(versor q,
float angle,
float x,
float y,
float z);
glmc_quat_identity_array(versor * __restrict q, size_t count);
CGLM_EXPORT
void
glmc_quatv(versor q,
float angle,
vec3 v);
glmc_quat_init(versor q, float x, float y, float z, float w);
CGLM_EXPORT
void
glmc_quat(versor q, float angle, float x, float y, float z);
CGLM_EXPORT
void
glmc_quatv(versor q, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_quat_copy(versor q, versor dest);
CGLM_EXPORT
float
glmc_quat_norm(versor q);
CGLM_EXPORT
void
glmc_quat_normalize_to(versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_normalize(versor q);
CGLM_EXPORT
float
glmc_quat_dot(versor q, versor r);
glmc_quat_dot(versor p, versor q);
CGLM_EXPORT
void
glmc_quat_mulv(versor q1, versor q2, versor dest);
glmc_quat_conjugate(versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_inv(versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_add(versor p, versor q, versor dest);
CGLM_EXPORT
void
glmc_quat_sub(versor p, versor q, versor dest);
CGLM_EXPORT
float
glmc_quat_real(versor q);
CGLM_EXPORT
void
glmc_quat_imag(versor q, vec3 dest);
CGLM_EXPORT
void
glmc_quat_imagn(versor q, vec3 dest);
CGLM_EXPORT
float
glmc_quat_imaglen(versor q);
CGLM_EXPORT
float
glmc_quat_angle(versor q);
CGLM_EXPORT
void
glmc_quat_axis(versor q, vec3 dest);
CGLM_EXPORT
void
glmc_quat_mul(versor p, versor q, versor dest);
CGLM_EXPORT
void
@@ -53,10 +103,51 @@ glmc_quat_mat4(versor q, mat4 dest);
CGLM_EXPORT
void
glmc_quat_slerp(versor q,
versor r,
float t,
versor dest);
glmc_quat_mat4t(versor q, mat4 dest);
CGLM_EXPORT
void
glmc_quat_mat3(versor q, mat3 dest);
CGLM_EXPORT
void
glmc_quat_mat3t(versor q, mat3 dest);
CGLM_EXPORT
void
glmc_quat_lerp(versor from, versor to, float t, versor dest);
CGLM_EXPORT
void
glmc_quat_slerp(versor q, versor r, float t, versor dest);
CGLM_EXPORT
void
glmc_quat_look(vec3 eye, versor ori, mat4 dest);
CGLM_EXPORT
void
glmc_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
CGLM_EXPORT
void
glmc_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest);
CGLM_EXPORT
void
glmc_quat_rotatev(versor from, vec3 to, vec3 dest);
CGLM_EXPORT
void
glmc_quat_rotate(mat4 m, versor q, mat4 dest);
CGLM_EXPORT
void
glmc_quat_rotate_at(mat4 model, versor q, vec3 pivot);
CGLM_EXPORT
void
glmc_quat_rotate_atm(mat4 m, versor q, vec3 pivot);
#ifdef __cplusplus
}

View File

@@ -0,0 +1,39 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglmc_sphere_h
#define cglmc_sphere_h
#ifdef __cplusplus
extern "C" {
#endif
#include "../cglm.h"
CGLM_EXPORT
float
glmc_sphere_radii(vec4 s);
CGLM_EXPORT
void
glmc_sphere_transform(vec4 s, mat4 m, vec4 dest);
CGLM_EXPORT
void
glmc_sphere_merge(vec4 s1, vec4 s2, vec4 dest);
CGLM_EXPORT
bool
glmc_sphere_sphere(vec4 s1, vec4 s2);
CGLM_EXPORT
bool
glmc_sphere_point(vec4 s, vec3 point);
#ifdef __cplusplus
}
#endif
#endif /* cglmc_sphere_h */

View File

@@ -14,95 +14,233 @@ extern "C" {
#include "../cglm.h"
/* DEPRECATED! use _copy, _ucopy versions */
#define glmc_vec_dup(v, dest) glmc_vec_copy(v, dest)
#define glmc_vec_dup(v, dest) glmc_vec3_copy(v, dest)
#define glmc_vec3_flipsign(v) glmc_vec3_negate(v)
#define glmc_vec3_flipsign_to(v, dest) glmc_vec3_negate_to(v, dest)
#define glmc_vec3_inv(v) glmc_vec3_negate(v)
#define glmc_vec3_inv_to(v, dest) glmc_vec3_negate_to(v, dest)
CGLM_EXPORT
void
glmc_vec_copy(vec3 a, vec3 dest);
glmc_vec3(vec4 v4, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_copy(vec3 a, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_zero(vec3 v);
CGLM_EXPORT
void
glmc_vec3_one(vec3 v);
CGLM_EXPORT
float
glmc_vec_dot(vec3 a, vec3 b);
glmc_vec3_dot(vec3 a, vec3 b);
CGLM_EXPORT
void
glmc_vec_cross(vec3 a, vec3 b, vec3 d);
glmc_vec3_cross(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_crossn(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
float
glmc_vec_norm(vec3 vec);
glmc_vec3_norm(vec3 v);
CGLM_EXPORT
float
glmc_vec_norm2(vec3 vec);
glmc_vec3_norm2(vec3 v);
CGLM_EXPORT
void
glmc_vec_normalize_to(vec3 vec, vec3 dest);
glmc_vec3_normalize_to(vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec_normalize(vec3 v);
glmc_vec3_normalize(vec3 v);
CGLM_EXPORT
void
glmc_vec_add(vec3 v1, vec3 v2, vec3 dest);
glmc_vec3_add(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec_sub(vec3 v1, vec3 v2, vec3 dest);
glmc_vec3_adds(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec_scale(vec3 v, float s, vec3 dest);
glmc_vec3_sub(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec_scale_as(vec3 v, float s, vec3 dest);
glmc_vec3_subs(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec_flipsign(vec3 v);
glmc_vec3_mul(vec3 a, vec3 b, vec3 d);
CGLM_EXPORT
void
glmc_vec_inv(vec3 v);
glmc_vec3_scale(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec_inv_to(vec3 v, vec3 dest);
CGLM_EXPORT
float
glmc_vec_angle(vec3 v1, vec3 v2);
glmc_vec3_scale_as(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec_rotate(vec3 v, float angle, vec3 axis);
glmc_vec3_div(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec_rotate_m4(mat4 m, vec3 v, vec3 dest);
glmc_vec3_divs(vec3 a, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec_proj(vec3 a, vec3 b, vec3 dest);
glmc_vec3_addadd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec_center(vec3 v1, vec3 v2, vec3 dest);
glmc_vec3_subadd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_muladd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_muladds(vec3 a, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_maxadd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_minadd(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_negate(vec3 v);
CGLM_EXPORT
void
glmc_vec3_negate_to(vec3 v, vec3 dest);
CGLM_EXPORT
float
glmc_vec_distance(vec3 v1, vec3 v2);
glmc_vec3_angle(vec3 a, vec3 b);
CGLM_EXPORT
void
glmc_vec_maxv(vec3 v1, vec3 v2, vec3 dest);
glmc_vec3_rotate(vec3 v, float angle, vec3 axis);
CGLM_EXPORT
void
glmc_vec_minv(vec3 v1, vec3 v2, vec3 dest);
glmc_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_proj(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_center(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
float
glmc_vec3_distance2(vec3 a, vec3 b);
CGLM_EXPORT
float
glmc_vec3_distance(vec3 a, vec3 b);
CGLM_EXPORT
void
glmc_vec3_maxv(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_minv(vec3 a, vec3 b, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_clamp(vec3 v, float minVal, float maxVal);
CGLM_EXPORT
void
glmc_vec3_ortho(vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest);
/* ext */
CGLM_EXPORT
void
glmc_vec3_mulv(vec3 a, vec3 b, vec3 d);
CGLM_EXPORT
void
glmc_vec3_broadcast(float val, vec3 d);
CGLM_EXPORT
bool
glmc_vec3_eq(vec3 v, float val);
CGLM_EXPORT
bool
glmc_vec3_eq_eps(vec3 v, float val);
CGLM_EXPORT
bool
glmc_vec3_eq_all(vec3 v);
CGLM_EXPORT
bool
glmc_vec3_eqv(vec3 a, vec3 b);
CGLM_EXPORT
bool
glmc_vec3_eqv_eps(vec3 a, vec3 b);
CGLM_EXPORT
float
glmc_vec3_max(vec3 v);
CGLM_EXPORT
float
glmc_vec3_min(vec3 v);
CGLM_EXPORT
bool
glmc_vec3_isnan(vec3 v);
CGLM_EXPORT
bool
glmc_vec3_isinf(vec3 v);
CGLM_EXPORT
bool
glmc_vec3_isvalid(vec3 v);
CGLM_EXPORT
void
glmc_vec3_sign(vec3 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec3_sqrt(vec3 v, vec3 dest);
#ifdef __cplusplus
}

View File

@@ -14,32 +14,52 @@ extern "C" {
#include "../cglm.h"
/* DEPRECATED! use _copy, _ucopy versions */
#define glmc_vec4_dup3(v, dest) glmc_vec4_copy3(v, dest)
#define glmc_vec4_dup(v, dest) glmc_vec4_copy(v, dest)
#define glmc_vec4_dup3(v, dest) glmc_vec4_copy3(v, dest)
#define glmc_vec4_dup(v, dest) glmc_vec4_copy(v, dest)
#define glmc_vec4_flipsign(v) glmc_vec4_negate(v)
#define glmc_vec4_flipsign_to(v, dest) glmc_vec4_negate_to(v, dest)
#define glmc_vec4_inv(v) glmc_vec4_negate(v)
#define glmc_vec4_inv_to(v, dest) glmc_vec4_negate_to(v, dest)
CGLM_EXPORT
void
glmc_vec4_copy3(vec4 a, vec3 dest);
glmc_vec4(vec3 v3, float last, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_zero(vec4 v);
CGLM_EXPORT
void
glmc_vec4_one(vec4 v);
CGLM_EXPORT
void
glmc_vec4_copy3(vec4 v, vec3 dest);
CGLM_EXPORT
void
glmc_vec4_copy(vec4 v, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_ucopy(vec4 v, vec4 dest);
CGLM_EXPORT
float
glmc_vec4_dot(vec4 a, vec4 b);
CGLM_EXPORT
float
glmc_vec4_norm(vec4 vec);
glmc_vec4_norm(vec4 v);
CGLM_EXPORT
float
glmc_vec4_norm2(vec4 vec);
glmc_vec4_norm2(vec4 v);
CGLM_EXPORT
void
glmc_vec4_normalize_to(vec4 vec, vec4 dest);
glmc_vec4_normalize_to(vec4 v, vec4 dest);
CGLM_EXPORT
void
@@ -47,11 +67,23 @@ glmc_vec4_normalize(vec4 v);
CGLM_EXPORT
void
glmc_vec4_add(vec4 v1, vec4 v2, vec4 dest);
glmc_vec4_add(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_sub(vec4 v1, vec4 v2, vec4 dest);
glmc_vec4_adds(vec4 v, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_sub(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_subs(vec4 v, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_mul(vec4 a, vec4 b, vec4 d);
CGLM_EXPORT
void
@@ -63,27 +95,125 @@ glmc_vec4_scale_as(vec3 v, float s, vec3 dest);
CGLM_EXPORT
void
glmc_vec4_flipsign(vec4 v);
glmc_vec4_div(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_inv(vec4 v);
glmc_vec4_divs(vec4 v, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_inv_to(vec4 v, vec4 dest);
glmc_vec4_addadd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_subadd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_muladd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_muladds(vec4 a, float s, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_maxadd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_minadd(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_negate(vec4 v);
CGLM_EXPORT
void
glmc_vec4_negate_to(vec4 v, vec4 dest);
CGLM_EXPORT
float
glmc_vec4_distance(vec4 v1, vec4 v2);
glmc_vec4_distance(vec4 a, vec4 b);
CGLM_EXPORT
void
glmc_vec4_maxv(vec4 v1, vec4 v2, vec4 dest);
glmc_vec4_maxv(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_minv(vec4 v1, vec4 v2, vec4 dest);
glmc_vec4_minv(vec4 a, vec4 b, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_clamp(vec4 v, float minVal, float maxVal);
CGLM_EXPORT
void
glmc_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_cubic(float s, vec4 dest);
/* ext */
CGLM_EXPORT
void
glmc_vec4_mulv(vec4 a, vec4 b, vec4 d);
CGLM_EXPORT
void
glmc_vec4_broadcast(float val, vec4 d);
CGLM_EXPORT
bool
glmc_vec4_eq(vec4 v, float val);
CGLM_EXPORT
bool
glmc_vec4_eq_eps(vec4 v, float val);
CGLM_EXPORT
bool
glmc_vec4_eq_all(vec4 v);
CGLM_EXPORT
bool
glmc_vec4_eqv(vec4 a, vec4 b);
CGLM_EXPORT
bool
glmc_vec4_eqv_eps(vec4 a, vec4 b);
CGLM_EXPORT
float
glmc_vec4_max(vec4 v);
CGLM_EXPORT
float
glmc_vec4_min(vec4 v);
CGLM_EXPORT
bool
glmc_vec4_isnan(vec4 v);
CGLM_EXPORT
bool
glmc_vec4_isinf(vec4 v);
CGLM_EXPORT
bool
glmc_vec4_isvalid(vec4 v);
CGLM_EXPORT
void
glmc_vec4_sign(vec4 v, vec4 dest);
CGLM_EXPORT
void
glmc_vec4_sqrt(vec4 v, vec4 dest);
#ifdef __cplusplus
}

View File

@@ -7,54 +7,42 @@
/*
Functions:
CGLM_INLINE void glm_frustum(float left,
float right,
float bottom,
float top,
float nearVal,
float farVal,
mat4 dest);
CGLM_INLINE void glm_ortho(float left,
float right,
float bottom,
float top,
float nearVal,
float farVal,
mat4 dest);
CGLM_INLINE void glm_ortho_default(float aspect, mat4 dest);
CGLM_INLINE void glm_ortho_default_s(float aspect, float size, mat4 dest);
CGLM_INLINE void glm_perspective(float fovy,
float aspect,
float nearVal,
float farVal,
mat4 dest);
CGLM_INLINE void glm_perspective_default(float aspect, mat4 dest);
CGLM_INLINE void glm_perspective_resize(float aspect, mat4 proj);
CGLM_INLINE void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest);
CGLM_INLINE void glm_persp_decomp(mat4 proj,
float * __restrict nearVal,
float * __restrict farVal,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right);
CGLM_INLINE void glm_persp_decompv(mat4 proj, float dest[6]);
CGLM_INLINE void glm_persp_decomp_x(mat4 proj,
float * __restrict left,
float * __restrict right);
CGLM_INLINE void glm_persp_decomp_y(mat4 proj,
float * __restrict top,
float * __restrict bottom);
CGLM_INLINE void glm_persp_decomp_z(mat4 proj,
float * __restrict nearVal,
float * __restrict farVal);
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float * __restrict farVal);
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *__restrict nearVal);
CGLM_INLINE void glm_frustum_planes(mat4 m, vec4 dest[6]);
CGLM_INLINE void glm_frustum_corners(mat4 invMat, vec4 dest[8]);
CGLM_INLINE glm_ortho_box(vec3 box[2], mat4 dest);
CGLM_INLINE void glm_ortho_boxp(vec3 box[2], float padding, mat4 dest);
CGLM_INLINE void glm_ortho_boxp(vec3 box[2], float padding, mat4 dest);
CGLM_INLINE void glm_frustum(float left, float right,
float bottom, float top,
float nearVal, float farVal,
mat4 dest)
CGLM_INLINE void glm_ortho(float left, float right,
float bottom, float top,
float nearVal, float farVal,
mat4 dest)
CGLM_INLINE void glm_ortho_aabb(vec3 box[2], mat4 dest)
CGLM_INLINE void glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest)
CGLM_INLINE void glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest)
CGLM_INLINE void glm_ortho_default(float aspect, mat4 dest)
CGLM_INLINE void glm_ortho_default_s(float aspect, float size, mat4 dest)
CGLM_INLINE void glm_perspective(float fovy,
float aspect,
float nearVal,
float farVal,
mat4 dest)
CGLM_INLINE void glm_perspective_default(float aspect, mat4 dest)
CGLM_INLINE void glm_perspective_resize(float aspect, mat4 proj)
CGLM_INLINE void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest)
CGLM_INLINE void glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest)
CGLM_INLINE void glm_look_anyup(vec3 eye, vec3 dir, mat4 dest)
CGLM_INLINE void glm_persp_decomp(mat4 proj,
float *nearVal, float *farVal,
float *top, float *bottom,
float *left, float *right)
CGLM_INLINE void glm_persp_decompv(mat4 proj, float dest[6])
CGLM_INLINE void glm_persp_decomp_x(mat4 proj, float *left, float *right)
CGLM_INLINE void glm_persp_decomp_y(mat4 proj, float *top, float *bottom)
CGLM_INLINE void glm_persp_decomp_z(mat4 proj, float *nearv, float *farv)
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float *farVal)
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *nearVal)
CGLM_INLINE float glm_persp_fovy(mat4 proj)
CGLM_INLINE float glm_persp_aspect(mat4 proj)
CGLM_INLINE void glm_persp_sizes(mat4 proj, float fovy, vec4 dest)
*/
#ifndef cglm_vcam_h
@@ -76,16 +64,13 @@
*/
CGLM_INLINE
void
glm_frustum(float left,
float right,
float bottom,
float top,
float nearVal,
float farVal,
glm_frustum(float left, float right,
float bottom, float top,
float nearVal, float farVal,
mat4 dest) {
float rl, tb, fn, nv;
glm__memzero(float, dest, sizeof(mat4));
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
@@ -114,16 +99,13 @@ glm_frustum(float left,
*/
CGLM_INLINE
void
glm_ortho(float left,
float right,
float bottom,
float top,
float nearVal,
float farVal,
glm_ortho(float left, float right,
float bottom, float top,
float nearVal, float farVal,
mat4 dest) {
float rl, tb, fn;
glm__memzero(float, dest, sizeof(mat4));
glm_mat4_zero(dest);
rl = 1.0f / (right - left);
tb = 1.0f / (top - bottom);
@@ -199,26 +181,15 @@ glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest) {
*/
CGLM_INLINE
void
glm_ortho_default(float aspect,
mat4 dest) {
glm_ortho_default(float aspect, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho(-1.0f * aspect,
1.0f * aspect,
-1.0f,
1.0f,
-100.0f,
100.0f,
dest);
return;
glm_ortho(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
return;
}
glm_ortho(-1.0f,
1.0f,
-1.0f / aspect,
1.0f / aspect,
-100.0f,
100.0f,
dest);
aspect = 1.0f / aspect;
glm_ortho(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
}
/*!
@@ -230,9 +201,7 @@ glm_ortho_default(float aspect,
*/
CGLM_INLINE
void
glm_ortho_default_s(float aspect,
float size,
mat4 dest) {
glm_ortho_default_s(float aspect, float size, mat4 dest) {
if (aspect >= 1.0f) {
glm_ortho(-size * aspect,
size * aspect,
@@ -241,7 +210,7 @@ glm_ortho_default_s(float aspect,
-size - 100.0f,
size + 100.0f,
dest);
return;
return;
}
glm_ortho(-size,
@@ -271,7 +240,7 @@ glm_perspective(float fovy,
mat4 dest) {
float f, fn;
glm__memzero(float, dest, sizeof(mat4));
glm_mat4_zero(dest);
f = 1.0f / tanf(fovy * 0.5f);
fn = 1.0f / (nearVal - farVal);
@@ -283,6 +252,30 @@ glm_perspective(float fovy,
dest[3][2] = 2.0f * nearVal * farVal * fn;
}
/*!
* @brief extend perspective projection matrix's far distance
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
void
glm_persp_move_far(mat4 proj, float deltaFar) {
float fn, farVal, nearVal, p22, p32;
p22 = proj[2][2];
p32 = proj[3][2];
nearVal = p32 / (p22 - 1.0f);
farVal = p32 / (p22 + 1.0f) + deltaFar;
fn = 1.0f / (nearVal - farVal);
proj[2][2] = (nearVal + farVal) * fn;
proj[3][2] = 2.0f * nearVal * farVal * fn;
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values
@@ -292,18 +285,13 @@ glm_perspective(float fovy,
*/
CGLM_INLINE
void
glm_perspective_default(float aspect,
mat4 dest) {
glm_perspective((float)CGLM_PI_4,
aspect,
0.01f,
100.0f,
dest);
glm_perspective_default(float aspect, mat4 dest) {
glm_perspective(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this very make easy to resize proj matrix when window, viewport
* this makes very easy to resize proj matrix when window /viewport
* reized
*
* @param[in] aspect aspect ratio ( width / height )
@@ -311,8 +299,7 @@ glm_perspective_default(float aspect,
*/
CGLM_INLINE
void
glm_perspective_resize(float aspect,
mat4 proj) {
glm_perspective_resize(float aspect, mat4 proj) {
if (proj[0][0] == 0.0f)
return;
@@ -322,6 +309,9 @@ glm_perspective_resize(float aspect,
/*!
* @brief set up view matrix
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
@@ -333,15 +323,13 @@ glm_lookat(vec3 eye,
vec3 center,
vec3 up,
mat4 dest) {
vec3 f, u, s;
CGLM_ALIGN(8) vec3 f, u, s;
glm_vec_sub(center, eye, f);
glm_vec_normalize(f);
glm_vec3_sub(center, eye, f);
glm_vec3_normalize(f);
glm_vec_cross(f, up, s);
glm_vec_normalize(s);
glm_vec_cross(s, f, u);
glm_vec3_crossn(f, up, s);
glm_vec3_cross(s, f, u);
dest[0][0] = s[0];
dest[0][1] = u[0];
@@ -352,9 +340,9 @@ glm_lookat(vec3 eye,
dest[2][0] = s[2];
dest[2][1] = u[2];
dest[2][2] =-f[2];
dest[3][0] =-glm_vec_dot(s, eye);
dest[3][1] =-glm_vec_dot(u, eye);
dest[3][2] = glm_vec_dot(f, eye);
dest[3][0] =-glm_vec3_dot(s, eye);
dest[3][1] =-glm_vec3_dot(u, eye);
dest[3][2] = glm_vec3_dot(f, eye);
dest[0][3] = dest[1][3] = dest[2][3] = 0.0f;
dest[3][3] = 1.0f;
}
@@ -365,6 +353,9 @@ glm_lookat(vec3 eye,
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
@@ -373,8 +364,8 @@ glm_lookat(vec3 eye,
CGLM_INLINE
void
glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
vec3 target;
glm_vec_add(eye, dir, target);
CGLM_ALIGN(8) vec3 target;
glm_vec3_add(eye, dir, target);
glm_lookat(eye, target, up, dest);
}
@@ -391,8 +382,8 @@ glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
CGLM_INLINE
void
glm_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
vec3 up;
glm_vec_ortho(dir, up);
CGLM_ALIGN(8) vec3 up;
glm_vec3_ortho(dir, up);
glm_look(eye, dir, up, dest);
}
@@ -410,12 +401,9 @@ glm_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
CGLM_INLINE
void
glm_persp_decomp(mat4 proj,
float * __restrict nearVal,
float * __restrict farVal,
float * __restrict top,
float * __restrict bottom,
float * __restrict left,
float * __restrict right) {
float * __restrict nearVal, float * __restrict farVal,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
float m00, m11, m20, m21, m22, m32, n, f;
float n_m11, n_m00;
@@ -458,7 +446,7 @@ glm_persp_decompv(mat4 proj, float dest[6]) {
* @brief decomposes left and right values of perspective projection.
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
@@ -572,10 +560,7 @@ glm_persp_aspect(mat4 proj) {
}
/*!
* @brief returns aspect ratio of perspective projection
*
* if you don't have fovy then use glm_persp_fovy(proj) to get it
* or pass directly: glm_persp_sizes(proj, glm_persp_fovy(proj), sizes);
* @brief returns sizes of near and far planes of perspective projection
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)

View File

@@ -20,7 +20,13 @@
#include "euler.h"
#include "plane.h"
#include "box.h"
#include "color.h"
#include "util.h"
#include "io.h"
#include "project.h"
#include "sphere.h"
#include "ease.h"
#include "curve.h"
#include "bezier.h"
#endif /* cglm_h */

26
include/cglm/color.h Normal file
View File

@@ -0,0 +1,26 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_color_h
#define cglm_color_h
#include "common.h"
#include "vec3.h"
/*!
* @brief averages the color channels into one value
*
* @param[in] rgb RGB color
*/
CGLM_INLINE
float
glm_luminance(vec3 rgb) {
vec3 l = {0.212671f, 0.715160f, 0.072169f};
return glm_dot(rgb, l);
}
#endif /* cglm_color_h */

View File

@@ -11,10 +11,12 @@
#define _USE_MATH_DEFINES /* for windows */
#include <stdint.h>
#include <stddef.h>
#include <math.h>
#include <float.h>
#include <stdbool.h>
#if defined(_WIN32)
#if defined(_MSC_VER)
# ifdef CGLM_DLL
# define CGLM_EXPORT __declspec(dllexport)
# else
@@ -26,34 +28,6 @@
# define CGLM_INLINE static inline __attribute((always_inline))
#endif
#define glm__memcpy(type, dest, src, size) \
do { \
type *srci; \
type *srci_end; \
type *desti; \
\
srci = (type *)src; \
srci_end = (type *)((char *)srci + size); \
desti = (type *)dest; \
\
while (srci != srci_end) \
*desti++ = *srci++; \
} while (0)
#define glm__memset(type, dest, size, val) \
do { \
type *desti; \
type *desti_end; \
\
desti = (type *)dest; \
desti_end = (type *)((char *)desti + size); \
\
while (desti != desti_end) \
*desti++ = val; \
} while (0)
#define glm__memzero(type, dest, size) glm__memset(type, dest, size, 0)
#define GLM_SHUFFLE4(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
#define GLM_SHUFFLE3(z, y, x) (((z) << 4) | ((y) << 2) | (x))

40
include/cglm/curve.h Normal file
View File

@@ -0,0 +1,40 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_curve_h
#define cglm_curve_h
#include "common.h"
#include "vec4.h"
#include "mat4.h"
/*!
* @brief helper function to calculate S*M*C multiplication for curves
*
* This function does not encourage you to use SMC,
* instead it is a helper if you use SMC.
*
* if you want to specify S as vector then use more generic glm_mat4_rmc() func.
*
* Example usage:
* B(s) = glm_smc(s, GLM_BEZIER_MAT, (vec4){p0, c0, c1, p1})
*
* @param[in] s parameter between 0 and 1 (this will be [s3, s2, s, 1])
* @param[in] m basis matrix
* @param[in] c position/control vector
*
* @return B(s)
*/
CGLM_INLINE
float
glm_smc(float s, mat4 m, vec4 c) {
vec4 vs;
glm_vec4_cubic(s, vs);
return glm_mat4_rmc(vs, m, c);
}
#endif /* cglm_curve_h */

317
include/cglm/ease.h Normal file
View File

@@ -0,0 +1,317 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_ease_h
#define cglm_ease_h
#include "common.h"
CGLM_INLINE
float
glm_ease_linear(float t) {
return t;
}
CGLM_INLINE
float
glm_ease_sine_in(float t) {
return sinf((t - 1.0f) * GLM_PI_2f) + 1.0f;
}
CGLM_INLINE
float
glm_ease_sine_out(float t) {
return sinf(t * GLM_PI_2f);
}
CGLM_INLINE
float
glm_ease_sine_inout(float t) {
return 0.5f * (1.0f - cosf(t * GLM_PIf));
}
CGLM_INLINE
float
glm_ease_quad_in(float t) {
return t * t;
}
CGLM_INLINE
float
glm_ease_quad_out(float t) {
return -(t * (t - 2.0f));
}
CGLM_INLINE
float
glm_ease_quad_inout(float t) {
float tt;
tt = t * t;
if (t < 0.5f)
return 2.0f * tt;
return (-2.0f * tt) + (4.0f * t) - 1.0f;
}
CGLM_INLINE
float
glm_ease_cubic_in(float t) {
return t * t * t;
}
CGLM_INLINE
float
glm_ease_cubic_out(float t) {
float f;
f = t - 1.0f;
return f * f * f + 1.0f;
}
CGLM_INLINE
float
glm_ease_cubic_inout(float t) {
float f;
if (t < 0.5f)
return 4.0f * t * t * t;
f = 2.0f * t - 2.0f;
return 0.5f * f * f * f + 1.0f;
}
CGLM_INLINE
float
glm_ease_quart_in(float t) {
float f;
f = t * t;
return f * f;
}
CGLM_INLINE
float
glm_ease_quart_out(float t) {
float f;
f = t - 1.0f;
return f * f * f * (1.0f - t) + 1.0f;
}
CGLM_INLINE
float
glm_ease_quart_inout(float t) {
float f, g;
if (t < 0.5f) {
f = t * t;
return 8.0f * f * f;
}
f = t - 1.0f;
g = f * f;
return -8.0f * g * g + 1.0f;
}
CGLM_INLINE
float
glm_ease_quint_in(float t) {
float f;
f = t * t;
return f * f * t;
}
CGLM_INLINE
float
glm_ease_quint_out(float t) {
float f, g;
f = t - 1.0f;
g = f * f;
return g * g * f + 1.0f;
}
CGLM_INLINE
float
glm_ease_quint_inout(float t) {
float f, g;
if (t < 0.5f) {
f = t * t;
return 16.0f * f * f * t;
}
f = 2.0f * t - 2.0f;
g = f * f;
return 0.5f * g * g * f + 1.0f;
}
CGLM_INLINE
float
glm_ease_exp_in(float t) {
if (t == 0.0f)
return t;
return powf(2.0f, 10.0f * (t - 1.0f));
}
CGLM_INLINE
float
glm_ease_exp_out(float t) {
if (t == 1.0f)
return t;
return 1.0f - powf(2.0f, -10.0f * t);
}
CGLM_INLINE
float
glm_ease_exp_inout(float t) {
if (t == 0.0f || t == 1.0f)
return t;
if (t < 0.5f)
return 0.5f * powf(2.0f, (20.0f * t) - 10.0f);
return -0.5f * powf(2.0f, (-20.0f * t) + 10.0f) + 1.0f;
}
CGLM_INLINE
float
glm_ease_circ_in(float t) {
return 1.0f - sqrtf(1.0f - (t * t));
}
CGLM_INLINE
float
glm_ease_circ_out(float t) {
return sqrtf((2.0f - t) * t);
}
CGLM_INLINE
float
glm_ease_circ_inout(float t) {
if (t < 0.5f)
return 0.5f * (1.0f - sqrtf(1.0f - 4.0f * (t * t)));
return 0.5f * (sqrtf(-((2.0f * t) - 3.0f) * ((2.0f * t) - 1.0f)) + 1.0f);
}
CGLM_INLINE
float
glm_ease_back_in(float t) {
float o, z;
o = 1.70158f;
z = ((o + 1.0f) * t) - o;
return t * t * z;
}
CGLM_INLINE
float
glm_ease_back_out(float t) {
float o, z, n;
o = 1.70158f;
n = t - 1.0f;
z = (o + 1.0f) * n + o;
return n * n * z + 1.0f;
}
CGLM_INLINE
float
glm_ease_back_inout(float t) {
float o, z, n, m, s, x;
o = 1.70158f;
s = o * 1.525f;
x = 0.5;
n = t / 0.5f;
if (n < 1.0f) {
z = (s + 1) * n - s;
m = n * n * z;
return x * m;
}
n -= 2.0f;
z = (s + 1.0f) * n + s;
m = (n * n * z) + 2;
return x * m;
}
CGLM_INLINE
float
glm_ease_elast_in(float t) {
return sinf(13.0f * GLM_PI_2f * t) * powf(2.0f, 10.0f * (t - 1.0f));
}
CGLM_INLINE
float
glm_ease_elast_out(float t) {
return sinf(-13.0f * GLM_PI_2f * (t + 1.0f)) * powf(2.0f, -10.0f * t) + 1.0f;
}
CGLM_INLINE
float
glm_ease_elast_inout(float t) {
float a;
a = 2.0f * t;
if (t < 0.5f)
return 0.5f * sinf(13.0f * GLM_PI_2f * a)
* powf(2.0f, 10.0f * (a - 1.0f));
return 0.5f * (sinf(-13.0f * GLM_PI_2f * a)
* powf(2.0f, -10.0f * (a - 1.0f)) + 2.0f);
}
CGLM_INLINE
float
glm_ease_bounce_out(float t) {
float tt;
tt = t * t;
if (t < (4.0f / 11.0f))
return (121.0f * tt) / 16.0f;
if (t < 8.0f / 11.0f)
return ((363.0f / 40.0f) * tt) - ((99.0f / 10.0f) * t) + (17.0f / 5.0f);
if (t < (9.0f / 10.0f))
return (4356.0f / 361.0f) * tt
- (35442.0f / 1805.0f) * t
+ (16061.0f / 1805.0f);
return ((54.0f / 5.0f) * tt) - ((513.0f / 25.0f) * t) + (268.0f / 25.0f);
}
CGLM_INLINE
float
glm_ease_bounce_in(float t) {
return 1.0f - glm_ease_bounce_out(1.0f - t);
}
CGLM_INLINE
float
glm_ease_bounce_inout(float t) {
if (t < 0.5f)
return 0.5f * (1.0f - glm_ease_bounce_out(t * 2.0f));
return 0.5f * glm_ease_bounce_out(t * 2.0f - 1.0f) + 0.5f;
}
#endif /* cglm_ease_h */

View File

@@ -5,21 +5,30 @@
* Full license can be found in the LICENSE file
*/
/*
NOTE:
angles must be passed as [X-Angle, Y-Angle, Z-angle] order
For instance you don't pass angles as [Z-Angle, X-Angle, Y-angle] to
glm_euler_zxy funciton, All RELATED functions accept angles same order
which is [X, Y, Z].
*/
/*
Types:
enum glm_euler_sq
Functions:
CGLM_INLINE glm_euler_sq glm_euler_order(int newOrder[3]);
CGLM_INLINE void glm_euler_angles(mat4 m, vec3 dest);
CGLM_INLINE void glm_euler(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_xyz(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_zyx(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_zxy(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_xzy(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_yzx(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_yxz(vec3 angles, mat4 dest);
CGLM_INLINE void glm_euler_by_order(vec3 angles,
glm_euler_sq axis,
glm_euler_sq ord,
mat4 dest);
*/
@@ -48,12 +57,12 @@ typedef enum glm_euler_sq {
CGLM_INLINE
glm_euler_sq
glm_euler_order(int newOrder[3]) {
return (glm_euler_sq)(newOrder[0] | newOrder[1] << 2 | newOrder[2] << 4);
glm_euler_order(int ord[3]) {
return (glm_euler_sq)(ord[0] << 0 | ord[1] << 2 | ord[2] << 4);
}
/*!
* @brief euler angles (in radian) using xyz sequence
* @brief extract euler angles (in radians) using xyz order
*
* @param[in] m affine transform
* @param[out] dest angles vector [x, y, z]
@@ -61,225 +70,289 @@ glm_euler_order(int newOrder[3]) {
CGLM_INLINE
void
glm_euler_angles(mat4 m, vec3 dest) {
if (m[0][2] < 1.0f) {
if (m[0][2] > -1.0f) {
vec3 a[2];
float cy1, cy2;
int path;
a[0][1] = asinf(-m[0][2]);
a[1][1] = CGLM_PI - a[0][1];
float m00, m01, m10, m11, m20, m21, m22;
float thetaX, thetaY, thetaZ;
cy1 = cosf(a[0][1]);
cy2 = cosf(a[1][1]);
m00 = m[0][0]; m10 = m[1][0]; m20 = m[2][0];
m01 = m[0][1]; m11 = m[1][1]; m21 = m[2][1];
m22 = m[2][2];
a[0][0] = atan2f(m[1][2] / cy1, m[2][2] / cy1);
a[1][0] = atan2f(m[1][2] / cy2, m[2][2] / cy2);
a[0][2] = atan2f(m[0][1] / cy1, m[0][0] / cy1);
a[1][2] = atan2f(m[0][1] / cy2, m[0][0] / cy2);
path = (fabsf(a[0][0]) + fabsf(a[0][1]) + fabsf(a[0][2])) >=
(fabsf(a[1][0]) + fabsf(a[1][1]) + fabsf(a[1][2]));
glm_vec_copy(a[path], dest);
} else {
dest[0] = atan2f(m[1][0], m[2][0]);
dest[1] = CGLM_PI_2;
dest[2] = 0.0f;
if (m20 < 1.0f) {
if (m20 > -1.0f) {
thetaY = asinf(m20);
thetaX = atan2f(-m21, m22);
thetaZ = atan2f(-m10, m00);
} else { /* m20 == -1 */
/* Not a unique solution */
thetaY = -GLM_PI_2f;
thetaX = -atan2f(m01, m11);
thetaZ = 0.0f;
}
} else {
dest[0] = atan2f(-m[1][0], -m[2][0]);
dest[1] =-CGLM_PI_2;
dest[2] = 0.0f;
} else { /* m20 == +1 */
thetaY = GLM_PI_2f;
thetaX = atan2f(m01, m11);
thetaZ = 0.0f;
}
dest[0] = thetaX;
dest[1] = thetaY;
dest[2] = thetaZ;
}
/*!
* @brief build rotation matrix from euler angles(ExEyEz/RzRyRx)
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Ex, Ey, Ez]
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_xyz(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz, czsx, cxcz, sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
czsx = cz * sx;
cxcz = cx * cz;
sysz = sy * sz;
dest[0][0] = cy * cz;
dest[0][1] = czsx * sy + cx * sz;
dest[0][2] = -cxcz * sy + sx * sz;
dest[1][0] = -cy * sz;
dest[1][1] = cxcz - sx * sysz;
dest[1][2] = czsx + cx * sysz;
dest[2][0] = sy;
dest[2][1] = -cy * sx;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
dest[0][0] = cy * cz;
dest[0][1] = cy * sz;
dest[0][2] =-sy;
dest[1][0] = cz * sx * sy - cx * sz;
dest[1][1] = cx * cz + sx * sy * sz;
dest[1][2] = cy * sx;
dest[2][0] = cx * cz * sy + sx * sz;
dest[2][1] =-cz * sx + cx * sy * sz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
glm_euler_xyz(angles, dest);
}
/*!
* @brief build rotation matrix from euler angles (EzEyEx/RxRyRz)
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_zyx(vec3 angles,
mat4 dest) {
glm_euler_xzy(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
sx, sy, sz, sxsy, cysx, cxsy, cxcy;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
dest[0][0] = cy * cz;
dest[0][1] = cz * sx * sy + cx * sz;
dest[0][2] =-cx * cz * sy + sx * sz;
dest[1][0] =-cy * sz;
dest[1][1] = cx * cz - sx * sy * sz;
dest[1][2] = cz * sx + cx * sy * sz;
dest[2][0] = sy;
dest[2][1] =-cy * sx;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
sxsy = sx * sy;
cysx = cy * sx;
cxsy = cx * sy;
cxcy = cx * cy;
dest[0][0] = cy * cz;
dest[0][1] = sxsy + cxcy * sz;
dest[0][2] = -cxsy + cysx * sz;
dest[1][0] = -sz;
dest[1][1] = cx * cz;
dest[1][2] = cz * sx;
dest[2][0] = cz * sy;
dest[2][1] = -cysx + cxsy * sz;
dest[2][2] = cxcy + sxsy * sz;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_zxy(vec3 angles,
mat4 dest) {
glm_euler_yxz(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
sx, sy, sz, cycz, sysz, czsy, cysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
dest[0][0] = cy * cz + sx * sy * sz;
dest[0][1] = cx * sz;
dest[0][2] =-cz * sy + cy * sx * sz;
dest[1][0] = cz * sx * sy - cy * sz;
dest[1][1] = cx * cz;
dest[1][2] = cy * cz * sx + sy * sz;
dest[2][0] = cx * sy;
dest[2][1] =-sx;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
cycz = cy * cz;
sysz = sy * sz;
czsy = cz * sy;
cysz = cy * sz;
dest[0][0] = cycz + sx * sysz;
dest[0][1] = cx * sz;
dest[0][2] = -czsy + cysz * sx;
dest[1][0] = -cysz + czsy * sx;
dest[1][1] = cx * cz;
dest[1][2] = cycz * sx + sysz;
dest[2][0] = cx * sy;
dest[2][1] = -sx;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_xzy(vec3 angles,
mat4 dest) {
glm_euler_yzx(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
sx, sy, sz, sxsy, cxcy, cysx, cxsy;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
dest[0][0] = cy * cz;
dest[0][1] = sz;
dest[0][2] =-cz * sy;
dest[1][0] = sx * sy - cx * cy * sz;
dest[1][1] = cx * cz;
dest[1][2] = cy * sx + cx * sy * sz;
dest[2][0] = cx * sy + cy * sx * sz;
dest[2][1] =-cz * sx;
dest[2][2] = cx * cy - sx * sy * sz;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
sxsy = sx * sy;
cxcy = cx * cy;
cysx = cy * sx;
cxsy = cx * sy;
dest[0][0] = cy * cz;
dest[0][1] = sz;
dest[0][2] = -cz * sy;
dest[1][0] = sxsy - cxcy * sz;
dest[1][1] = cx * cz;
dest[1][2] = cysx + cxsy * sz;
dest[2][0] = cxsy + cysx * sz;
dest[2][1] = -cz * sx;
dest[2][2] = cxcy - sxsy * sz;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_yzx(vec3 angles,
mat4 dest) {
glm_euler_zxy(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
sx, sy, sz, cycz, sxsy, cysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
dest[0][0] = cy * cz;
dest[0][1] = sx * sy + cx * cy * sz;
dest[0][2] =-cx * sy + cy * sx * sz;
dest[1][0] =-sz;
dest[1][1] = cx * cz;
dest[1][2] = cz * sx;
dest[2][0] = cz * sy;
dest[2][1] =-cy * sx + cx * sy * sz;
dest[2][2] = cx * cy + sx * sy * sz;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
cycz = cy * cz;
sxsy = sx * sy;
cysz = cy * sz;
dest[0][0] = cycz - sxsy * sz;
dest[0][1] = cz * sxsy + cysz;
dest[0][2] = -cx * sy;
dest[1][0] = -cx * sz;
dest[1][1] = cx * cz;
dest[1][2] = sx;
dest[2][0] = cz * sy + cysz * sx;
dest[2][1] = -cycz * sx + sy * sz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_yxz(vec3 angles,
mat4 dest) {
glm_euler_zyx(vec3 angles, mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
sx, sy, sz, czsx, cxcz, sysz;
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
sx = sinf(angles[0]); cx = cosf(angles[0]);
sy = sinf(angles[1]); cy = cosf(angles[1]);
sz = sinf(angles[2]); cz = cosf(angles[2]);
dest[0][0] = cy * cz - sx * sy * sz;
dest[0][1] = cz * sx * sy + cy * sz;
dest[0][2] =-cx * sy;
dest[1][0] =-cx * sz;
dest[1][1] = cx * cz;
dest[1][2] = sx;
dest[2][0] = cz * sy + cy * sx * sz;
dest[2][1] =-cy * cz * sx + sy * sz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
czsx = cz * sx;
cxcz = cx * cz;
sysz = sy * sz;
dest[0][0] = cy * cz;
dest[0][1] = cy * sz;
dest[0][2] = -sy;
dest[1][0] = czsx * sy - cx * sz;
dest[1][1] = cxcz + sx * sysz;
dest[1][2] = cy * sx;
dest[2][0] = cxcz * sy + sx * sz;
dest[2][1] = -czsx + cx * sysz;
dest[2][2] = cx * cy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[in] ord euler order
* @param[out] dest rotation matrix
*/
CGLM_INLINE
void
glm_euler_by_order(vec3 angles, glm_euler_sq axis, mat4 dest) {
glm_euler_by_order(vec3 angles, glm_euler_sq ord, mat4 dest) {
float cx, cy, cz,
sx, sy, sz;
@@ -297,72 +370,72 @@ glm_euler_by_order(vec3 angles, glm_euler_sq axis, mat4 dest) {
czsx = cz * sx; cxsz = cx * sz;
sysz = sy * sz;
switch (axis) {
case GLM_EULER_XYZ:
dest[0][0] = cycz;
dest[0][1] = cysz;
dest[0][2] =-sy;
dest[1][0] = czsx * sy - cxsz;
dest[1][1] = cxcz + sx * sysz;
dest[1][2] = cysx;
dest[2][0] = cx * czsy + sx * sz;
dest[2][1] =-czsx + cx * sysz;
dest[2][2] = cxcy;
break;
switch (ord) {
case GLM_EULER_XZY:
dest[0][0] = cycz;
dest[0][1] = sz;
dest[0][2] =-czsy;
dest[1][0] = sx * sy - cx * cysz;
dest[1][1] = cxcz;
dest[1][2] = cysx + cx * sysz;
dest[2][0] = cx * sy + cysx * sz;
dest[2][1] =-czsx;
dest[2][2] = cxcy - sx * sysz;
dest[0][0] = cycz;
dest[0][1] = sx * sy + cx * cysz;
dest[0][2] = -cx * sy + cysx * sz;
dest[1][0] = -sz;
dest[1][1] = cxcz;
dest[1][2] = czsx;
dest[2][0] = czsy;
dest[2][1] = -cysx + cx * sysz;
dest[2][2] = cxcy + sx * sysz;
break;
case GLM_EULER_ZXY:
dest[0][0] = cycz + sx * sysz;
dest[0][1] = cxsz;
dest[0][2] =-czsy + cysx * sz;
dest[1][0] = czsx * sy - cysz;
dest[1][1] = cxcz;
dest[1][2] = cycz * sx + sysz;
dest[2][0] = cx * sy;
dest[2][1] =-sx;
dest[2][2] = cxcy;
break;
case GLM_EULER_ZYX:
dest[0][0] = cycz;
dest[0][1] = czsx * sy + cxsz;
dest[0][2] =-cx * czsy + sx * sz;
dest[1][0] =-cysz;
dest[1][1] = cxcz - sx * sysz;
dest[1][2] = czsx + cx * sysz;
dest[2][0] = sy;
dest[2][1] =-cysx;
dest[2][2] = cxcy;
case GLM_EULER_XYZ:
dest[0][0] = cycz;
dest[0][1] = czsx * sy + cxsz;
dest[0][2] = -cx * czsy + sx * sz;
dest[1][0] = -cysz;
dest[1][1] = cxcz - sx * sysz;
dest[1][2] = czsx + cx * sysz;
dest[2][0] = sy;
dest[2][1] = -cysx;
dest[2][2] = cxcy;
break;
case GLM_EULER_YXZ:
dest[0][0] = cycz - sx * sysz;
dest[0][1] = czsx * sy + cysz;
dest[0][2] =-cx * sy;
dest[1][0] =-cxsz;
dest[1][1] = cxcz;
dest[1][2] = sx;
dest[2][0] = czsy + cysx * sz;
dest[2][1] =-cycz * sx + sysz;
dest[2][2] = cxcy;
dest[0][0] = cycz + sx * sysz;
dest[0][1] = cxsz;
dest[0][2] = -czsy + cysx * sz;
dest[1][0] = czsx * sy - cysz;
dest[1][1] = cxcz;
dest[1][2] = cycz * sx + sysz;
dest[2][0] = cx * sy;
dest[2][1] = -sx;
dest[2][2] = cxcy;
break;
case GLM_EULER_YZX:
dest[0][0] = cycz;
dest[0][1] = sx * sy + cx * cysz;
dest[0][2] =-cx * sy + cysx * sz;
dest[1][0] =-sz;
dest[1][1] = cxcz;
dest[1][2] = czsx;
dest[2][0] = czsy;
dest[2][1] =-cysx + cx * sysz;
dest[2][2] = cxcy + sx * sysz;
dest[0][0] = cycz;
dest[0][1] = sz;
dest[0][2] = -czsy;
dest[1][0] = sx * sy - cx * cysz;
dest[1][1] = cxcz;
dest[1][2] = cysx + cx * sysz;
dest[2][0] = cx * sy + cysx * sz;
dest[2][1] = -czsx;
dest[2][2] = cxcy - sx * sysz;
break;
case GLM_EULER_ZXY:
dest[0][0] = cycz - sx * sysz;
dest[0][1] = czsx * sy + cysz;
dest[0][2] = -cx * sy;
dest[1][0] = -cxsz;
dest[1][1] = cxcz;
dest[1][2] = sx;
dest[2][0] = czsy + cysx * sz;
dest[2][1] = -cycz * sx + sysz;
dest[2][2] = cxcy;
break;
case GLM_EULER_ZYX:
dest[0][0] = cycz;
dest[0][1] = cysz;
dest[0][2] = -sy;
dest[1][0] = czsx * sy - cxsz;
dest[1][1] = cxcz + sx * sysz;
dest[1][2] = cysx;
dest[2][0] = cx * czsy + sx * sz;
dest[2][1] = -czsx + cx * sysz;
dest[2][2] = cxcy;
break;
}

View File

@@ -10,6 +10,9 @@
#include "common.h"
#include "plane.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
#define GLM_LBN 0 /* left bottom near */
#define GLM_LTN 1 /* left top near */
@@ -62,7 +65,7 @@
* Exracted planes order: [left, right, bottom, top, near, far]
*
* @param[in] m matrix (see brief)
* @param[out] dest exracted view frustum planes (see brief)
* @param[out] dest extracted view frustum planes (see brief)
*/
CGLM_INLINE
void
@@ -103,7 +106,7 @@ glm_frustum_planes(mat4 m, vec4 dest[6]) {
*
* Find center coordinates:
* for (j = 0; j < 4; j++) {
* glm_vec_center(corners[i], corners[i + 4], centerCorners[i]);
* glm_vec3_center(corners[i], corners[i + 4], centerCorners[i]);
* }
*
* @param[in] invMat matrix (see brief)
@@ -184,8 +187,8 @@ glm_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]) {
vec3 min, max;
int i;
glm_vec_broadcast(FLT_MAX, min);
glm_vec_broadcast(-FLT_MAX, max);
glm_vec3_broadcast(FLT_MAX, min);
glm_vec3_broadcast(-FLT_MAX, max);
for (i = 0; i < 8; i++) {
glm_mat4_mulv(m, corners[i], v);
@@ -199,8 +202,8 @@ glm_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]) {
max[2] = glm_max(max[2], v[2]);
}
glm_vec_copy(min, box[0]);
glm_vec_copy(max, box[1]);
glm_vec3_copy(min, box[0]);
glm_vec3_copy(max, box[1]);
}
/*!
@@ -225,7 +228,7 @@ glm_frustum_corners_at(vec4 corners[8],
float dist, sc;
/* because distance and scale is same for all */
dist = glm_vec_distance(corners[GLM_RTF], corners[GLM_RTN]);
dist = glm_vec3_distance(corners[GLM_RTF], corners[GLM_RTN]);
sc = dist * (splitDist / farDist);
/* left bottom */

View File

@@ -25,7 +25,7 @@
CGLM_INLINE
void
glm_mat4_print(mat4 matrix,
glm_mat4_print(mat4 matrix,
FILE * __restrict ostream) {
int i;
int j;
@@ -55,7 +55,7 @@ glm_mat4_print(mat4 matrix,
CGLM_INLINE
void
glm_mat3_print(mat3 matrix,
glm_mat3_print(mat3 matrix,
FILE * __restrict ostream) {
int i;
int j;
@@ -85,7 +85,7 @@ glm_mat3_print(mat3 matrix,
CGLM_INLINE
void
glm_vec4_print(vec4 vec,
glm_vec4_print(vec4 vec,
FILE * __restrict ostream) {
int i;
@@ -107,7 +107,7 @@ glm_vec4_print(vec4 vec,
CGLM_INLINE
void
glm_vec3_print(vec3 vec,
glm_vec3_print(vec3 vec,
FILE * __restrict ostream) {
int i;
@@ -129,7 +129,7 @@ glm_vec3_print(vec3 vec,
CGLM_INLINE
void
glm_ivec3_print(ivec3 vec,
glm_ivec3_print(ivec3 vec,
FILE * __restrict ostream) {
int i;
@@ -151,7 +151,7 @@ glm_ivec3_print(ivec3 vec,
CGLM_INLINE
void
glm_versor_print(versor vec,
glm_versor_print(versor vec,
FILE * __restrict ostream) {
int i;
@@ -171,4 +171,33 @@ glm_versor_print(versor vec,
#undef m
}
CGLM_INLINE
void
glm_aabb_print(vec3 bbox[2],
const char * __restrict tag,
FILE * __restrict ostream) {
int i, j;
#define m 3
fprintf(ostream, "AABB (%s):\n", tag ? tag: "float");
for (i = 0; i < 2; i++) {
fprintf(ostream, "\t|");
for (j = 0; j < m; j++) {
fprintf(ostream, "%0.4f", bbox[i][j]);
if (j != m - 1)
fprintf(ostream, "\t");
}
fprintf(ostream, "|\n");
}
fprintf(ostream, "\n");
#undef m
}
#endif /* cglm_io_h */

View File

@@ -16,21 +16,27 @@
Functions:
CGLM_INLINE void glm_mat3_copy(mat3 mat, mat3 dest);
CGLM_INLINE void glm_mat3_identity(mat3 mat);
CGLM_INLINE void glm_mat3_identity_array(mat3 * restrict mat, size_t count);
CGLM_INLINE void glm_mat3_zero(mat3 mat);
CGLM_INLINE void glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest);
CGLM_INLINE void glm_mat3_transpose_to(mat3 m, mat3 dest);
CGLM_INLINE void glm_mat3_transpose(mat3 m);
CGLM_INLINE void glm_mat3_mulv(mat3 m, vec3 v, vec3 dest);
CGLM_INLINE float glm_mat3_trace(mat3 m);
CGLM_INLINE void glm_mat3_quat(mat3 m, versor dest);
CGLM_INLINE void glm_mat3_scale(mat3 m, float s);
CGLM_INLINE float glm_mat3_det(mat3 mat);
CGLM_INLINE void glm_mat3_inv(mat3 mat, mat3 dest);
CGLM_INLINE void glm_mat3_swap_col(mat3 mat, int col1, int col2);
CGLM_INLINE void glm_mat3_swap_row(mat3 mat, int row1, int row2);
CGLM_INLINE float glm_mat3_rmc(vec3 r, mat3 m, vec3 c);
*/
#ifndef cglm_mat3_h
#define cglm_mat3_h
#include "common.h"
#include "vec3.h"
#ifdef CGLM_SSE_FP
# include "simd/sse2/mat3.h"
@@ -45,8 +51,8 @@
/* for C only */
#define GLM_MAT3_IDENTITY (mat3)GLM_MAT3_IDENTITY_INIT
#define GLM_MAT3_ZERO (mat3)GLM_MAT3_ZERO_INIT
#define GLM_MAT3_IDENTITY ((mat3)GLM_MAT3_IDENTITY_INIT)
#define GLM_MAT3_ZERO ((mat3)GLM_MAT3_ZERO_INIT)
/* DEPRECATED! use _copy, _ucopy versions */
#define glm_mat3_dup(mat, dest) glm_mat3_copy(mat, dest)
@@ -60,7 +66,17 @@
CGLM_INLINE
void
glm_mat3_copy(mat3 mat, mat3 dest) {
glm__memcpy(float, dest, mat, sizeof(mat3));
dest[0][0] = mat[0][0];
dest[0][1] = mat[0][1];
dest[0][2] = mat[0][2];
dest[1][0] = mat[1][0];
dest[1][1] = mat[1][1];
dest[1][2] = mat[1][2];
dest[2][0] = mat[2][0];
dest[2][1] = mat[2][1];
dest[2][2] = mat[2][2];
}
/*!
@@ -80,7 +96,38 @@ glm_mat3_copy(mat3 mat, mat3 dest) {
CGLM_INLINE
void
glm_mat3_identity(mat3 mat) {
mat3 t = GLM_MAT3_IDENTITY_INIT;
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_IDENTITY_INIT;
glm_mat3_copy(t, mat);
}
/*!
* @brief make given matrix array's each element identity matrix
*
* @param[in, out] mat matrix array (must be aligned (16/32)
* if alignment is not disabled)
*
* @param[in] count count of matrices
*/
CGLM_INLINE
void
glm_mat3_identity_array(mat3 * __restrict mat, size_t count) {
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_IDENTITY_INIT;
size_t i;
for (i = 0; i < count; i++) {
glm_mat3_copy(t, mat[i]);
}
}
/*!
* @brief make given matrix zero.
*
* @param[in, out] mat matrix
*/
CGLM_INLINE
void
glm_mat3_zero(mat3 mat) {
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_ZERO_INIT;
glm_mat3_copy(t, mat);
}
@@ -154,7 +201,7 @@ glm_mat3_transpose_to(mat3 m, mat3 dest) {
CGLM_INLINE
void
glm_mat3_transpose(mat3 m) {
mat3 tmp;
CGLM_ALIGN_MAT mat3 tmp;
tmp[0][1] = m[1][0];
tmp[0][2] = m[2][0];
@@ -186,6 +233,68 @@ glm_mat3_mulv(mat3 m, vec3 v, vec3 dest) {
dest[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2];
}
/*!
* @brief trace of matrix
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
CGLM_INLINE
float
glm_mat3_trace(mat3 m) {
return m[0][0] + m[1][1] + m[2][2];
}
/*!
* @brief convert mat3 to quaternion
*
* @param[in] m rotation matrix
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_mat3_quat(mat3 m, versor dest) {
float trace, r, rinv;
/* it seems using like m12 instead of m[1][2] causes extra instructions */
trace = m[0][0] + m[1][1] + m[2][2];
if (trace >= 0.0f) {
r = sqrtf(1.0f + trace);
rinv = 0.5f / r;
dest[0] = rinv * (m[1][2] - m[2][1]);
dest[1] = rinv * (m[2][0] - m[0][2]);
dest[2] = rinv * (m[0][1] - m[1][0]);
dest[3] = r * 0.5f;
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
rinv = 0.5f / r;
dest[0] = r * 0.5f;
dest[1] = rinv * (m[0][1] + m[1][0]);
dest[2] = rinv * (m[0][2] + m[2][0]);
dest[3] = rinv * (m[1][2] - m[2][1]);
} else if (m[1][1] >= m[2][2]) {
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][1] + m[1][0]);
dest[1] = r * 0.5f;
dest[2] = rinv * (m[1][2] + m[2][1]);
dest[3] = rinv * (m[2][0] - m[0][2]);
} else {
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][2] + m[2][0]);
dest[1] = rinv * (m[1][2] + m[2][1]);
dest[2] = r * 0.5f;
dest[3] = rinv * (m[0][1] - m[1][0]);
}
}
/*!
* @brief scale (multiply with scalar) matrix
*
@@ -259,9 +368,9 @@ CGLM_INLINE
void
glm_mat3_swap_col(mat3 mat, int col1, int col2) {
vec3 tmp;
glm_vec_copy(mat[col1], tmp);
glm_vec_copy(mat[col2], mat[col1]);
glm_vec_copy(tmp, mat[col2]);
glm_vec3_copy(mat[col1], tmp);
glm_vec3_copy(mat[col2], mat[col1]);
glm_vec3_copy(tmp, mat[col2]);
}
/*!
@@ -288,4 +397,26 @@ glm_mat3_swap_row(mat3 mat, int row1, int row2) {
mat[2][row2] = tmp[2];
}
/*!
* @brief helper for R (row vector) * M (matrix) * C (column vector)
*
* rmc stands for Row * Matrix * Column
*
* the result is scalar because R * M = Matrix1x3 (row vector),
* then Matrix1x3 * Vec3 (column vector) = Matrix1x1 (Scalar)
*
* @param[in] r row vector or matrix1x3
* @param[in] m matrix3x3
* @param[in] c column vector or matrix3x1
*
* @return scalar value e.g. Matrix1x1
*/
CGLM_INLINE
float
glm_mat3_rmc(vec3 r, mat3 m, vec3 c) {
vec3 tmp;
glm_mat3_mulv(m, c, tmp);
return glm_vec3_dot(r, tmp);
}
#endif /* cglm_mat3_h */

View File

@@ -16,13 +16,13 @@
GLM_MAT4_ZERO_INIT
GLM_MAT4_IDENTITY
GLM_MAT4_ZERO
glm_mat4_udup(mat, dest)
glm_mat4_dup(mat, dest)
Functions:
CGLM_INLINE void glm_mat4_ucopy(mat4 mat, mat4 dest);
CGLM_INLINE void glm_mat4_copy(mat4 mat, mat4 dest);
CGLM_INLINE void glm_mat4_identity(mat4 mat);
CGLM_INLINE void glm_mat4_identity_array(mat4 * restrict mat, size_t count);
CGLM_INLINE void glm_mat4_zero(mat4 mat);
CGLM_INLINE void glm_mat4_pick3(mat4 mat, mat3 dest);
CGLM_INLINE void glm_mat4_pick3t(mat4 mat, mat3 dest);
CGLM_INLINE void glm_mat4_ins3(mat3 mat, mat4 dest);
@@ -30,6 +30,9 @@
CGLM_INLINE void glm_mat4_mulN(mat4 *matrices[], int len, mat4 dest);
CGLM_INLINE void glm_mat4_mulv(mat4 m, vec4 v, vec4 dest);
CGLM_INLINE void glm_mat4_mulv3(mat4 m, vec3 v, vec3 dest);
CGLM_INLINE float glm_mat4_trace(mat4 m);
CGLM_INLINE float glm_mat4_trace3(mat4 m);
CGLM_INLINE void glm_mat4_quat(mat4 m, versor dest) ;
CGLM_INLINE void glm_mat4_transpose_to(mat4 m, mat4 dest);
CGLM_INLINE void glm_mat4_transpose(mat4 m);
CGLM_INLINE void glm_mat4_scale_p(mat4 m, float s);
@@ -39,12 +42,15 @@
CGLM_INLINE void glm_mat4_inv_fast(mat4 mat, mat4 dest);
CGLM_INLINE void glm_mat4_swap_col(mat4 mat, int col1, int col2);
CGLM_INLINE void glm_mat4_swap_row(mat4 mat, int row1, int row2);
CGLM_INLINE float glm_mat4_rmc(vec4 r, mat4 m, vec4 c);
*/
#ifndef cglm_mat_h
#define cglm_mat_h
#include "common.h"
#include "vec4.h"
#include "vec3.h"
#ifdef CGLM_SSE_FP
# include "simd/sse2/mat4.h"
@@ -58,7 +64,9 @@
# include "simd/neon/mat4.h"
#endif
#include <assert.h>
#ifdef DEBUG
# include <assert.h>
#endif
#define GLM_MAT4_IDENTITY_INIT {{1.0f, 0.0f, 0.0f, 0.0f}, \
{0.0f, 1.0f, 0.0f, 0.0f}, \
@@ -71,8 +79,8 @@
{0.0f, 0.0f, 0.0f, 0.0f}}
/* for C only */
#define GLM_MAT4_IDENTITY (mat4)GLM_MAT4_IDENTITY_INIT
#define GLM_MAT4_ZERO (mat4)GLM_MAT4_ZERO_INIT
#define GLM_MAT4_IDENTITY ((mat4)GLM_MAT4_IDENTITY_INIT)
#define GLM_MAT4_ZERO ((mat4)GLM_MAT4_ZERO_INIT)
/* DEPRECATED! use _copy, _ucopy versions */
#define glm_mat4_udup(mat, dest) glm_mat4_ucopy(mat, dest)
@@ -93,7 +101,15 @@
CGLM_INLINE
void
glm_mat4_ucopy(mat4 mat, mat4 dest) {
glm__memcpy(float, dest, mat, sizeof(mat4));
dest[0][0] = mat[0][0]; dest[1][0] = mat[1][0];
dest[0][1] = mat[0][1]; dest[1][1] = mat[1][1];
dest[0][2] = mat[0][2]; dest[1][2] = mat[1][2];
dest[0][3] = mat[0][3]; dest[1][3] = mat[1][3];
dest[2][0] = mat[2][0]; dest[3][0] = mat[3][0];
dest[2][1] = mat[2][1]; dest[3][1] = mat[3][1];
dest[2][2] = mat[2][2]; dest[3][2] = mat[3][2];
dest[2][3] = mat[2][3]; dest[3][3] = mat[3][3];
}
/*!
@@ -106,13 +122,18 @@ CGLM_INLINE
void
glm_mat4_copy(mat4 mat, mat4 dest) {
#ifdef __AVX__
_mm256_store_ps(dest[0], _mm256_load_ps(mat[0]));
_mm256_store_ps(dest[2], _mm256_load_ps(mat[2]));
glmm_store256(dest[0], glmm_load256(mat[0]));
glmm_store256(dest[2], glmm_load256(mat[2]));
#elif defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest[0], _mm_load_ps(mat[0]));
_mm_store_ps(dest[1], _mm_load_ps(mat[1]));
_mm_store_ps(dest[2], _mm_load_ps(mat[2]));
_mm_store_ps(dest[3], _mm_load_ps(mat[3]));
glmm_store(dest[0], glmm_load(mat[0]));
glmm_store(dest[1], glmm_load(mat[1]));
glmm_store(dest[2], glmm_load(mat[2]));
glmm_store(dest[3], glmm_load(mat[3]));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest[0], vld1q_f32(mat[0]));
vst1q_f32(dest[1], vld1q_f32(mat[1]));
vst1q_f32(dest[2], vld1q_f32(mat[2]));
vst1q_f32(dest[3], vld1q_f32(mat[3]));
#else
glm_mat4_ucopy(mat, dest);
#endif
@@ -135,7 +156,38 @@ glm_mat4_copy(mat4 mat, mat4 dest) {
CGLM_INLINE
void
glm_mat4_identity(mat4 mat) {
mat4 t = GLM_MAT4_IDENTITY_INIT;
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
glm_mat4_copy(t, mat);
}
/*!
* @brief make given matrix array's each element identity matrix
*
* @param[in, out] mat matrix array (must be aligned (16/32)
* if alignment is not disabled)
*
* @param[in] count count of matrices
*/
CGLM_INLINE
void
glm_mat4_identity_array(mat4 * __restrict mat, size_t count) {
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
size_t i;
for (i = 0; i < count; i++) {
glm_mat4_copy(t, mat[i]);
}
}
/*!
* @brief make given matrix zero.
*
* @param[in, out] mat matrix
*/
CGLM_INLINE
void
glm_mat4_zero(mat4 mat) {
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_ZERO_INIT;
glm_mat4_copy(t, mat);
}
@@ -228,7 +280,7 @@ glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest) {
glm_mat4_mul_avx(m1, m2, dest);
#elif defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_mul_sse2(m1, m2, dest);
#elif defined( __ARM_NEON_FP )
#elif defined(CGLM_NEON_FP)
glm_mat4_mul_neon(m1, m2, dest);
#else
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
@@ -281,19 +333,17 @@ glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest) {
*/
CGLM_INLINE
void
glm_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest) {
int i;
glm_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest) {
uint32_t i;
#ifdef DEBUG
assert(len > 1 && "there must be least 2 matrices to go!");
#endif
glm_mat4_mul(*matrices[0],
*matrices[1],
dest);
glm_mat4_mul(*matrices[0], *matrices[1], dest);
for (i = 2; i < len; i++)
glm_mat4_mul(dest,
*matrices[i],
dest);
glm_mat4_mul(dest, *matrices[i], dest);
}
/*!
@@ -319,20 +369,95 @@ glm_mat4_mulv(mat4 m, vec4 v, vec4 dest) {
}
/*!
* @brief multiply vector with mat4's mat3 part(rotation)
* @brief trace of matrix
*
* @param[in] m mat4(affine transform)
* @param[in] v vec3
* @param[out] dest vec3
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
CGLM_INLINE
float
glm_mat4_trace(mat4 m) {
return m[0][0] + m[1][1] + m[2][2] + m[3][3];
}
/*!
* @brief trace of matrix (rotation part)
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
CGLM_INLINE
float
glm_mat4_trace3(mat4 m) {
return m[0][0] + m[1][1] + m[2][2];
}
/*!
* @brief convert mat4's rotation part to quaternion
*
* @param[in] m affine matrix
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_mat4_mulv3(mat4 m, vec3 v, vec3 dest) {
vec3 res;
res[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2];
res[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2];
res[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2];
glm_vec_copy(res, dest);
glm_mat4_quat(mat4 m, versor dest) {
float trace, r, rinv;
/* it seems using like m12 instead of m[1][2] causes extra instructions */
trace = m[0][0] + m[1][1] + m[2][2];
if (trace >= 0.0f) {
r = sqrtf(1.0f + trace);
rinv = 0.5f / r;
dest[0] = rinv * (m[1][2] - m[2][1]);
dest[1] = rinv * (m[2][0] - m[0][2]);
dest[2] = rinv * (m[0][1] - m[1][0]);
dest[3] = r * 0.5f;
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
rinv = 0.5f / r;
dest[0] = r * 0.5f;
dest[1] = rinv * (m[0][1] + m[1][0]);
dest[2] = rinv * (m[0][2] + m[2][0]);
dest[3] = rinv * (m[1][2] - m[2][1]);
} else if (m[1][1] >= m[2][2]) {
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][1] + m[1][0]);
dest[1] = r * 0.5f;
dest[2] = rinv * (m[1][2] + m[2][1]);
dest[3] = rinv * (m[2][0] - m[0][2]);
} else {
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
rinv = 0.5f / r;
dest[0] = rinv * (m[0][2] + m[2][0]);
dest[1] = rinv * (m[1][2] + m[2][1]);
dest[2] = r * 0.5f;
dest[3] = rinv * (m[0][1] - m[1][0]);
}
}
/*!
* @brief multiply vector with mat4
*
* @param[in] m mat4(affine transform)
* @param[in] v vec3
* @param[in] last 4th item to make it vec4
* @param[out] dest result vector (vec3)
*/
CGLM_INLINE
void
glm_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest) {
vec4 res;
glm_vec4(v, last, res);
glm_mat4_mulv(m, res, res);
glm_vec3(res, dest);
}
/*!
@@ -372,10 +497,8 @@ glm_mat4_transpose(mat4 m) {
glm_mat4_transp_sse2(m, m);
#else
mat4 d;
glm_mat4_transpose_to(m, d);
glm__memcpy(float, m, d, sizeof(mat4));
glm_mat4_ucopy(d, m);
#endif
}
@@ -409,6 +532,13 @@ void
glm_mat4_scale(mat4 m, float s) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_mat4_scale_sse2(m, s);
#elif defined(CGLM_NEON_FP)
float32x4_t v0;
v0 = vdupq_n_f32(s);
vst1q_f32(m[0], vmulq_f32(vld1q_f32(m[0]), v0));
vst1q_f32(m[1], vmulq_f32(vld1q_f32(m[1]), v0));
vst1q_f32(m[2], vmulq_f32(vld1q_f32(m[2]), v0));
vst1q_f32(m[3], vmulq_f32(vld1q_f32(m[3]), v0));
#else
glm_mat4_scale_p(m, s);
#endif
@@ -535,7 +665,7 @@ glm_mat4_inv_fast(mat4 mat, mat4 dest) {
CGLM_INLINE
void
glm_mat4_swap_col(mat4 mat, int col1, int col2) {
vec4 tmp;
CGLM_ALIGN(16) vec4 tmp;
glm_vec4_copy(mat[col1], tmp);
glm_vec4_copy(mat[col2], mat[col1]);
glm_vec4_copy(tmp, mat[col2]);
@@ -551,7 +681,7 @@ glm_mat4_swap_col(mat4 mat, int col1, int col2) {
CGLM_INLINE
void
glm_mat4_swap_row(mat4 mat, int row1, int row2) {
vec4 tmp;
CGLM_ALIGN(16) vec4 tmp;
tmp[0] = mat[0][row1];
tmp[1] = mat[1][row1];
tmp[2] = mat[2][row1];
@@ -568,5 +698,26 @@ glm_mat4_swap_row(mat4 mat, int row1, int row2) {
mat[3][row2] = tmp[3];
}
#else
/*!
* @brief helper for R (row vector) * M (matrix) * C (column vector)
*
* rmc stands for Row * Matrix * Column
*
* the result is scalar because R * M = Matrix1x4 (row vector),
* then Matrix1x4 * Vec4 (column vector) = Matrix1x1 (Scalar)
*
* @param[in] r row vector or matrix1x4
* @param[in] m matrix4x4
* @param[in] c column vector or matrix4x1
*
* @return scalar value e.g. B(s)
*/
CGLM_INLINE
float
glm_mat4_rmc(vec4 r, mat4 m, vec4 c) {
vec4 tmp;
glm_mat4_mulv(m, c, tmp);
return glm_vec4_dot(r, tmp);
}
#endif /* cglm_mat_h */

View File

@@ -9,9 +9,7 @@
#define cglm_plane_h
#include "common.h"
#include "mat4.h"
#include "vec4.h"
#include "vec3.h"
/*
Plane equation: Ax + By + Cz + D = 0;
@@ -27,12 +25,12 @@
/*!
* @brief normalizes a plane
*
* @param[in, out] plane pnale to normalize
* @param[in, out] plane plane to normalize
*/
CGLM_INLINE
void
glm_plane_normalize(vec4 plane) {
glm_vec4_scale(plane, 1.0f / glm_vec_norm(plane), plane);
glm_vec4_scale(plane, 1.0f / glm_vec3_norm(plane), plane);
}
#endif /* cglm_plane_h */

118
include/cglm/project.h Normal file
View File

@@ -0,0 +1,118 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_project_h
#define cglm_project_h
#include "common.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* if you don't have ( and don't want to have ) an inverse matrix then use
* glm_unproject version. You may use existing inverse of matrix in somewhere
* else, this is why glm_unprojecti exists to save save inversion cost
*
* [1] space:
* 1- if m = invProj: View Space
* 2- if m = invViewProj: World Space
* 3- if m = invMVP: Object Space
*
* You probably want to map the coordinates into object space
* so use invMVP as m
*
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
* glm_mat4_inv(viewProj, invMVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] invMat matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
CGLM_INLINE
void
glm_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
vec4 v;
v[0] = 2.0f * (pos[0] - vp[0]) / vp[2] - 1.0f;
v[1] = 2.0f * (pos[1] - vp[1]) / vp[3] - 1.0f;
v[2] = 2.0f * pos[2] - 1.0f;
v[3] = 1.0f;
glm_mat4_mulv(invMat, v, v);
glm_vec4_scale(v, 1.0f / v[3], v);
glm_vec3(v, dest);
}
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* this is same as glm_unprojecti except this function get inverse matrix for
* you.
*
* [1] space:
* 1- if m = proj: View Space
* 2- if m = viewProj: World Space
* 3- if m = MVP: Object Space
*
* You probably want to map the coordinates into object space
* so use MVP as m
*
* Computing viewProj and MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] m matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest unprojected coordinates
*/
CGLM_INLINE
void
glm_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
mat4 inv;
glm_mat4_inv(m, inv);
glm_unprojecti(pos, inv, vp, dest);
}
/*!
* @brief map object coordinates to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos object coordinates
* @param[in] m MVP matrix
* @param[in] vp viewport as [x, y, width, height]
* @param[out] dest projected coordinates
*/
CGLM_INLINE
void
glm_project(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
CGLM_ALIGN(16) vec4 pos4, vone = GLM_VEC4_ONE_INIT;
glm_vec4(pos, 1.0f, pos4);
glm_mat4_mulv(m, pos4, pos4);
glm_vec4_scale(pos4, 1.0f / pos4[3], pos4); /* pos = pos / pos.w */
glm_vec4_add(pos4, vone, pos4);
glm_vec4_scale(pos4, 0.5f, pos4);
dest[0] = pos4[0] * vp[2] + vp[0];
dest[1] = pos4[1] * vp[3] + vp[1];
dest[2] = pos4[2];
}
#endif /* cglm_project_h */

View File

@@ -11,42 +11,85 @@
GLM_QUAT_IDENTITY
Functions:
CGLM_INLINE void glm_quat_identity(versor q);
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 v);
CGLM_INLINE void glm_quat_identity(versor q);
CGLM_INLINE void glm_quat_init(versor q, float x, float y, float z, float w);
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 axis);
CGLM_INLINE void glm_quat_copy(versor q, versor dest);
CGLM_INLINE float glm_quat_norm(versor q);
CGLM_INLINE void glm_quat_normalize(versor q);
CGLM_INLINE float glm_quat_dot(versor q, versor r);
CGLM_INLINE void glm_quat_mulv(versor q1, versor q2, versor dest);
CGLM_INLINE void glm_quat_mat4(versor q, mat4 dest);
CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest);
CGLM_INLINE void glm_quat_normalize(versor q);
CGLM_INLINE void glm_quat_normalize_to(versor q, versor dest);
CGLM_INLINE float glm_quat_dot(versor p, versor q);
CGLM_INLINE void glm_quat_conjugate(versor q, versor dest);
CGLM_INLINE void glm_quat_inv(versor q, versor dest);
CGLM_INLINE void glm_quat_add(versor p, versor q, versor dest);
CGLM_INLINE void glm_quat_sub(versor p, versor q, versor dest);
CGLM_INLINE float glm_quat_real(versor q);
CGLM_INLINE void glm_quat_imag(versor q, vec3 dest);
CGLM_INLINE void glm_quat_imagn(versor q, vec3 dest);
CGLM_INLINE float glm_quat_imaglen(versor q);
CGLM_INLINE float glm_quat_angle(versor q);
CGLM_INLINE void glm_quat_axis(versor q, vec3 dest);
CGLM_INLINE void glm_quat_mul(versor p, versor q, versor dest);
CGLM_INLINE void glm_quat_mat4(versor q, mat4 dest);
CGLM_INLINE void glm_quat_mat4t(versor q, mat4 dest);
CGLM_INLINE void glm_quat_mat3(versor q, mat3 dest);
CGLM_INLINE void glm_quat_mat3t(versor q, mat3 dest);
CGLM_INLINE void glm_quat_lerp(versor from, versor to, float t, versor dest);
CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest);
CGLM_INLINE void glm_quat_look(vec3 eye, versor ori, mat4 dest);
CGLM_INLINE void glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
CGLM_INLINE void glm_quat_forp(vec3 from,
vec3 to,
vec3 fwd,
vec3 up,
versor dest);
CGLM_INLINE void glm_quat_rotatev(versor q, vec3 v, vec3 dest);
CGLM_INLINE void glm_quat_rotate(mat4 m, versor q, mat4 dest);
*/
#ifndef cglm_quat_h
#define cglm_quat_h
#include "common.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
#include "mat3.h"
#include "affine-mat.h"
#ifdef CGLM_SSE_FP
# include "simd/sse2/quat.h"
#endif
CGLM_INLINE
void
glm_mat4_identity(mat4 mat);
CGLM_INLINE
void
glm_mat4_mulv(mat4 m, vec4 v, vec4 dest);
CGLM_INLINE
void
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest);
CGLM_INLINE
void
glm_translate(mat4 m, vec3 v);
/*
* IMPORTANT! cglm stores quat as [w, x, y, z]
* IMPORTANT:
* ----------------------------------------------------------------------------
* cglm stores quat as [x, y, z, w] since v0.3.6
*
* Possible changes (these may be changed in the future):
* - versor is identity quat, we can define new type for quat.
* it can't be quat or quaternion becuase someone can use that name for
* variable name. maybe just vec4.
* - it stores [w, x, y, z] but it may change to [x, y, z, w] if we get enough
* feedback to change it.
* - in general we use last param as dest, but this header used first param
* as dest this may be changed but decided yet
* it was [w, x, y, z] before v0.3.6 it has been changed to [x, y, z, w]
* with v0.3.6 version.
* ----------------------------------------------------------------------------
*/
#define GLM_QUAT_IDENTITY_INIT {1.0f, 0.0f, 0.0f, 0.0f}
#define GLM_QUAT_IDENTITY (versor)GLM_QUAT_IDENTITY_INIT
#define GLM_QUAT_IDENTITY_INIT {0.0f, 0.0f, 0.0f, 1.0f}
#define GLM_QUAT_IDENTITY ((versor)GLM_QUAT_IDENTITY_INIT)
/*!
* @brief makes given quat to identity
@@ -56,10 +99,72 @@
CGLM_INLINE
void
glm_quat_identity(versor q) {
versor v = GLM_QUAT_IDENTITY_INIT;
CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
glm_vec4_copy(v, q);
}
/*!
* @brief make given quaternion array's each element identity quaternion
*
* @param[in, out] q quat array (must be aligned (16)
* if alignment is not disabled)
*
* @param[in] count count of quaternions
*/
CGLM_INLINE
void
glm_quat_identity_array(versor * __restrict q, size_t count) {
CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
size_t i;
for (i = 0; i < count; i++) {
glm_vec4_copy(v, q[i]);
}
}
/*!
* @brief inits quaterion with raw values
*
* @param[out] q quaternion
* @param[in] x x
* @param[in] y y
* @param[in] z z
* @param[in] w w (real part)
*/
CGLM_INLINE
void
glm_quat_init(versor q, float x, float y, float z, float w) {
q[0] = x;
q[1] = y;
q[2] = z;
q[3] = w;
}
/*!
* @brief creates NEW quaternion with axis vector
*
* @param[out] q quaternion
* @param[in] angle angle (radians)
* @param[in] axis axis
*/
CGLM_INLINE
void
glm_quatv(versor q, float angle, vec3 axis) {
CGLM_ALIGN(8) vec3 k;
float a, c, s;
a = angle * 0.5f;
c = cosf(a);
s = sinf(a);
glm_normalize_to(axis, k);
q[0] = s * k[0];
q[1] = s * k[1];
q[2] = s * k[2];
q[3] = c;
}
/*!
* @brief creates NEW quaternion with individual axis components
*
@@ -71,45 +176,21 @@ glm_quat_identity(versor q) {
*/
CGLM_INLINE
void
glm_quat(versor q,
float angle,
float x,
float y,
float z) {
float a, c, s;
a = angle * 0.5f;
c = cosf(a);
s = sinf(a);
q[0] = c;
q[1] = s * x;
q[2] = s * y;
q[3] = s * z;
glm_quat(versor q, float angle, float x, float y, float z) {
CGLM_ALIGN(8) vec3 axis = {x, y, z};
glm_quatv(q, angle, axis);
}
/*!
* @brief creates NEW quaternion with axis vector
* @brief copy quaternion to another one
*
* @param[out] q quaternion
* @param[in] angle angle (radians)
* @param[in] v axis
* @param[in] q quaternion
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_quatv(versor q,
float angle,
vec3 v) {
float a, c, s;
a = angle * 0.5f;
c = cosf(a);
s = sinf(a);
q[0] = c;
q[1] = s * v[0];
q[2] = s * v[1];
q[3] = s * v[2];
glm_quat_copy(versor q, versor dest) {
glm_vec4_copy(q, dest);
}
/*!
@@ -123,6 +204,43 @@ glm_quat_norm(versor q) {
return glm_vec4_norm(q);
}
/*!
* @brief normalize quaternion and store result in dest
*
* @param[in] q quaternion to normalze
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_quat_normalize_to(versor q, versor dest) {
#if defined( __SSE2__ ) || defined( __SSE2__ )
__m128 xdot, x0;
float dot;
x0 = glmm_load(q);
xdot = glmm_vdot(x0, x0);
dot = _mm_cvtss_f32(xdot);
if (dot <= 0.0f) {
glm_quat_identity(dest);
return;
}
glmm_store(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
#else
float dot;
dot = glm_vec4_norm2(q);
if (dot <= 0.0f) {
glm_quat_identity(dest);
return;
}
glm_vec4_scale(q, 1.0f / sqrtf(dot), dest);
#endif
}
/*!
* @brief normalize quaternion
*
@@ -131,45 +249,178 @@ glm_quat_norm(versor q) {
CGLM_INLINE
void
glm_quat_normalize(versor q) {
float sum;
sum = q[0] * q[0] + q[1] * q[1]
+ q[2] * q[2] + q[3] * q[3];
if (fabs(1.0f - sum) < 0.0001f)
return;
glm_vec4_scale(q, 1.0f / sqrtf(sum), q);
glm_quat_normalize_to(q, q);
}
/*!
* @brief dot product of two quaternion
*
* @param[in] q quaternion 1
* @param[in] r quaternion 2
* @param[in] p quaternion 1
* @param[in] q quaternion 2
*/
CGLM_INLINE
float
glm_quat_dot(versor q, versor r) {
return glm_vec4_dot(q, r);
glm_quat_dot(versor p, versor q) {
return glm_vec4_dot(p, q);
}
/*!
* @brief conjugate of quaternion
*
* @param[in] q quaternion
* @param[out] dest conjugate
*/
CGLM_INLINE
void
glm_quat_conjugate(versor q, versor dest) {
glm_vec4_negate_to(q, dest);
dest[3] = -dest[3];
}
/*!
* @brief inverse of non-zero quaternion
*
* @param[in] q quaternion
* @param[out] dest inverse quaternion
*/
CGLM_INLINE
void
glm_quat_inv(versor q, versor dest) {
CGLM_ALIGN(16) versor conj;
glm_quat_conjugate(q, conj);
glm_vec4_scale(conj, 1.0f / glm_vec4_norm2(q), dest);
}
/*!
* @brief add (componentwise) two quaternions and store result in dest
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_add(versor p, versor q, versor dest) {
glm_vec4_add(p, q, dest);
}
/*!
* @brief subtract (componentwise) two quaternions and store result in dest
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_sub(versor p, versor q, versor dest) {
glm_vec4_sub(p, q, dest);
}
/*!
* @brief returns real part of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
float
glm_quat_real(versor q) {
return q[3];
}
/*!
* @brief returns imaginary part of quaternion
*
* @param[in] q quaternion
* @param[out] dest imag
*/
CGLM_INLINE
void
glm_quat_imag(versor q, vec3 dest) {
dest[0] = q[0];
dest[1] = q[1];
dest[2] = q[2];
}
/*!
* @brief returns normalized imaginary part of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
void
glm_quat_imagn(versor q, vec3 dest) {
glm_normalize_to(q, dest);
}
/*!
* @brief returns length of imaginary part of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
float
glm_quat_imaglen(versor q) {
return glm_vec3_norm(q);
}
/*!
* @brief returns angle of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
float
glm_quat_angle(versor q) {
/*
sin(theta / 2) = length(x*x + y*y + z*z)
cos(theta / 2) = w
theta = 2 * atan(sin(theta / 2) / cos(theta / 2))
*/
return 2.0f * atan2f(glm_quat_imaglen(q), glm_quat_real(q));
}
/*!
* @brief axis of quaternion
*
* @param[in] q quaternion
* @param[out] dest axis of quaternion
*/
CGLM_INLINE
void
glm_quat_axis(versor q, vec3 dest) {
glm_quat_imagn(q, dest);
}
/*!
* @brief multiplies two quaternion and stores result in dest
* this is also called Hamilton Product
*
* @param[in] q1 quaternion 1
* @param[in] q2 quaternion 2
* According to WikiPedia:
* The product of two rotation quaternions [clarification needed] will be
* equivalent to the rotation q followed by the rotation p
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_mulv(versor q1, versor q2, versor dest) {
dest[0] = q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2] - q2[3] * q1[3];
dest[1] = q2[0] * q1[1] + q2[1] * q1[0] - q2[2] * q1[3] + q2[3] * q1[2];
dest[2] = q2[0] * q1[2] + q2[1] * q1[3] + q2[2] * q1[0] - q2[3] * q1[1];
dest[3] = q2[0] * q1[3] - q2[1] * q1[2] + q2[2] * q1[1] + q2[3] * q1[0];
glm_quat_normalize(dest);
glm_quat_mul(versor p, versor q, versor dest) {
/*
+ (a1 b2 + b1 a2 + c1 d2 d1 c2)i
+ (a1 c2 b1 d2 + c1 a2 + d1 b2)j
+ (a1 d2 + b1 c2 c1 b2 + d1 a2)k
a1 a2 b1 b2 c1 c2 d1 d2
*/
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_quat_mul_sse2(p, q, dest);
#else
dest[0] = p[3] * q[0] + p[0] * q[3] + p[1] * q[2] - p[2] * q[1];
dest[1] = p[3] * q[1] - p[0] * q[2] + p[1] * q[3] + p[2] * q[0];
dest[2] = p[3] * q[2] + p[0] * q[1] - p[1] * q[0] + p[2] * q[3];
dest[3] = p[3] * q[3] - p[0] * q[0] - p[1] * q[1] - p[2] * q[2];
#endif
}
/*!
@@ -181,19 +432,22 @@ glm_quat_mulv(versor q1, versor q2, versor dest) {
CGLM_INLINE
void
glm_quat_mat4(versor q, mat4 dest) {
float w, x, y, z;
float xx, yy, zz;
float xy, yz, xz;
float wx, wy, wz;
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
w = q[0];
x = q[1];
y = q[2];
z = q[3];
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
xx = 2.0f * x * x; xy = 2.0f * x * y; wx = 2.0f * w * x;
yy = 2.0f * y * y; yz = 2.0f * y * z; wy = 2.0f * w * y;
zz = 2.0f * z * z; xz = 2.0f * x * z; wz = 2.0f * w * z;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
@@ -207,8 +461,8 @@ glm_quat_mat4(versor q, mat4 dest) {
dest[2][1] = yz - wx;
dest[0][2] = xz - wy;
dest[1][3] = 0.0f;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
@@ -216,69 +470,343 @@ glm_quat_mat4(versor q, mat4 dest) {
dest[3][3] = 1.0f;
}
/*!
* @brief convert quaternion to mat4 (transposed)
*
* @param[in] q quaternion
* @param[out] dest result matrix as transposed
*/
CGLM_INLINE
void
glm_quat_mat4t(versor q, mat4 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[1][0] = xy + wz;
dest[2][1] = yz + wx;
dest[0][2] = xz + wy;
dest[0][1] = xy - wz;
dest[1][2] = yz - wx;
dest[2][0] = xz - wy;
dest[0][3] = 0.0f;
dest[1][3] = 0.0f;
dest[2][3] = 0.0f;
dest[3][0] = 0.0f;
dest[3][1] = 0.0f;
dest[3][2] = 0.0f;
dest[3][3] = 1.0f;
}
/*!
* @brief convert quaternion to mat3
*
* @param[in] q quaternion
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_quat_mat3(versor q, mat3 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[0][1] = xy + wz;
dest[1][2] = yz + wx;
dest[2][0] = xz + wy;
dest[1][0] = xy - wz;
dest[2][1] = yz - wx;
dest[0][2] = xz - wy;
}
/*!
* @brief convert quaternion to mat3 (transposed)
*
* @param[in] q quaternion
* @param[out] dest result matrix
*/
CGLM_INLINE
void
glm_quat_mat3t(versor q, mat3 dest) {
float w, x, y, z,
xx, yy, zz,
xy, yz, xz,
wx, wy, wz, norm, s;
norm = glm_quat_norm(q);
s = norm > 0.0f ? 2.0f / norm : 0.0f;
x = q[0];
y = q[1];
z = q[2];
w = q[3];
xx = s * x * x; xy = s * x * y; wx = s * w * x;
yy = s * y * y; yz = s * y * z; wy = s * w * y;
zz = s * z * z; xz = s * x * z; wz = s * w * z;
dest[0][0] = 1.0f - yy - zz;
dest[1][1] = 1.0f - xx - zz;
dest[2][2] = 1.0f - xx - yy;
dest[1][0] = xy + wz;
dest[2][1] = yz + wx;
dest[0][2] = xz + wy;
dest[0][1] = xy - wz;
dest[1][2] = yz - wx;
dest[2][0] = xz - wy;
}
/*!
* @brief interpolates between two quaternions
* using linear interpolation (LERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_lerp(versor from, versor to, float t, versor dest) {
glm_vec4_lerp(from, to, t, dest);
}
/*!
* @brief interpolates between two quaternions
* using spherical linear interpolation (SLERP)
*
* @param[in] q from
* @param[in] r to
* @param[in] from from
* @param[in] to to
* @param[in] t amout
* @param[out] dest result quaternion
*/
CGLM_INLINE
void
glm_quat_slerp(versor q,
versor r,
float t,
versor dest) {
/* https://en.wikipedia.org/wiki/Slerp */
#if defined( __SSE__ ) || defined( __SSE2__ )
glm_quat_slerp_sse2(q, r, t, dest);
#else
float cosTheta, sinTheta, angle, a, b, c;
glm_quat_slerp(versor from, versor to, float t, versor dest) {
CGLM_ALIGN(16) vec4 q1, q2;
float cosTheta, sinTheta, angle;
cosTheta = glm_quat_dot(q, r);
if (cosTheta < 0.0f) {
q[0] *= -1.0f;
q[1] *= -1.0f;
q[2] *= -1.0f;
q[3] *= -1.0f;
cosTheta = glm_quat_dot(from, to);
glm_quat_copy(from, q1);
cosTheta = -cosTheta;
}
if (fabs(cosTheta) >= 1.0f) {
dest[0] = q[0];
dest[1] = q[1];
dest[2] = q[2];
dest[3] = q[3];
if (fabsf(cosTheta) >= 1.0f) {
glm_quat_copy(q1, dest);
return;
}
sinTheta = sqrt(1.0f - cosTheta * cosTheta);
if (cosTheta < 0.0f) {
glm_vec4_negate(q1);
cosTheta = -cosTheta;
}
c = 1.0f - t;
sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
/* LERP */
/* TODO: FLT_EPSILON vs 0.001? */
if (sinTheta < 0.001f) {
dest[0] = c * q[0] + t * r[0];
dest[1] = c * q[1] + t * r[1];
dest[2] = c * q[2] + t * r[2];
dest[3] = c * q[3] + t * r[3];
/* LERP to avoid zero division */
if (fabsf(sinTheta) < 0.001f) {
glm_quat_lerp(from, to, t, dest);
return;
}
/* SLERP */
angle = acosf(cosTheta);
a = sinf(c * angle);
b = sinf(t * angle);
glm_vec4_scale(q1, sinf((1.0f - t) * angle), q1);
glm_vec4_scale(to, sinf(t * angle), q2);
dest[0] = (q[0] * a + r[0] * b) / sinTheta;
dest[1] = (q[1] * a + r[1] * b) / sinTheta;
dest[2] = (q[2] * a + r[2] * b) / sinTheta;
dest[3] = (q[3] * a + r[3] * b) / sinTheta;
#endif
glm_vec4_add(q1, q2, q1);
glm_vec4_scale(q1, 1.0f / sinTheta, dest);
}
/*!
* @brief creates view matrix using quaternion as camera orientation
*
* @param[in] eye eye
* @param[in] ori orientation in world space as quaternion
* @param[out] dest view matrix
*/
CGLM_INLINE
void
glm_quat_look(vec3 eye, versor ori, mat4 dest) {
/* orientation */
glm_quat_mat4t(ori, dest);
/* translate */
glm_mat4_mulv3(dest, eye, 1.0f, dest[3]);
glm_vec3_negate(dest[3]);
}
/*!
* @brief creates look rotation quaternion
*
* @param[in] dir direction to look
* @param[in] fwd forward vector
* @param[in] up up vector
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest) {
CGLM_ALIGN(8) vec3 axis;
float dot, angle;
dot = glm_vec3_dot(dir, fwd);
if (fabsf(dot + 1.0f) < 0.000001f) {
glm_quat_init(dest, up[0], up[1], up[2], GLM_PIf);
return;
}
if (fabsf(dot - 1.0f) < 0.000001f) {
glm_quat_identity(dest);
return;
}
angle = acosf(dot);
glm_cross(fwd, dir, axis);
glm_normalize(axis);
glm_quatv(dest, angle, axis);
}
/*!
* @brief creates look rotation quaternion using source and
* destination positions p suffix stands for position
*
* @param[in] from source point
* @param[in] to destination point
* @param[in] fwd forward vector
* @param[in] up up vector
* @param[out] dest destination quaternion
*/
CGLM_INLINE
void
glm_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest) {
CGLM_ALIGN(8) vec3 dir;
glm_vec3_sub(to, from, dir);
glm_quat_for(dir, fwd, up, dest);
}
/*!
* @brief rotate vector using using quaternion
*
* @param[in] q quaternion
* @param[in] v vector to rotate
* @param[out] dest rotated vector
*/
CGLM_INLINE
void
glm_quat_rotatev(versor q, vec3 v, vec3 dest) {
CGLM_ALIGN(16) versor p;
CGLM_ALIGN(8) vec3 u, v1, v2;
float s;
glm_quat_normalize_to(q, p);
glm_quat_imag(p, u);
s = glm_quat_real(p);
glm_vec3_scale(u, 2.0f * glm_vec3_dot(u, v), v1);
glm_vec3_scale(v, s * s - glm_vec3_dot(u, u), v2);
glm_vec3_add(v1, v2, v1);
glm_vec3_cross(u, v, v2);
glm_vec3_scale(v2, 2.0f * s, v2);
glm_vec3_add(v1, v2, dest);
}
/*!
* @brief rotate existing transform matrix using quaternion
*
* @param[in] m existing transform matrix
* @param[in] q quaternion
* @param[out] dest rotated matrix/transform
*/
CGLM_INLINE
void
glm_quat_rotate(mat4 m, versor q, mat4 dest) {
CGLM_ALIGN_MAT mat4 rot;
glm_quat_mat4(q, rot);
glm_mul_rot(m, rot, dest);
}
/*!
* @brief rotate existing transform matrix using quaternion at pivot point
*
* @param[in, out] m existing transform matrix
* @param[in] q quaternion
* @param[out] pivot pivot
*/
CGLM_INLINE
void
glm_quat_rotate_at(mat4 m, versor q, vec3 pivot) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translate(m, pivot);
glm_quat_rotate(m, q, m);
glm_translate(m, pivotInv);
}
/*!
* @brief rotate NEW transform matrix using quaternion at pivot point
*
* this creates rotation matrix, it assumes you don't have a matrix
*
* this should work faster than glm_quat_rotate_at because it reduces
* one glm_translate.
*
* @param[out] m existing transform matrix
* @param[in] q quaternion
* @param[in] pivot pivot
*/
CGLM_INLINE
void
glm_quat_rotate_atm(mat4 m, versor q, vec3 pivot) {
CGLM_ALIGN(8) vec3 pivotInv;
glm_vec3_negate_to(pivot, pivotInv);
glm_translate_make(m, pivot);
glm_quat_rotate(m, q, m);
glm_translate(m, pivotInv);
}
#endif /* cglm_quat_h */

41
include/cglm/simd/arm.h Normal file
View File

@@ -0,0 +1,41 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_simd_arm_h
#define cglm_simd_arm_h
#include "intrin.h"
#ifdef CGLM_SIMD_ARM
#define glmm_load(p) vld1q_f32(p)
#define glmm_store(p, a) vst1q_f32(p, a)
static inline
float
glmm_hadd(float32x4_t v) {
#if defined(__aarch64__)
return vaddvq_f32(v);
#else
v = vaddq_f32(v, vrev64q_f32(v));
v = vaddq_f32(v, vcombine_f32(vget_high_f32(v), vget_low_f32(v)));
return vgetq_lane_f32(v, 0);
#endif
}
static inline
float
glmm_dot(float32x4_t a, float32x4_t b) {
return glmm_hadd(vmulq_f32(a, b));
}
static inline
float
glmm_norm(float32x4_t a) {
return sqrtf(glmm_dot(a, a));
}
#endif
#endif /* cglm_simd_arm_h */

View File

@@ -21,27 +21,30 @@ glm_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
y0 = _mm256_load_ps(m2[0]); /* h g f e d c b a */
y1 = _mm256_load_ps(m2[2]); /* p o n m l k j i */
y0 = glmm_load256(m2[0]); /* h g f e d c b a */
y1 = glmm_load256(m2[2]); /* p o n m l k j i */
y2 = _mm256_load_ps(m1[0]); /* h g f e d c b a */
y3 = _mm256_load_ps(m1[2]); /* p o n m l k j i */
y2 = glmm_load256(m1[0]); /* h g f e d c b a */
y3 = glmm_load256(m1[2]); /* p o n m l k j i */
y4 = _mm256_permute2f128_ps(y2, y2, 0b00000011); /* d c b a h g f e */
y5 = _mm256_permute2f128_ps(y3, y3, 0b00000000); /* l k j i l k j i */
/* 0x03: 0b00000011 */
y4 = _mm256_permute2f128_ps(y2, y2, 0x03); /* d c b a h g f e */
y5 = _mm256_permute2f128_ps(y3, y3, 0x03); /* l k j i p o n m */
/* f f f f a a a a */
/* g g g g c c c c */
/* h h h h c c c c */
/* e e e e b b b b */
y7 = _mm256_permute_ps(y0, 0b10101010);
/* g g g g d d d d */
y6 = _mm256_permutevar_ps(y0, _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0));
y7 = _mm256_permutevar_ps(y0, _mm256_set_epi32(3, 3, 3, 3, 2, 2, 2, 2));
y8 = _mm256_permutevar_ps(y0, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
y9 = _mm256_permutevar_ps(y0, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
_mm256_store_ps(dest[0],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y4, y8)),
_mm256_mul_ps(y5, y7)));
glmm_store256(dest[0],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9))));
/* n n n n i i i i */
/* p p p p k k k k */
@@ -52,11 +55,11 @@ glm_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
y8 = _mm256_permutevar_ps(y1, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
y9 = _mm256_permutevar_ps(y1, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
_mm256_store_ps(dest[2],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9))));
glmm_store256(dest[2],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9))));
}
#endif

View File

@@ -21,14 +21,15 @@ glm_mat4_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
y0 = _mm256_load_ps(m2[0]); /* h g f e d c b a */
y1 = _mm256_load_ps(m2[2]); /* p o n m l k j i */
y0 = glmm_load256(m2[0]); /* h g f e d c b a */
y1 = glmm_load256(m2[2]); /* p o n m l k j i */
y2 = _mm256_load_ps(m1[0]); /* h g f e d c b a */
y3 = _mm256_load_ps(m1[2]); /* p o n m l k j i */
y2 = glmm_load256(m1[0]); /* h g f e d c b a */
y3 = glmm_load256(m1[2]); /* p o n m l k j i */
y4 = _mm256_permute2f128_ps(y2, y2, 0b00000011); /* d c b a h g f e */
y5 = _mm256_permute2f128_ps(y3, y3, 0b00000011); /* l k j i p o n m */
/* 0x03: 0b00000011 */
y4 = _mm256_permute2f128_ps(y2, y2, 0x03); /* d c b a h g f e */
y5 = _mm256_permute2f128_ps(y3, y3, 0x03); /* l k j i p o n m */
/* f f f f a a a a */
/* h h h h c c c c */
@@ -39,11 +40,11 @@ glm_mat4_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
y8 = _mm256_permutevar_ps(y0, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
y9 = _mm256_permutevar_ps(y0, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
_mm256_store_ps(dest[0],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9))));
glmm_store256(dest[0],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9))));
/* n n n n i i i i */
/* p p p p k k k k */
@@ -54,11 +55,11 @@ glm_mat4_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
y8 = _mm256_permutevar_ps(y1, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
y9 = _mm256_permutevar_ps(y1, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
_mm256_store_ps(dest[2],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9))));
glmm_store256(dest[2],
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
_mm256_mul_ps(y3, y7)),
_mm256_add_ps(_mm256_mul_ps(y4, y8),
_mm256_mul_ps(y5, y9))));
}
#endif

View File

@@ -8,45 +8,83 @@
#ifndef cglm_intrin_h
#define cglm_intrin_h
#if defined( _WIN32 )
#if defined( _MSC_VER )
# if (defined(_M_AMD64) || defined(_M_X64)) || _M_IX86_FP == 2
# define __SSE2__
# ifndef __SSE2__
# define __SSE2__
# endif
# elif _M_IX86_FP == 1
# define __SSE__
# ifndef __SSE__
# define __SSE__
# endif
# endif
/* do not use alignment for older visual studio versions */
# if _MSC_VER < 1913 /* Visual Studio 2017 version 15.6 */
# define CGLM_ALL_UNALIGNED
# endif
#endif
#if defined( __SSE__ ) || defined( __SSE2__ )
# include <xmmintrin.h>
# include <emmintrin.h>
/* float */
# define _mm_shuffle1_ps(a, z, y, x, w) \
_mm_shuffle_ps(a, a, _MM_SHUFFLE(z, y, x, w))
# define _mm_shuffle1_ps1(a, x) \
_mm_shuffle_ps(a, a, _MM_SHUFFLE(x, x, x, x))
# define _mm_shuffle2_ps(a, b, z0, y0, x0, w0, z1, y1, x1, w1) \
_mm_shuffle1_ps(_mm_shuffle_ps(a, b, _MM_SHUFFLE(z0, y0, x0, w0)), \
z1, y1, x1, w1)
# define CGLM_SSE_FP 1
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif
#endif
/* x86, x64 */
#if defined( __SSE__ ) || defined( __SSE2__ )
# define CGLM_SSE_FP 1
#if defined(__SSE3__)
# include <x86intrin.h>
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif
#endif
#if defined(__SSE4_1__)
# include <smmintrin.h>
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif
#endif
#if defined(__SSE4_2__)
# include <nmmintrin.h>
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif
#endif
#ifdef __AVX__
# include <immintrin.h>
# define CGLM_AVX_FP 1
# ifndef CGLM_SIMD_x86
# define CGLM_SIMD_x86
# endif
#endif
/* ARM Neon */
#if defined(__ARM_NEON) && defined(__ARM_NEON_FP)
#if defined(__ARM_NEON)
# include <arm_neon.h>
# define CGLM_NEON_FP 1
#else
# undef CGLM_NEON_FP
# if defined(__ARM_NEON_FP)
# define CGLM_NEON_FP 1
# ifndef CGLM_SIMD_ARM
# define CGLM_SIMD_ARM
# endif
# endif
#endif
#if defined(CGLM_SIMD_x86) || defined(CGLM_NEON_FP)
# ifndef CGLM_SIMD
# define CGLM_SIMD
# endif
#endif
#if defined(CGLM_SIMD_x86)
# include "x86.h"
#endif
#if defined(CGLM_SIMD_ARM)
# include "arm.h"
#endif
#endif /* cglm_intrin_h */

View File

@@ -18,35 +18,67 @@ glm_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
__m128 l0, l1, l2, l3, r;
l0 = _mm_load_ps(m1[0]);
l1 = _mm_load_ps(m1[1]);
l2 = _mm_load_ps(m1[2]);
l3 = _mm_load_ps(m1[3]);
l0 = glmm_load(m1[0]);
l1 = glmm_load(m1[1]);
l2 = glmm_load(m1[2]);
l3 = glmm_load(m1[3]);
r = _mm_load_ps(m2[0]);
_mm_store_ps(dest[0],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2)));
r = glmm_load(m2[0]);
glmm_store(dest[0],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
r = _mm_load_ps(m2[1]);
_mm_store_ps(dest[1],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2)));
r = glmm_load(m2[1]);
glmm_store(dest[1],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
r = _mm_load_ps(m2[2]);
_mm_store_ps(dest[2],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2)));
r = glmm_load(m2[2]);
glmm_store(dest[2],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
r = _mm_load_ps(m2[3]);
_mm_store_ps(dest[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
r = glmm_load(m2[3]);
glmm_store(dest[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
}
CGLM_INLINE
void
glm_mul_rot_sse2(mat4 m1, mat4 m2, mat4 dest) {
/* D = R * L (Column-Major) */
__m128 l0, l1, l2, l3, r;
l0 = glmm_load(m1[0]);
l1 = glmm_load(m1[1]);
l2 = glmm_load(m1[2]);
l3 = glmm_load(m1[3]);
r = glmm_load(m2[0]);
glmm_store(dest[0],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
r = glmm_load(m2[1]);
glmm_store(dest[1],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
r = glmm_load(m2[2]);
glmm_store(dest[2],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
glmm_store(dest[3], l3);
}
CGLM_INLINE
@@ -54,25 +86,25 @@ void
glm_inv_tr_sse2(mat4 mat) {
__m128 r0, r1, r2, r3, x0, x1;
r0 = _mm_load_ps(mat[0]);
r1 = _mm_load_ps(mat[1]);
r2 = _mm_load_ps(mat[2]);
r3 = _mm_load_ps(mat[3]);
x1 = _mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f);
r0 = glmm_load(mat[0]);
r1 = glmm_load(mat[1]);
r2 = glmm_load(mat[2]);
r3 = glmm_load(mat[3]);
x1 = _mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f);
_MM_TRANSPOSE4_PS(r0, r1, r2, x1);
x0 = _mm_add_ps(_mm_mul_ps(r0, _mm_shuffle1_ps(r3, 0, 0, 0, 0)),
_mm_mul_ps(r1, _mm_shuffle1_ps(r3, 1, 1, 1, 1)));
x0 = _mm_add_ps(x0, _mm_mul_ps(r2, _mm_shuffle1_ps(r3, 2, 2, 2, 2)));
x0 = _mm_add_ps(_mm_mul_ps(r0, glmm_shuff1(r3, 0, 0, 0, 0)),
_mm_mul_ps(r1, glmm_shuff1(r3, 1, 1, 1, 1)));
x0 = _mm_add_ps(x0, _mm_mul_ps(r2, glmm_shuff1(r3, 2, 2, 2, 2)));
x0 = _mm_xor_ps(x0, _mm_set1_ps(-0.f));
x0 = _mm_add_ps(x0, x1);
_mm_store_ps(mat[0], r0);
_mm_store_ps(mat[1], r1);
_mm_store_ps(mat[2], r2);
_mm_store_ps(mat[3], x0);
glmm_store(mat[0], r0);
glmm_store(mat[1], r1);
glmm_store(mat[2], r2);
glmm_store(mat[3], x0);
}
#endif

View File

@@ -27,27 +27,25 @@ glm_mat3_mul_sse2(mat3 m1, mat3 m2, mat3 dest) {
r1 = _mm_loadu_ps(&m2[1][1]);
r2 = _mm_set1_ps(m2[2][2]);
x1 = _mm_shuffle2_ps(l0, l1, 1, 0, 3, 3, 0, 3, 2, 0);
x2 = _mm_shuffle2_ps(l1, l2, 0, 0, 3, 2, 0, 2, 1, 0);
x1 = glmm_shuff2(l0, l1, 1, 0, 3, 3, 0, 3, 2, 0);
x2 = glmm_shuff2(l1, l2, 0, 0, 3, 2, 0, 2, 1, 0);
x0 = _mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps(l0, 0, 2, 1, 0),
_mm_shuffle1_ps(r0, 3, 0, 0, 0)),
_mm_mul_ps(x1,
_mm_shuffle2_ps(r0, r1, 0, 0, 1, 1, 2, 0, 0, 0)));
x0 = _mm_add_ps(_mm_mul_ps(glmm_shuff1(l0, 0, 2, 1, 0),
glmm_shuff1(r0, 3, 0, 0, 0)),
_mm_mul_ps(x1, glmm_shuff2(r0, r1, 0, 0, 1, 1, 2, 0, 0, 0)));
x0 = _mm_add_ps(x0,
_mm_mul_ps(x2,
_mm_shuffle2_ps(r0, r1, 1, 1, 2, 2, 2, 0, 0, 0)));
_mm_mul_ps(x2, glmm_shuff2(r0, r1, 1, 1, 2, 2, 2, 0, 0, 0)));
_mm_storeu_ps(dest[0], x0);
x0 = _mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps(l0, 1, 0, 2, 1),
x0 = _mm_add_ps(_mm_mul_ps(glmm_shuff1(l0, 1, 0, 2, 1),
_mm_shuffle_ps(r0, r1, _MM_SHUFFLE(2, 2, 3, 3))),
_mm_mul_ps(_mm_shuffle1_ps(x1, 1, 0, 2, 1),
_mm_shuffle1_ps(r1, 3, 3, 0, 0)));
_mm_mul_ps(glmm_shuff1(x1, 1, 0, 2, 1),
glmm_shuff1(r1, 3, 3, 0, 0)));
x0 = _mm_add_ps(x0,
_mm_mul_ps(_mm_shuffle1_ps(x2, 1, 0, 2, 1),
_mm_mul_ps(glmm_shuff1(x2, 1, 0, 2, 1),
_mm_shuffle_ps(r1, r2, _MM_SHUFFLE(0, 0, 1, 1))));
_mm_storeu_ps(&dest[1][1], x0);

View File

@@ -16,32 +16,32 @@
CGLM_INLINE
void
glm_mat4_scale_sse2(mat4 m, float s){
glm_mat4_scale_sse2(mat4 m, float s) {
__m128 x0;
x0 = _mm_set1_ps(s);
_mm_store_ps(m[0], _mm_mul_ps(_mm_load_ps(m[0]), x0));
_mm_store_ps(m[1], _mm_mul_ps(_mm_load_ps(m[1]), x0));
_mm_store_ps(m[2], _mm_mul_ps(_mm_load_ps(m[2]), x0));
_mm_store_ps(m[3], _mm_mul_ps(_mm_load_ps(m[3]), x0));
glmm_store(m[0], _mm_mul_ps(glmm_load(m[0]), x0));
glmm_store(m[1], _mm_mul_ps(glmm_load(m[1]), x0));
glmm_store(m[2], _mm_mul_ps(glmm_load(m[2]), x0));
glmm_store(m[3], _mm_mul_ps(glmm_load(m[3]), x0));
}
CGLM_INLINE
void
glm_mat4_transp_sse2(mat4 m, mat4 dest){
glm_mat4_transp_sse2(mat4 m, mat4 dest) {
__m128 r0, r1, r2, r3;
r0 = _mm_load_ps(m[0]);
r1 = _mm_load_ps(m[1]);
r2 = _mm_load_ps(m[2]);
r3 = _mm_load_ps(m[3]);
r0 = glmm_load(m[0]);
r1 = glmm_load(m[1]);
r2 = glmm_load(m[2]);
r3 = glmm_load(m[3]);
_MM_TRANSPOSE4_PS(r0, r1, r2, r3);
_mm_store_ps(dest[0], r0);
_mm_store_ps(dest[1], r1);
_mm_store_ps(dest[2], r2);
_mm_store_ps(dest[3], r3);
glmm_store(dest[0], r0);
glmm_store(dest[1], r1);
glmm_store(dest[2], r2);
glmm_store(dest[3], r3);
}
CGLM_INLINE
@@ -51,36 +51,36 @@ glm_mat4_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
__m128 l0, l1, l2, l3, r;
l0 = _mm_load_ps(m1[0]);
l1 = _mm_load_ps(m1[1]);
l2 = _mm_load_ps(m1[2]);
l3 = _mm_load_ps(m1[3]);
l0 = glmm_load(m1[0]);
l1 = glmm_load(m1[1]);
l2 = glmm_load(m1[2]);
l3 = glmm_load(m1[3]);
r = _mm_load_ps(m2[0]);
_mm_store_ps(dest[0],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
r = _mm_load_ps(m2[1]);
_mm_store_ps(dest[1],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
r = _mm_load_ps(m2[2]);
_mm_store_ps(dest[2],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
r = glmm_load(m2[0]);
glmm_store(dest[0],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
r = glmm_load(m2[1]);
glmm_store(dest[1],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
r = glmm_load(m2[2]);
glmm_store(dest[2],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
r = _mm_load_ps(m2[3]);
_mm_store_ps(dest[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
r = glmm_load(m2[3]);
glmm_store(dest[3],
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
}
CGLM_INLINE
@@ -88,18 +88,14 @@ void
glm_mat4_mulv_sse2(mat4 m, vec4 v, vec4 dest) {
__m128 x0, x1, x2;
x0 = _mm_load_ps(v);
x1 = _mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]),
_mm_shuffle1_ps1(x0, 0)),
_mm_mul_ps(_mm_load_ps(m[1]),
_mm_shuffle1_ps1(x0, 1)));
x0 = glmm_load(v);
x1 = _mm_add_ps(_mm_mul_ps(glmm_load(m[0]), glmm_shuff1x(x0, 0)),
_mm_mul_ps(glmm_load(m[1]), glmm_shuff1x(x0, 1)));
x2 = _mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]),
_mm_shuffle1_ps1(x0, 2)),
_mm_mul_ps(_mm_load_ps(m[3]),
_mm_shuffle1_ps1(x0, 3)));
x2 = _mm_add_ps(_mm_mul_ps(glmm_load(m[2]), glmm_shuff1x(x0, 2)),
_mm_mul_ps(glmm_load(m[3]), glmm_shuff1x(x0, 3)));
_mm_store_ps(dest, _mm_add_ps(x1, x2));
glmm_store(dest, _mm_add_ps(x1, x2));
}
CGLM_INLINE
@@ -108,10 +104,10 @@ glm_mat4_det_sse2(mat4 mat) {
__m128 r0, r1, r2, r3, x0, x1, x2;
/* 127 <- 0, [square] det(A) = det(At) */
r0 = _mm_load_ps(mat[0]); /* d c b a */
r1 = _mm_load_ps(mat[1]); /* h g f e */
r2 = _mm_load_ps(mat[2]); /* l k j i */
r3 = _mm_load_ps(mat[3]); /* p o n m */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
/*
t[1] = j * p - n * l;
@@ -119,20 +115,20 @@ glm_mat4_det_sse2(mat4 mat) {
t[3] = i * p - m * l;
t[4] = i * o - m * k;
*/
x0 = _mm_sub_ps(_mm_mul_ps(_mm_shuffle1_ps(r2, 0, 0, 1, 1),
_mm_shuffle1_ps(r3, 2, 3, 2, 3)),
_mm_mul_ps(_mm_shuffle1_ps(r3, 0, 0, 1, 1),
_mm_shuffle1_ps(r2, 2, 3, 2, 3)));
x0 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r2, 0, 0, 1, 1),
glmm_shuff1(r3, 2, 3, 2, 3)),
_mm_mul_ps(glmm_shuff1(r3, 0, 0, 1, 1),
glmm_shuff1(r2, 2, 3, 2, 3)));
/*
t[0] = k * p - o * l;
t[0] = k * p - o * l;
t[5] = i * n - m * j;
t[5] = i * n - m * j;
*/
x1 = _mm_sub_ps(_mm_mul_ps(_mm_shuffle1_ps(r2, 0, 0, 2, 2),
_mm_shuffle1_ps(r3, 1, 1, 3, 3)),
_mm_mul_ps(_mm_shuffle1_ps(r3, 0, 0, 2, 2),
_mm_shuffle1_ps(r2, 1, 1, 3, 3)));
x1 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r2, 0, 0, 2, 2),
glmm_shuff1(r3, 1, 1, 3, 3)),
_mm_mul_ps(glmm_shuff1(r3, 0, 0, 2, 2),
glmm_shuff1(r2, 1, 1, 3, 3)));
/*
a * (f * t[0] - g * t[1] + h * t[2])
@@ -140,19 +136,19 @@ glm_mat4_det_sse2(mat4 mat) {
+ c * (e * t[1] - f * t[3] + h * t[5])
- d * (e * t[2] - f * t[4] + g * t[5])
*/
x2 = _mm_sub_ps(_mm_mul_ps(_mm_shuffle1_ps(r1, 0, 0, 0, 1),
x2 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r1, 0, 0, 0, 1),
_mm_shuffle_ps(x1, x0, _MM_SHUFFLE(1, 0, 0, 0))),
_mm_mul_ps(_mm_shuffle1_ps(r1, 1, 1, 2, 2),
_mm_shuffle1_ps(x0, 3, 2, 2, 0)));
_mm_mul_ps(glmm_shuff1(r1, 1, 1, 2, 2),
glmm_shuff1(x0, 3, 2, 2, 0)));
x2 = _mm_add_ps(x2,
_mm_mul_ps(_mm_shuffle1_ps(r1, 2, 3, 3, 3),
_mm_mul_ps(glmm_shuff1(r1, 2, 3, 3, 3),
_mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 2, 3, 1))));
x2 = _mm_xor_ps(x2, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
x0 = _mm_mul_ps(r0, x2);
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 3, 3, 1));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 3, 3, 1));
return _mm_cvtss_f32(x0);
}
@@ -166,14 +162,14 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
x0, x1, x2, x3, x4, x5, x6, x7;
/* 127 <- 0 */
r0 = _mm_load_ps(mat[0]); /* d c b a */
r1 = _mm_load_ps(mat[1]); /* h g f e */
r2 = _mm_load_ps(mat[2]); /* l k j i */
r3 = _mm_load_ps(mat[3]); /* p o n m */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */
x1 = _mm_shuffle1_ps(x0, 1, 3, 3, 3); /* l p p p */
x2 = _mm_shuffle1_ps(x0, 0, 2, 2, 2); /* k o o o */
x1 = glmm_shuff1(x0, 1, 3, 3, 3); /* l p p p */
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
@@ -184,7 +180,7 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0));
x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */
x4 = _mm_shuffle1_ps(x4, 0, 2, 2, 2); /* j n n n */
x4 = glmm_shuff1(x4, 0, 2, 2, 2); /* j n n n */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
/* t1[1] = j * p - n * l;
@@ -200,7 +196,7 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3));
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x7 = _mm_shuffle2_ps(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
x7 = glmm_shuff2(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
/* t1[3] = i * p - m * l;
t1[3] = i * p - m * l;
@@ -220,10 +216,10 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
t3[5] = e * j - i * f; */
t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5));
x0 = _mm_shuffle2_ps(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
x1 = _mm_shuffle2_ps(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
x2 = _mm_shuffle2_ps(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
x3 = _mm_shuffle2_ps(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
x0 = glmm_shuff2(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
x1 = glmm_shuff2(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
x2 = glmm_shuff2(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
x3 = glmm_shuff2(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
/*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
@@ -271,14 +267,14 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
x0 = _mm_mul_ps(x0, r0);
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 0, 0, 1));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
x0 = _mm_rcp_ps(x0);
_mm_store_ps(dest[0], _mm_mul_ps(v0, x0));
_mm_store_ps(dest[1], _mm_mul_ps(v1, x0));
_mm_store_ps(dest[2], _mm_mul_ps(v2, x0));
_mm_store_ps(dest[3], _mm_mul_ps(v3, x0));
glmm_store(dest[0], _mm_mul_ps(v0, x0));
glmm_store(dest[1], _mm_mul_ps(v1, x0));
glmm_store(dest[2], _mm_mul_ps(v2, x0));
glmm_store(dest[3], _mm_mul_ps(v3, x0));
}
CGLM_INLINE
@@ -290,14 +286,14 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
x0, x1, x2, x3, x4, x5, x6, x7;
/* 127 <- 0 */
r0 = _mm_load_ps(mat[0]); /* d c b a */
r1 = _mm_load_ps(mat[1]); /* h g f e */
r2 = _mm_load_ps(mat[2]); /* l k j i */
r3 = _mm_load_ps(mat[3]); /* p o n m */
r0 = glmm_load(mat[0]); /* d c b a */
r1 = glmm_load(mat[1]); /* h g f e */
r2 = glmm_load(mat[2]); /* l k j i */
r3 = glmm_load(mat[3]); /* p o n m */
x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */
x1 = _mm_shuffle1_ps(x0, 1, 3, 3, 3); /* l p p p */
x2 = _mm_shuffle1_ps(x0, 0, 2, 2, 2); /* k o o o */
x1 = glmm_shuff1(x0, 1, 3, 3, 3); /* l p p p */
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
@@ -308,7 +304,7 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0));
x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */
x4 = _mm_shuffle1_ps(x4, 0, 2, 2, 2); /* j n n n */
x4 = glmm_shuff1(x4, 0, 2, 2, 2); /* j n n n */
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
/* t1[1] = j * p - n * l;
@@ -324,7 +320,7 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3));
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
x7 = _mm_shuffle2_ps(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
x7 = glmm_shuff2(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
/* t1[3] = i * p - m * l;
t1[3] = i * p - m * l;
@@ -344,10 +340,10 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
t3[5] = e * j - i * f; */
t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5));
x0 = _mm_shuffle2_ps(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
x1 = _mm_shuffle2_ps(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
x2 = _mm_shuffle2_ps(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
x3 = _mm_shuffle2_ps(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
x0 = glmm_shuff2(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
x1 = glmm_shuff2(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
x2 = glmm_shuff2(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
x3 = glmm_shuff2(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
/*
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
@@ -395,14 +391,14 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
x0 = _mm_mul_ps(x0, r0);
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 0, 0, 1));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
x0 = _mm_div_ps(_mm_set1_ps(1.0f), x0);
_mm_store_ps(dest[0], _mm_mul_ps(v0, x0));
_mm_store_ps(dest[1], _mm_mul_ps(v1, x0));
_mm_store_ps(dest[2], _mm_mul_ps(v2, x0));
_mm_store_ps(dest[3], _mm_mul_ps(v3, x0));
glmm_store(dest[0], _mm_mul_ps(v0, x0));
glmm_store(dest[1], _mm_mul_ps(v1, x0));
glmm_store(dest[2], _mm_mul_ps(v2, x0));
glmm_store(dest[3], _mm_mul_ps(v3, x0));
}
#endif

View File

@@ -14,56 +14,33 @@
CGLM_INLINE
void
glm_quat_slerp_sse2(versor q,
versor r,
float t,
versor dest) {
/* https://en.wikipedia.org/wiki/Slerp */
float cosTheta, sinTheta, angle, a, b, c;
glm_quat_mul_sse2(versor p, versor q, versor dest) {
/*
+ (a1 b2 + b1 a2 + c1 d2 d1 c2)i
+ (a1 c2 b1 d2 + c1 a2 + d1 b2)j
+ (a1 d2 + b1 c2 c1 b2 + d1 a2)k
a1 a2 b1 b2 c1 c2 d1 d2
*/
__m128 xmm_q;
__m128 xp, xq, x0, r;
xmm_q = _mm_load_ps(q);
xp = glmm_load(p); /* 3 2 1 0 */
xq = glmm_load(q);
cosTheta = glm_vec4_dot(q, r);
if (cosTheta < 0.0f) {
_mm_store_ps(q,
_mm_xor_ps(xmm_q,
_mm_set1_ps(-0.f))) ;
r = _mm_mul_ps(glmm_shuff1x(xp, 3), xq);
cosTheta = -cosTheta;
}
x0 = _mm_xor_ps(glmm_shuff1x(xp, 0), _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 0, 1, 2, 3)));
if (cosTheta >= 1.0f) {
_mm_store_ps(dest, xmm_q);
return;
}
x0 = _mm_xor_ps(glmm_shuff1x(xp, 1), _mm_set_ps(-0.f, -0.f, 0.f, 0.f));
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 1, 0, 3, 2)));
sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
x0 = _mm_xor_ps(glmm_shuff1x(xp, 2), _mm_set_ps(-0.f, 0.f, 0.f, -0.f));
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 2, 3, 0, 1)));
c = 1.0f - t;
/* LERP */
if (sinTheta < 0.001f) {
_mm_store_ps(dest, _mm_add_ps(_mm_mul_ps(_mm_set1_ps(c),
xmm_q),
_mm_mul_ps(_mm_set1_ps(t),
_mm_load_ps(r))));
return;
}
/* SLERP */
angle = acosf(cosTheta);
a = sinf(c * angle);
b = sinf(t * angle);
_mm_store_ps(dest,
_mm_div_ps(_mm_add_ps(_mm_mul_ps(_mm_set1_ps(a),
xmm_q),
_mm_mul_ps(_mm_set1_ps(b),
_mm_load_ps(r))),
_mm_set1_ps(sinTheta)));
glmm_store(dest, r);
}
#endif
#endif /* cglm_quat_simd_h */

136
include/cglm/simd/x86.h Normal file
View File

@@ -0,0 +1,136 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_simd_x86_h
#define cglm_simd_x86_h
#include "intrin.h"
#ifdef CGLM_SIMD_x86
#ifdef CGLM_ALL_UNALIGNED
# define glmm_load(p) _mm_loadu_ps(p)
# define glmm_store(p, a) _mm_storeu_ps(p, a)
#else
# define glmm_load(p) _mm_load_ps(p)
# define glmm_store(p, a) _mm_store_ps(p, a)
#endif
#ifdef CGLM_USE_INT_DOMAIN
# define glmm_shuff1(xmm, z, y, x, w) \
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(xmm), \
_MM_SHUFFLE(z, y, x, w)))
#else
# define glmm_shuff1(xmm, z, y, x, w) \
_mm_shuffle_ps(xmm, xmm, _MM_SHUFFLE(z, y, x, w))
#endif
#define glmm_shuff1x(xmm, x) glmm_shuff1(xmm, x, x, x, x)
#define glmm_shuff2(a, b, z0, y0, x0, w0, z1, y1, x1, w1) \
glmm_shuff1(_mm_shuffle_ps(a, b, _MM_SHUFFLE(z0, y0, x0, w0)), \
z1, y1, x1, w1)
#ifdef __AVX__
# ifdef CGLM_ALL_UNALIGNED
# define glmm_load256(p) _mm256_loadu_ps(p)
# define glmm_store256(p, a) _mm256_storeu_ps(p, a)
# else
# define glmm_load256(p) _mm256_load_ps(p)
# define glmm_store256(p, a) _mm256_store_ps(p, a)
# endif
#endif
static inline
__m128
glmm_vhadds(__m128 v) {
#if defined(__SSE3__)
__m128 shuf, sums;
shuf = _mm_movehdup_ps(v);
sums = _mm_add_ps(v, shuf);
shuf = _mm_movehl_ps(shuf, sums);
sums = _mm_add_ss(sums, shuf);
return sums;
#else
__m128 shuf, sums;
shuf = glmm_shuff1(v, 2, 3, 0, 1);
sums = _mm_add_ps(v, shuf);
shuf = _mm_movehl_ps(shuf, sums);
sums = _mm_add_ss(sums, shuf);
return sums;
#endif
}
static inline
float
glmm_hadd(__m128 v) {
return _mm_cvtss_f32(glmm_vhadds(v));
}
static inline
__m128
glmm_vdots(__m128 a, __m128 b) {
#if (defined(__SSE4_1__) || defined(__SSE4_2__)) && defined(CGLM_SSE4_DOT)
return _mm_dp_ps(a, b, 0xFF);
#elif defined(__SSE3__) && defined(CGLM_SSE3_DOT)
__m128 x0, x1;
x0 = _mm_mul_ps(a, b);
x1 = _mm_hadd_ps(x0, x0);
return _mm_hadd_ps(x1, x1);
#else
return glmm_vhadds(_mm_mul_ps(a, b));
#endif
}
static inline
__m128
glmm_vdot(__m128 a, __m128 b) {
#if (defined(__SSE4_1__) || defined(__SSE4_2__)) && defined(CGLM_SSE4_DOT)
return _mm_dp_ps(a, b, 0xFF);
#elif defined(__SSE3__) && defined(CGLM_SSE3_DOT)
__m128 x0, x1;
x0 = _mm_mul_ps(a, b);
x1 = _mm_hadd_ps(x0, x0);
return _mm_hadd_ps(x1, x1);
#else
__m128 x0;
x0 = _mm_mul_ps(a, b);
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 3, 2));
return _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 0, 1));
#endif
}
static inline
float
glmm_dot(__m128 a, __m128 b) {
return _mm_cvtss_f32(glmm_vdots(a, b));
}
static inline
float
glmm_norm(__m128 a) {
return _mm_cvtss_f32(_mm_sqrt_ss(glmm_vhadds(_mm_mul_ps(a, a))));
}
static inline
__m128
glmm_load3(float v[3]) {
__m128i xy;
__m128 z;
xy = _mm_loadl_epi64((const __m128i *)v);
z = _mm_load_ss(&v[2]);
return _mm_movelh_ps(_mm_castsi128_ps(xy), z);
}
static inline
void
glmm_store3(__m128 vx, float v[3]) {
_mm_storel_pi((__m64 *)&v[0], vx);
_mm_store_ss(&v[2], glmm_shuff1(vx, 2, 2, 2, 2));
}
#endif
#endif /* cglm_simd_x86_h */

99
include/cglm/sphere.h Normal file
View File

@@ -0,0 +1,99 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_sphere_h
#define cglm_sphere_h
#include "common.h"
#include "mat4.h"
/*
Sphere Representation in cglm: [center.x, center.y, center.z, radii]
You could use this representation or you can convert it to vec4 before call
any function
*/
/*!
* @brief helper for getting sphere radius
*
* @param[in] s sphere
*
* @return returns radii
*/
CGLM_INLINE
float
glm_sphere_radii(vec4 s) {
return s[3];
}
/*!
* @brief apply transform to sphere, it is just wrapper for glm_mat4_mulv3
*
* @param[in] s sphere
* @param[in] m transform matrix
* @param[out] dest transformed sphere
*/
CGLM_INLINE
void
glm_sphere_transform(vec4 s, mat4 m, vec4 dest) {
glm_mat4_mulv3(m, s, 1.0f, dest);
dest[3] = s[3];
}
/*!
* @brief merges two spheres and creates a new one
*
* two sphere must be in same space, for instance if one in world space then
* the other must be in world space too, not in local space.
*
* @param[in] s1 sphere 1
* @param[in] s2 sphere 2
* @param[out] dest merged/extended sphere
*/
CGLM_INLINE
void
glm_sphere_merge(vec4 s1, vec4 s2, vec4 dest) {
float dist, radii;
dist = glm_vec3_distance(s1, s2);
radii = dist + s1[3] + s2[3];
radii = glm_max(radii, s1[3]);
radii = glm_max(radii, s2[3]);
glm_vec3_center(s1, s2, dest);
dest[3] = radii;
}
/*!
* @brief check if two sphere intersects
*
* @param[in] s1 sphere
* @param[in] s2 other sphere
*/
CGLM_INLINE
bool
glm_sphere_sphere(vec4 s1, vec4 s2) {
return glm_vec3_distance2(s1, s2) <= glm_pow2(s1[3] + s2[3]);
}
/*!
* @brief check if sphere intersects with point
*
* @param[in] s sphere
* @param[in] point point
*/
CGLM_INLINE
bool
glm_sphere_point(vec4 s, vec3 point) {
float rr;
rr = s[3] * s[3];
return glm_vec3_distance2(point, s) <= rr;
}
#endif /* cglm_sphere_h */

36
include/cglm/struct.h Normal file
View File

@@ -0,0 +1,36 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_structs_h
#define cglm_structs_h
#ifdef __cplusplus
extern "C" {
#endif
#include "cglm.h"
#include "types-struct.h"
#include "struct/vec3.h"
#include "struct/vec4.h"
#include "struct/mat3.h"
#include "struct/mat4.h"
#include "struct/affine.h"
#include "struct/frustum.h"
#include "struct/plane.h"
#include "struct/box.h"
#include "struct/color.h"
#include "struct/io.h"
#include "struct/cam.h"
#include "struct/quat.h"
#include "struct/euler.h"
#include "struct/project.h"
#include "struct/sphere.h"
#include "struct/curve.h"
#ifdef __cplusplus
}
#endif
#endif /* cglm_structs_h */

View File

@@ -0,0 +1,337 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_translate(mat4s m, vec3s v);
CGLM_INLINE mat4s glms_translate_x(mat4s m, float x);
CGLM_INLINE mat4s glms_translate_y(mat4s m, float y);
CGLM_INLINE mat4s glms_translate_z(mat4s m, float z);
CGLM_INLINE mat4s glms_translate_make(vec3s v);
CGLM_INLINE mat4s glms_scale_to(mat4s m, vec3s v);
CGLM_INLINE mat4s glms_scale_make(vec3s v);
CGLM_INLINE mat4s glms_scale(mat4s m, vec3s v);
CGLM_INLINE mat4s glms_scale_uni(mat4s m, float s);
CGLM_INLINE mat4s glmx_rotate_x(mat4s m, float angle);
CGLM_INLINE mat4s glms_rotate_y(mat4s m, float angle);
CGLM_INLINE mat4s glms_rotate_z(mat4s m, float angle);
CGLM_INLINE mat4s glms_rotate_make(float angle, vec3s axis);
CGLM_INLINE mat4s glms_rotate(mat4s m, float angle, vec3s axis);
CGLM_INLINE mat4s glms_rotate_at(mat4s m, vec3s pivot, float angle, vec3s axis);
CGLM_INLINE mat4s glms_rotate_atm(mat4s m, vec3s pivot, float angle, vec3s axis);
CGLM_INLINE vec3s glms_decompose_scalev(mat4s m);
CGLM_INLINE bool glms_uniscaled(mat4s m);
CGLM_INLINE void glms_decompose_rs(mat4s m, mat4s * r, vec3s * s);
CGLM_INLINE void glms_decompose(mat4s m, vec4s t, mat4s * r, vec3s * s);
*/
#ifndef cglms_affines_h
#define cglms_affines_h
#include "../common.h"
#include "../types-struct.h"
#include "../affine.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
CGLM_INLINE
mat4s
glms_mat4_mul(mat4s m1, mat4s m2);
/*!
* @brief translate existing transform matrix by v vector
* and stores result in same matrix
*
* @param[in] m affine transfrom
* @param[in] v translate vector [x, y, z]
* @returns affine transfrom
*/
CGLM_INLINE
mat4s
glms_translate(mat4s m, vec3s v) {
glm_translate(m.raw, v.raw);
return m;
}
/*!
* @brief translate existing transform matrix by x factor
*
* @param[in] m affine transfrom
* @param[in] x x factor
* @returns affine transfrom
*/
CGLM_INLINE
mat4s
glms_translate_x(mat4s m, float x) {
glm_translate_x(m.raw, x);
return m;
}
/*!
* @brief translate existing transform matrix by y factor
*
* @param[in] m affine transfrom
* @param[in] y y factor
* @returns affine transfrom
*/
CGLM_INLINE
mat4s
glms_translate_y(mat4s m, float y) {
glm_translate_y(m.raw, y);
return m;
}
/*!
* @brief translate existing transform matrix by z factor
*
* @param[in] m affine transfrom
* @param[in] z z factor
* @returns affine transfrom
*/
CGLM_INLINE
mat4s
glms_translate_z(mat4s m, float z) {
glm_translate_z(m.raw, z);
return m;
}
/*!
* @brief creates NEW translate transform matrix by v vector
*
* @param[in] v translate vector [x, y, z]
* @returns affine transfrom
*/
CGLM_INLINE
mat4s
glms_translate_make(vec3s v) {
mat4s m;
glm_translate_make(m.raw, v.raw);
return m;
}
/*!
* @brief creates NEW scale matrix by v vector
*
* @param[in] v scale vector [x, y, z]
* @returns affine transfrom
*/
CGLM_INLINE
mat4s
glms_scale_make(vec3s v) {
mat4s m;
glm_scale_make(m.raw, v.raw);
return m;
}
/*!
* @brief scales existing transform matrix by v vector
* and stores result in same matrix
*
* @param[in] m affine transfrom
* @param[in] v scale vector [x, y, z]
* @returns affine transfrom
*/
CGLM_INLINE
mat4s
glms_scale(mat4s m, vec3s v) {
mat4s r;
glm_scale_to(m.raw, v.raw, r.raw);
return r;
}
/*!
* @brief applies uniform scale to existing transform matrix v = [s, s, s]
* and stores result in same matrix
*
* @param[in] m affine transfrom
* @param[in] s scale factor
* @returns affine transfrom
*/
CGLM_INLINE
mat4s
glms_scale_uni(mat4s m, float s) {
glm_scale_uni(m.raw, s);
return m;
}
/*!
* @brief rotate existing transform matrix around X axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @returns rotated matrix
*/
CGLM_INLINE
mat4s
glmx_rotate_x(mat4s m, float angle) {
mat4s r;
glm_rotate_x(m.raw, angle, r.raw);
return r;
}
/*!
* @brief rotate existing transform matrix around Y axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @returns rotated matrix
*/
CGLM_INLINE
mat4s
glms_rotate_y(mat4s m, float angle) {
mat4s r;
glm_rotate_y(m.raw, angle, r.raw);
return r;
}
/*!
* @brief rotate existing transform matrix around Z axis by angle
* and store result in dest
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @returns rotated matrix
*/
CGLM_INLINE
mat4s
glms_rotate_z(mat4s m, float angle) {
mat4s r;
glm_rotate_z(m.raw, angle, r.raw);
return r;
}
/*!
* @brief creates NEW rotation matrix by angle and axis
*
* axis will be normalized so you don't need to normalize it
*
* @param[in] angle angle (radians)
* @param[in] axis axis
* @returns affine transfrom
*/
CGLM_INLINE
mat4s
glms_rotate_make(float angle, vec3s axis) {
mat4s m;
glm_rotate_make(m.raw, angle, axis.raw);
return m;
}
/*!
* @brief rotate existing transform matrix around given axis by angle
*
* @param[in] m affine transfrom
* @param[in] angle angle (radians)
* @param[in] axis axis
* @returns affine transfrom
*/
CGLM_INLINE
mat4s
glms_rotate(mat4s m, float angle, vec3s axis) {
glm_rotate(m.raw, angle, axis.raw);
return m;
}
/*!
* @brief rotate existing transform
* around given axis by angle at given pivot point (rotation center)
*
* @param[in] m affine transfrom
* @param[in] pivot rotation center
* @param[in] angle angle (radians)
* @param[in] axis axis
* @returns affine transfrom
*/
CGLM_INLINE
mat4s
glms_rotate_at(mat4s m, vec3s pivot, float angle, vec3s axis) {
glm_rotate_at(m.raw, pivot.raw, angle, axis.raw);
return m;
}
/*!
* @brief creates NEW rotation matrix by angle and axis at given point
*
* this creates rotation matrix, it assumes you don't have a matrix
*
* this should work faster than glm_rotate_at because it reduces
* one glm_translate.
*
* @param[in] m affine transfrom
* @param[in] pivot rotation center
* @param[in] angle angle (radians)
* @param[in] axis axis
* @returns affine transfrom
*/
CGLM_INLINE
mat4s
glms_rotate_atm(mat4s m, vec3s pivot, float angle, vec3s axis) {
glm_rotate_atm(m.raw, pivot.raw, angle, axis.raw);
return m;
}
/*!
* @brief decompose scale vector
*
* @param[in] m affine transform
* @returns scale vector (Sx, Sy, Sz)
*/
CGLM_INLINE
vec3s
glms_decompose_scalev(mat4s m) {
vec3s r;
glm_decompose_scalev(m.raw, r.raw);
return r;
}
/*!
* @brief returns true if matrix is uniform scaled. This is helpful for
* creating normal matrix.
*
* @param[in] m m
*
* @return boolean
*/
CGLM_INLINE
bool
glms_uniscaled(mat4s m) {
return glm_uniscaled(m.raw);
}
/*!
* @brief decompose rotation matrix (mat4) and scale vector [Sx, Sy, Sz]
* DON'T pass projected matrix here
*
* @param[in] m affine transform
* @param[out] r rotation matrix
* @param[out] s scale matrix
*/
CGLM_INLINE
void
glms_decompose_rs(mat4s m, mat4s * __restrict r, vec3s * __restrict s) {
glm_decompose_rs(m.raw, r->raw, s->raw);
}
/*!
* @brief decompose affine transform, TODO: extract shear factors.
* DON'T pass projected matrix here
*
* @param[in] m affine transfrom
* @param[out] t translation vector
* @param[out] r rotation matrix (mat4)
* @param[out] s scaling vector [X, Y, Z]
*/
CGLM_INLINE
void
glms_decompose(mat4s m, vec4s * __restrict t, mat4s * __restrict r, vec3s * __restrict s) {
glm_decompose(m.raw, t->raw, r->raw, s->raw);
}
#endif /* cglms_affines_h */

256
include/cglm/struct/box.h Normal file
View File

@@ -0,0 +1,256 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglms_boxs_h
#define cglms_boxs_h
#include "../common.h"
#include "../types-struct.h"
#include "../box.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
/*!
* @brief apply transform to Axis-Aligned Bounding Box
*
* @param[in] box bounding box
* @param[in] m transform matrix
* @param[out] dest transformed bounding box
*/
CGLM_INLINE
void
glms_aabb_transform(vec3s box[2], mat4s m, vec3s dest[2]) {
vec3 rawBox[2];
vec3 rawDest[2];
glms_vec3_unpack(rawBox, box, 2);
glm_aabb_transform(rawBox, m.raw, rawDest);
glms_vec3_pack(dest, rawDest, 2);
}
/*!
* @brief merges two AABB bounding box and creates new one
*
* two box must be in same space, if one of box is in different space then
* you should consider to convert it's space by glm_box_space
*
* @param[in] box1 bounding box 1
* @param[in] box2 bounding box 2
* @param[out] dest merged bounding box
*/
CGLM_INLINE
void
glms_aabb_merge(vec3s box1[2], vec3s box2[2], vec3s dest[2]) {
vec3 rawBox1[2];
vec3 rawBox2[2];
vec3 rawDest[2];
glms_vec3_unpack(rawBox1, box1, 2);
glms_vec3_unpack(rawBox2, box2, 2);
glm_aabb_merge(rawBox1, rawBox2, rawDest);
glms_vec3_pack(dest, rawDest, 2);
}
/*!
* @brief crops a bounding box with another one.
*
* this could be useful for gettng a bbox which fits with view frustum and
* object bounding boxes. In this case you crop view frustum box with objects
* box
*
* @param[in] box bounding box 1
* @param[in] cropBox crop box
* @param[out] dest cropped bounding box
*/
CGLM_INLINE
void
glms_aabb_crop(vec3s box[2], vec3s cropBox[2], vec3s dest[2]) {
vec3 rawBox[2];
vec3 rawCropBox[2];
vec3 rawDest[2];
glms_vec3_unpack(rawBox, box, 2);
glms_vec3_unpack(rawCropBox, cropBox, 2);
glm_aabb_crop(rawBox, rawCropBox, rawDest);
glms_vec3_pack(dest, rawDest, 2);
}
/*!
* @brief crops a bounding box with another one.
*
* this could be useful for gettng a bbox which fits with view frustum and
* object bounding boxes. In this case you crop view frustum box with objects
* box
*
* @param[in] box bounding box
* @param[in] cropBox crop box
* @param[in] clampBox miniumum box
* @param[out] dest cropped bounding box
*/
CGLM_INLINE
void
glms_aabb_crop_until(vec3s box[2],
vec3s cropBox[2],
vec3s clampBox[2],
vec3s dest[2]) {
glms_aabb_crop(box, cropBox, dest);
glms_aabb_merge(clampBox, dest, dest);
}
/*!
* @brief check if AABB intersects with frustum planes
*
* this could be useful for frustum culling using AABB.
*
* OPTIMIZATION HINT:
* if planes order is similar to LEFT, RIGHT, BOTTOM, TOP, NEAR, FAR
* then this method should run even faster because it would only use two
* planes if object is not inside the two planes
* fortunately cglm extracts planes as this order! just pass what you got!
*
* @param[in] box bounding box
* @param[in] planes frustum planes
*/
CGLM_INLINE
bool
glms_aabb_frustum(vec3s box[2], vec4s planes[6]) {
vec3 rawBox[2];
vec4 rawPlanes[6];
glms_vec3_unpack(rawBox, box, 2);
glms_vec4_unpack(rawPlanes, planes, 6);
return glm_aabb_frustum(rawBox, rawPlanes);
}
/*!
* @brief invalidate AABB min and max values
*
* @param[in, out] box bounding box
*/
CGLM_INLINE
void
glms_aabb_invalidate(vec3s box[2]) {
box[0] = glms_vec3_broadcast(FLT_MAX);
box[1] = glms_vec3_broadcast(-FLT_MAX);
}
/*!
* @brief check if AABB is valid or not
*
* @param[in] box bounding box
*/
CGLM_INLINE
bool
glms_aabb_isvalid(vec3s box[2]) {
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
return glm_aabb_isvalid(rawBox);
}
/*!
* @brief distance between of min and max
*
* @param[in] box bounding box
*/
CGLM_INLINE
float
glms_aabb_size(vec3s box[2]) {
return glm_vec3_distance(box[0].raw, box[1].raw);
}
/*!
* @brief radius of sphere which surrounds AABB
*
* @param[in] box bounding box
*/
CGLM_INLINE
float
glms_aabb_radius(vec3s box[2]) {
return glms_aabb_size(box) * 0.5f;
}
/*!
* @brief computes center point of AABB
*
* @param[in] box bounding box
* @returns center of bounding box
*/
CGLM_INLINE
vec3s
glms_aabb_center(vec3s box[2]) {
return glms_vec3_center(box[0], box[1]);
}
/*!
* @brief check if two AABB intersects
*
* @param[in] box bounding box
* @param[in] other other bounding box
*/
CGLM_INLINE
bool
glms_aabb_aabb(vec3s box[2], vec3s other[2]) {
vec3 rawBox[2];
vec3 rawOther[2];
glms_vec3_unpack(rawBox, box, 2);
glms_vec3_unpack(rawOther, other, 2);
return glm_aabb_aabb(rawBox, rawOther);
}
/*!
* @brief check if AABB intersects with sphere
*
* https://github.com/erich666/GraphicsGems/blob/master/gems/BoxSphere.c
* Solid Box - Solid Sphere test.
*
* @param[in] box solid bounding box
* @param[in] s solid sphere
*/
CGLM_INLINE
bool
glms_aabb_sphere(vec3s box[2], vec4s s) {
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
return glm_aabb_sphere(rawBox, s.raw);
}
/*!
* @brief check if point is inside of AABB
*
* @param[in] box bounding box
* @param[in] point point
*/
CGLM_INLINE
bool
glms_aabb_point(vec3s box[2], vec3s point) {
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
return glm_aabb_point(rawBox, point.raw);
}
/*!
* @brief check if AABB contains other AABB
*
* @param[in] box bounding box
* @param[in] other other bounding box
*/
CGLM_INLINE
bool
glms_aabb_contains(vec3s box[2], vec3s other[2]) {
vec3 rawBox[2];
vec3 rawOther[2];
glms_vec3_unpack(rawBox, box, 2);
glms_vec3_unpack(rawOther, other, 2);
return glm_aabb_contains(rawBox, rawOther);
}
#endif /* cglms_boxs_h */

451
include/cglm/struct/cam.h Normal file
View File

@@ -0,0 +1,451 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE mat4s glms_frustum(float left, float right,
float bottom, float top,
float nearVal, float farVal)
CGLM_INLINE mat4s glms_ortho(float left, float right,
float bottom, float top,
float nearVal, float farVal)
CGLM_INLINE mat4s glms_ortho_aabb(vec3s box[2]);
CGLM_INLINE mat4s glms_ortho_aabb_p(vec3s box[2], float padding);
CGLM_INLINE mat4s glms_ortho_aabb_pz(vec3s box[2], float padding);
CGLM_INLINE mat4s glms_ortho_default(float aspect)
CGLM_INLINE mat4s glms_ortho_default_s(float aspect, float size)
CGLM_INLINE mat4s glms_perspective(float fovy,
float aspect,
float nearVal,
float farVal)
CGLM_INLINE void glms_persp_move_far(mat4s proj, float deltaFar)
CGLM_INLINE mat4s glms_perspective_default(float aspect)
CGLM_INLINE void glms_perspective_resize(mat4s proj, float aspect)
CGLM_INLINE mat4s glms_lookat(vec3s eye, vec3s center, vec3s up)
CGLM_INLINE mat4s glms_look(vec3s eye, vec3s dir, vec3s up)
CGLM_INLINE mat4s glms_look_anyup(vec3s eye, vec3s dir)
CGLM_INLINE void glms_persp_decomp(mat4s proj,
float *nearv, float *farv,
float *top, float *bottom,
float *left, float *right)
CGLM_INLINE void glms_persp_decompv(mat4s proj, float dest[6])
CGLM_INLINE void glms_persp_decomp_x(mat4s proj, float *left, float *right)
CGLM_INLINE void glms_persp_decomp_y(mat4s proj, float *top, float *bottom)
CGLM_INLINE void glms_persp_decomp_z(mat4s proj, float *nearv, float *farv)
CGLM_INLINE void glms_persp_decomp_far(mat4s proj, float *farVal)
CGLM_INLINE void glms_persp_decomp_near(mat4s proj, float *nearVal)
CGLM_INLINE float glms_persp_fovy(mat4s proj)
CGLM_INLINE float glms_persp_aspect(mat4s proj)
CGLM_INLINE vec4s glms_persp_sizes(mat4s proj, float fovy)
*/
#ifndef cglms_cam_h
#define cglms_cam_h
#include "../common.h"
#include "../types-struct.h"
#include "../plane.h"
#include "../cam.h"
/*!
* @brief set up perspective peprojection matrix
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearVal near clipping plane
* @param[in] farVal far clipping plane
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_frustum(float left, float right,
float bottom, float top,
float nearVal, float farVal) {
mat4s dest;
glm_frustum(left, right, bottom, top, nearVal, farVal, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix
*
* @param[in] left viewport.left
* @param[in] right viewport.right
* @param[in] bottom viewport.bottom
* @param[in] top viewport.top
* @param[in] nearVal near clipping plane
* @param[in] farVal far clipping plane
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho(float left, float right,
float bottom, float top,
float nearVal, float farVal) {
mat4s dest;
glm_ortho(left, right, bottom, top, nearVal, farVal, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb(vec3s box[2]) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb(rawBox, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_p(vec3s box[2], float padding) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_p(rawBox, padding, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix using bounding box
*
* bounding box (AABB) must be in view space
*
* @param[in] box AABB
* @param[in] padding padding for near and far
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_aabb_pz(vec3s box[2], float padding) {
mat4s dest;
vec3 rawBox[2];
glms_vec3_unpack(rawBox, box, 2);
glm_ortho_aabb_pz(rawBox, padding, dest.raw);
return dest;
}
/*!
* @brief set up unit orthographic projection matrix
*
* @param[in] aspect aspect ration ( width / height )
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_default(float aspect) {
mat4s dest;
glm_ortho_default(aspect, dest.raw);
return dest;
}
/*!
* @brief set up orthographic projection matrix with given CUBE size
*
* @param[in] aspect aspect ratio ( width / height )
* @param[in] size cube size
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_ortho_default_s(float aspect, float size) {
mat4s dest;
glm_ortho_default_s(aspect, size, dest.raw);
return dest;
}
/*!
* @brief set up perspective projection matrix
*
* @param[in] fovy field of view angle
* @param[in] aspect aspect ratio ( width / height )
* @param[in] nearVal near clipping plane
* @param[in] farVal far clipping planes
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_perspective(float fovy, float aspect, float nearVal, float farVal) {
mat4s dest;
glm_perspective(fovy, aspect, nearVal, farVal, dest.raw);
return dest;
}
/*!
* @brief extend perspective projection matrix's far distance
*
* this function does not guarantee far >= near, be aware of that!
*
* @param[in, out] proj projection matrix to extend
* @param[in] deltaFar distance from existing far (negative to shink)
*/
CGLM_INLINE
void
glms_persp_move_far(mat4s proj, float deltaFar) {
glm_persp_move_far(proj.raw, deltaFar);
}
/*!
* @brief set up perspective projection matrix with default near/far
* and angle values
*
* @param[in] aspect aspect ratio ( width / height )
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_perspective_default(float aspect) {
mat4s dest;
glm_perspective_default(aspect, dest.raw);
return dest;
}
/*!
* @brief resize perspective matrix by aspect ratio ( width / height )
* this makes very easy to resize proj matrix when window /viewport
* reized
*
* @param[in, out] proj perspective projection matrix
* @param[in] aspect aspect ratio ( width / height )
*/
CGLM_INLINE
void
glms_perspective_resize(mat4s proj, float aspect) {
glm_perspective_resize(aspect, proj.raw);
}
/*!
* @brief set up view matrix
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] center center vector
* @param[in] up up vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_lookat(vec3s eye, vec3s center, vec3s up) {
mat4s dest;
glm_lookat(eye.raw, center.raw, up.raw, dest.raw);
return dest;
}
/*!
* @brief set up view matrix
*
* convenient wrapper for lookat: if you only have direction not target self
* then this might be useful. Because you need to get target from direction.
*
* NOTE: The UP vector must not be parallel to the line of sight from
* the eye point to the reference point
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @param[in] up up vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_look(vec3s eye, vec3s dir, vec3s up) {
mat4s dest;
glm_look(eye.raw, dir.raw, up.raw, dest.raw);
return dest;
}
/*!
* @brief set up view matrix
*
* convenient wrapper for look: if you only have direction and if you don't
* care what UP vector is then this might be useful to create view matrix
*
* @param[in] eye eye vector
* @param[in] dir direction vector
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_look_anyup(vec3s eye, vec3s dir) {
mat4s dest;
glm_look_anyup(eye.raw, dir.raw, dest.raw);
return dest;
}
/*!
* @brief decomposes frustum values of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] nearVal near
* @param[out] farVal far
* @param[out] top top
* @param[out] bottom bottom
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glms_persp_decomp(mat4s proj,
float * __restrict nearVal, float * __restrict farVal,
float * __restrict top, float * __restrict bottom,
float * __restrict left, float * __restrict right) {
glm_persp_decomp(proj.raw, nearVal, farVal, top, bottom, left, right);
}
/*!
* @brief decomposes frustum values of perspective projection.
* this makes easy to get all values at once
*
* @param[in] proj perspective projection matrix
* @param[out] dest array
*/
CGLM_INLINE
void
glms_persp_decompv(mat4s proj, float dest[6]) {
glm_persp_decompv(proj.raw, dest);
}
/*!
* @brief decomposes left and right values of perspective projection.
* x stands for x axis (left / right axis)
*
* @param[in] proj perspective projection matrix
* @param[out] left left
* @param[out] right right
*/
CGLM_INLINE
void
glms_persp_decomp_x(mat4s proj,
float * __restrict left,
float * __restrict right) {
glm_persp_decomp_x(proj.raw, left, right);
}
/*!
* @brief decomposes top and bottom values of perspective projection.
* y stands for y axis (top / botom axis)
*
* @param[in] proj perspective projection matrix
* @param[out] top top
* @param[out] bottom bottom
*/
CGLM_INLINE
void
glms_persp_decomp_y(mat4s proj,
float * __restrict top,
float * __restrict bottom) {
glm_persp_decomp_y(proj.raw, top, bottom);
}
/*!
* @brief decomposes near and far values of perspective projection.
* z stands for z axis (near / far axis)
*
* @param[in] proj perspective projection matrix
* @param[out] nearVal near
* @param[out] farVal far
*/
CGLM_INLINE
void
glms_persp_decomp_z(mat4s proj,
float * __restrict nearVal,
float * __restrict farVal) {
glm_persp_decomp_z(proj.raw, nearVal, farVal);
}
/*!
* @brief decomposes far value of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] farVal far
*/
CGLM_INLINE
void
glms_persp_decomp_far(mat4s proj, float * __restrict farVal) {
glm_persp_decomp_far(proj.raw, farVal);
}
/*!
* @brief decomposes near value of perspective projection.
*
* @param[in] proj perspective projection matrix
* @param[out] nearVal near
*/
CGLM_INLINE
void
glms_persp_decomp_near(mat4s proj, float * __restrict nearVal) {
glm_persp_decomp_near(proj.raw, nearVal);
}
/*!
* @brief returns field of view angle along the Y-axis (in radians)
*
* if you need to degrees, use glm_deg to convert it or use this:
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glms_persp_fovy(mat4s proj) {
return glm_persp_fovy(proj.raw);
}
/*!
* @brief returns aspect ratio of perspective projection
*
* @param[in] proj perspective projection matrix
*/
CGLM_INLINE
float
glms_persp_aspect(mat4s proj) {
return glm_persp_aspect(proj.raw);
}
/*!
* @brief returns sizes of near and far planes of perspective projection
*
* @param[in] proj perspective projection matrix
* @param[in] fovy fovy (see brief)
* @returns sizes as vector, sizes order: [Wnear, Hnear, Wfar, Hfar]
*/
CGLM_INLINE
vec4s
glms_persp_sizes(mat4s proj, float fovy) {
vec4s dest;
glm_persp_sizes(proj.raw, fovy, dest.raw);
return dest;
}
#endif /* cglms_cam_h */

View File

@@ -0,0 +1,27 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglms_colors_h
#define cglms_colors_h
#include "../common.h"
#include "../types-struct.h"
#include "../color.h"
#include "vec3.h"
/*!
* @brief averages the color channels into one value
*
* @param[in] rgb RGB color
*/
CGLM_INLINE
float
glms_luminance(vec3s rgb) {
return glm_luminance(rgb.raw);
}
#endif /* cglms_colors_h */

View File

@@ -0,0 +1,40 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglms_curves_h
#define cglms_curves_h
#include "../common.h"
#include "../types-struct.h"
#include "../curve.h"
#include "vec4.h"
#include "mat4.h"
/*!
* @brief helper function to calculate S*M*C multiplication for curves
*
* This function does not encourage you to use SMC,
* instead it is a helper if you use SMC.
*
* if you want to specify S as vector then use more generic glm_mat4_rmc() func.
*
* Example usage:
* B(s) = glm_smc(s, GLM_BEZIER_MAT, (vec4){p0, c0, c1, p1})
*
* @param[in] s parameter between 0 and 1 (this will be [s3, s2, s, 1])
* @param[in] m basis matrix
* @param[in] c position/control vector
*
* @return B(s)
*/
CGLM_INLINE
float
glms_smc(float s, mat4s m, vec4s c) {
return glm_smc(s, m.raw, c.raw);
}
#endif /* cglms_curves_h */

152
include/cglm/struct/euler.h Normal file
View File

@@ -0,0 +1,152 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
NOTE:
angles must be passed as [X-Angle, Y-Angle, Z-angle] order
For instance you don't pass angles as [Z-Angle, X-Angle, Y-angle] to
glm_euler_zxy funciton, All RELATED functions accept angles same order
which is [X, Y, Z].
*/
/*
Types:
enum glm_euler_sq
Functions:
CGLM_INLINE vec3s glms_euler_angles(mat4s m)
CGLM_INLINE mat4s glms_euler_xyz(vec3s angles)
CGLM_INLINE mat4s glms_euler_xzy(vec3s angles)
CGLM_INLINE mat4s glms_euler_yxz(vec3s angles)
CGLM_INLINE mat4s glms_euler_yzx(vec3s angles)
CGLM_INLINE mat4s glms_euler_zxy(vec3s angles)
CGLM_INLINE mat4s glms_euler_zyx(vec3s angles)
CGLM_INLINE mat4s glms_euler_by_order(vec3s angles, glm_euler_sq ord)
*/
#ifndef cglms_euler_h
#define cglms_euler_h
#include "../common.h"
#include "../types-struct.h"
#include "../euler.h"
/*!
* @brief extract euler angles (in radians) using xyz order
*
* @param[in] m affine transform
* @returns angles vector [x, y, z]
*/
CGLM_INLINE
vec3s
glms_euler_angles(mat4s m) {
vec3s dest;
glm_euler_angles(m.raw, dest.raw);
return dest;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @returns rotation matrix
*/
CGLM_INLINE
mat4s
glms_euler_xyz(vec3s angles) {
mat4s dest;
glm_euler_xyz(angles.raw, dest.raw);
return dest;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @returns rotation matrix
*/
CGLM_INLINE
mat4s
glms_euler_xzy(vec3s angles) {
mat4s dest;
glm_euler_xzy(angles.raw, dest.raw);
return dest;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @returns rotation matrix
*/
CGLM_INLINE
mat4s
glms_euler_yxz(vec3s angles) {
mat4s dest;
glm_euler_yxz(angles.raw, dest.raw);
return dest;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @returns rotation matrix
*/
CGLM_INLINE
mat4s
glms_euler_yzx(vec3s angles) {
mat4s dest;
glm_euler_yzx(angles.raw, dest.raw);
return dest;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @returns rotation matrix
*/
CGLM_INLINE
mat4s
glms_euler_zxy(vec3s angles) {
mat4s dest;
glm_euler_zxy(angles.raw, dest.raw);
return dest;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @returns rotation matrix
*/
CGLM_INLINE
mat4s
glms_euler_zyx(vec3s angles) {
mat4s dest;
glm_euler_zyx(angles.raw, dest.raw);
return dest;
}
/*!
* @brief build rotation matrix from euler angles
*
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
* @param[in] ord euler order
* @returns rotation matrix
*/
CGLM_INLINE
mat4s
glms_euler_by_order(vec3s angles, glm_euler_sq ord) {
mat4s dest;
glm_euler_by_order(angles.raw, ord, dest.raw);
return dest;
}
#endif /* cglms_euler_h */

View File

@@ -0,0 +1,155 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglms_frustums_h
#define cglms_frustums_h
#include "../common.h"
#include "../types-struct.h"
#include "../frustum.h"
#include "plane.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
/* you can override clip space coords
but you have to provide all with same name
e.g.: define GLM_CSCOORD_LBN {0.0f, 0.0f, 1.0f, 1.0f} */
#ifndef GLM_CUSTOM_CLIPSPACE
/* near */
#define GLMS_CSCOORD_LBN {-1.0f, -1.0f, -1.0f, 1.0f}
#define GLMS_CSCOORD_LTN {-1.0f, 1.0f, -1.0f, 1.0f}
#define GLMS_CSCOORD_RTN { 1.0f, 1.0f, -1.0f, 1.0f}
#define GLMS_CSCOORD_RBN { 1.0f, -1.0f, -1.0f, 1.0f}
/* far */
#define GLMS_CSCOORD_LBF {-1.0f, -1.0f, 1.0f, 1.0f}
#define GLMS_CSCOORD_LTF {-1.0f, 1.0f, 1.0f, 1.0f}
#define GLMS_CSCOORD_RTF { 1.0f, 1.0f, 1.0f, 1.0f}
#define GLMS_CSCOORD_RBF { 1.0f, -1.0f, 1.0f, 1.0f}
#endif
/*!
* @brief extracts view frustum planes
*
* planes' space:
* 1- if m = proj: View Space
* 2- if m = viewProj: World Space
* 3- if m = MVP: Object Space
*
* You probably want to extract planes in world space so use viewProj as m
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
*
* Exracted planes order: [left, right, bottom, top, near, far]
*
* @param[in] m matrix (see brief)
* @param[out] dest extracted view frustum planes (see brief)
*/
CGLM_INLINE
void
glms_frustum_planes(mat4s m, vec4s dest[6]) {
vec4 rawDest[6];
glm_frustum_planes(m.raw, rawDest);
glms_vec4_pack(dest, rawDest, 6);
}
/*!
* @brief extracts view frustum corners using clip-space coordinates
*
* corners' space:
* 1- if m = invViewProj: World Space
* 2- if m = invMVP: Object Space
*
* You probably want to extract corners in world space so use invViewProj
* Computing invViewProj:
* glm_mat4_mul(proj, view, viewProj);
* ...
* glm_mat4_inv(viewProj, invViewProj);
*
* if you have a near coord at i index, you can get it's far coord by i + 4
*
* Find center coordinates:
* for (j = 0; j < 4; j++) {
* glm_vec3_center(corners[i], corners[i + 4], centerCorners[i]);
* }
*
* @param[in] invMat matrix (see brief)
* @param[out] dest exracted view frustum corners (see brief)
*/
CGLM_INLINE
void
glms_frustum_corners(mat4s invMat, vec4s dest[8]) {
vec4 rawDest[8];
glm_frustum_corners(invMat.raw, rawDest);
glms_vec4_pack(dest, rawDest, 8);
}
/*!
* @brief finds center of view frustum
*
* @param[in] corners view frustum corners
* @returns view frustum center
*/
CGLM_INLINE
vec4s
glms_frustum_center(vec4s corners[8]) {
vec4 rawCorners[8];
vec4s r;
glms_vec4_unpack(rawCorners, corners, 8);
glm_frustum_center(rawCorners, r.raw);
return r;
}
/*!
* @brief finds bounding box of frustum relative to given matrix e.g. view mat
*
* @param[in] corners view frustum corners
* @param[in] m matrix to convert existing conners
* @param[out] box bounding box as array [min, max]
*/
CGLM_INLINE
void
glms_frustum_box(vec4s corners[8], mat4s m, vec3s box[2]) {
vec4 rawCorners[8];
vec3 rawBox[2];
glms_vec4_unpack(rawCorners, corners, 8);
glm_frustum_box(rawCorners, m.raw, rawBox);
glms_vec3_pack(box, rawBox, 2);
}
/*!
* @brief finds planes corners which is between near and far planes (parallel)
*
* this will be helpful if you want to split a frustum e.g. CSM/PSSM. This will
* find planes' corners but you will need to one more plane.
* Actually you have it, it is near, far or created previously with this func ;)
*
* @param[in] corners view frustum corners
* @param[in] splitDist split distance
* @param[in] farDist far distance (zFar)
* @param[out] planeCorners plane corners [LB, LT, RT, RB]
*/
CGLM_INLINE
void
glms_frustum_corners_at(vec4s corners[8],
float splitDist,
float farDist,
vec4s planeCorners[4]) {
vec4 rawCorners[8];
vec4 rawPlaneCorners[4];
glms_vec4_unpack(rawCorners, corners, 8);
glm_frustum_corners_at(rawCorners, splitDist, farDist, rawPlaneCorners);
glms_vec4_pack(planeCorners, rawPlaneCorners, 8);
}
#endif /* cglms_frustums_h */

82
include/cglm/struct/io.h Normal file
View File

@@ -0,0 +1,82 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Functions:
CGLM_INLINE void glm_mat4_print(mat4 matrix, FILE *ostream);
CGLM_INLINE void glm_mat3_print(mat3 matrix, FILE *ostream);
CGLM_INLINE void glm_vec4_print(vec4 vec, FILE *ostream);
CGLM_INLINE void glm_vec3_print(vec3 vec, FILE *ostream);
CGLM_INLINE void glm_ivec3_print(ivec3 vec, FILE *ostream);
CGLM_INLINE void glm_versor_print(versor vec, FILE *ostream);
*/
#ifndef cglms_ios_h
#define cglms_ios_h
#include "../common.h"
#include "../io.h"
#include "mat4.h"
#include <stdio.h>
#include <stdlib.h>
CGLM_INLINE
void
glms_mat4_print(mat4s matrix,
FILE * __restrict ostream) {
glm_mat4_print(matrix.raw, ostream);
}
CGLM_INLINE
void
glms_mat3_print(mat3s matrix,
FILE * __restrict ostream) {
glm_mat3_print(matrix.raw, ostream);
}
CGLM_INLINE
void
glms_vec4_print(vec4s vec,
FILE * __restrict ostream) {
glm_vec4_print(vec.raw, ostream);
}
CGLM_INLINE
void
glms_vec3_print(vec3s vec,
FILE * __restrict ostream) {
glm_vec3_print(vec.raw, ostream);
}
CGLM_INLINE
void
glms_ivec3_print(ivec3s vec,
FILE * __restrict ostream) {
glm_ivec3_print(vec.raw, ostream);
}
CGLM_INLINE
void
glms_versor_print(versors vec,
FILE * __restrict ostream) {
glm_versor_print(vec.raw, ostream);
}
CGLM_INLINE
void
glms_aabb_print(vec3s bbox[2],
const char * __restrict tag,
FILE * __restrict ostream) {
vec3 rawBbox[2];
glms_vec3_unpack(rawBbox, bbox, 2);
glm_aabb_print(rawBbox, tag, ostream);
}
#endif /* cglms_ios_h */

289
include/cglm/struct/mat3.h Normal file
View File

@@ -0,0 +1,289 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Macros:
GLMS_MAT3_IDENTITY_INIT
GLMS_MAT3_ZERO_INIT
GLMS_MAT3_IDENTITY
GLMS_MAT3_ZERO
Functions:
CGLM_INLINE mat3s glms_mat3_copy(mat3s mat);
CGLM_INLINE mat3s glms_mat3_identity();
CGLM_INLINE void glms_mat3_identity_array(mat3s * __restrict mat, size_t count);
CGLM_INLINE mat3s glms_mat3_zero();
CGLM_INLINE mat3s glms_mat3_mul(mat3s m1, mat3s m2);
CGLM_INLINE ma3s glms_mat3_transpose(mat3s m);
CGLM_INLINE vec3s glms_mat3_mulv(mat3s m, vec3s v);
CGLM_INLINE float glms_mat3_trace(mat3s m);
CGLM_INLINE versor glms_mat3_quat(mat3s m);
CGLM_INLINE mat3s glms_mat3_scale(mat3s m, float s);
CGLM_INLINE float glms_mat3_det(mat3s mat);
CGLM_INLINE mat3s glms_mat3_inv(mat3s mat);
CGLM_INLINE mat3s glms_mat3_swap_col(mat3s mat, int col1, int col2);
CGLM_INLINE mat3s glms_mat3_swap_row(mat3s mat, int row1, int row2);
CGLM_INLINE float glms_mat3_rmc(vec3s r, mat3s m, vec3s c);
*/
#ifndef cglms_mat3s_h
#define cglms_mat3s_h
#include "../common.h"
#include "../types-struct.h"
#include "../mat3.h"
#include "vec3.h"
#define GLMS_MAT3_IDENTITY_INIT {1.0f, 0.0f, 0.0f, \
0.0f, 1.0f, 0.0f, \
0.0f, 0.0f, 1.0f}
#define GLMS_MAT3_ZERO_INIT {0.0f, 0.0f, 0.0f, \
0.0f, 0.0f, 0.0f, \
0.0f, 0.0f, 0.0f}
/* for C only */
#define GLMS_MAT3_IDENTITY ((mat3s)GLMS_MAT3_IDENTITY_INIT)
#define GLMS_MAT3_ZERO ((mat3s)GLMS_MAT3_ZERO_INIT)
/*!
* @brief copy all members of [mat] to [dest]
*
* @param[in] mat source
* @returns destination
*/
CGLM_INLINE
mat3s
glms_mat3_copy(mat3s mat) {
mat3s r;
glm_mat3_copy(mat.raw, r.raw);
return r;
}
/*!
* @brief make given matrix identity. It is identical with below,
* but it is more easy to do that with this func especially for members
* e.g. glm_mat3_identity(aStruct->aMatrix);
*
* @code
* glm_mat3_copy(GLM_MAT3_IDENTITY, mat); // C only
*
* // or
* mat3 mat = GLM_MAT3_IDENTITY_INIT;
* @endcode
*
* @returns destination
*/
CGLM_INLINE
mat3s
glms_mat3_identity() {
mat3s r;
glm_mat3_identity(r.raw);
return r;
}
/*!
* @brief make given matrix array's each element identity matrix
*
* @param[in, out] mat matrix array (must be aligned (16/32)
* if alignment is not disabled)
*
* @param[in] count count of matrices
*/
CGLM_INLINE
void
glms_mat3_identity_array(mat3s * __restrict mat, size_t count) {
CGLM_ALIGN_MAT mat3s t = GLMS_MAT3_IDENTITY_INIT;
size_t i;
for (i = 0; i < count; i++) {
glm_mat3_copy(t.raw, mat[i].raw);
}
}
/*!
* @brief make given matrix zero.
*
* @returns matrix
*/
CGLM_INLINE
mat3s
glms_mat3_zero() {
mat3s r;
glm_mat3_zero(r.raw);
return r;
}
/*!
* @brief multiply m1 and m2 to dest
*
* m1, m2 and dest matrices can be same matrix, it is possible to write this:
*
* @code
* mat3 m = GLM_MAT3_IDENTITY_INIT;
* glm_mat3_mul(m, m, m);
* @endcode
*
* @param[in] m1 left matrix
* @param[in] m2 right matrix
* @returns destination matrix
*/
CGLM_INLINE
mat3s
glms_mat3_mul(mat3s m1, mat3s m2) {
mat3s r;
glm_mat3_mul(m1.raw, m2.raw, r.raw);
return r;
}
/*!
* @brief tranpose mat3 and store result in same matrix
*
* @param[in, out] m source and dest
*/
CGLM_INLINE
mat3s
glms_mat3_transpose(mat3s m) {
glm_mat3_transpose(m.raw);
return m;
}
/*!
* @brief multiply mat3 with vec3 (column vector) and store in dest vector
*
* @param[in] m mat3 (left)
* @param[in] v vec3 (right, column vector)
* @returns vec3 (result, column vector)
*/
CGLM_INLINE
vec3s
glms_mat3_mulv(mat3s m, vec3s v) {
vec3s r;
glm_mat3_mulv(m.raw, v.raw, r.raw);
return r;
}
/*!
* @brief trace of matrix
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
CGLM_INLINE
float
glms_mat3_trace(mat3s m) {
return glm_mat3_trace(m.raw);
}
/*!
* @brief convert mat3 to quaternion
*
* @param[in] m rotation matrix
* @returns destination quaternion
*/
CGLM_INLINE
versors
glms_mat3_quat(mat3s m) {
versors r;
glm_mat3_quat(m.raw, r.raw);
return r;
}
/*!
* @brief scale (multiply with scalar) matrix
*
* multiply matrix with scalar
*
* @param[in] m matrix
* @param[in] s scalar
* @returns scaled matrix
*/
CGLM_INLINE
mat3s
glms_mat3_scale(mat3s m, float s) {
glm_mat3_scale(m.raw, s);
return m;
}
/*!
* @brief mat3 determinant
*
* @param[in] mat matrix
*
* @return determinant
*/
CGLM_INLINE
float
glms_mat3_det(mat3s mat) {
return glm_mat3_det(mat.raw);
}
/*!
* @brief inverse mat3 and store in dest
*
* @param[in] mat matrix
* @returns inverse matrix
*/
CGLM_INLINE
mat3s
glms_mat3_inv(mat3s mat) {
mat3s r;
glm_mat3_inv(mat.raw, r.raw);
return r;
}
/*!
* @brief swap two matrix columns
*
* @param[in] mat matrix
* @param[in] col1 col1
* @param[in] col2 col2
* @returns matrix
*/
CGLM_INLINE
mat3s
glms_mat3_swap_col(mat3s mat, int col1, int col2) {
glm_mat3_swap_col(mat.raw, col1, col2);
return mat;
}
/*!
* @brief swap two matrix rows
*
* @param[in] mat matrix
* @param[in] row1 row1
* @param[in] row2 row2
* @returns matrix
*/
CGLM_INLINE
mat3s
glms_mat3_swap_row(mat3s mat, int row1, int row2) {
glm_mat3_swap_row(mat.raw, row1, row2);
return mat;
}
/*!
* @brief helper for R (row vector) * M (matrix) * C (column vector)
*
* rmc stands for Row * Matrix * Column
*
* the result is scalar because R * M = Matrix1x3 (row vector),
* then Matrix1x3 * Vec3 (column vector) = Matrix1x1 (Scalar)
*
* @param[in] r row vector or matrix1x3
* @param[in] m matrix3x3
* @param[in] c column vector or matrix3x1
*
* @return scalar value e.g. Matrix1x1
*/
CGLM_INLINE
float
glms_mat3_rmc(vec3s r, mat3s m, vec3s c) {
return glm_mat3_rmc(r.raw, m.raw, c.raw);
}
#endif /* cglms_mat3s_h */

466
include/cglm/struct/mat4.h Normal file
View File

@@ -0,0 +1,466 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*!
* Most of functions in this header are optimized manually with SIMD
* if available. You dont need to call/incude SIMD headers manually
*/
/*
Macros:
GLMS_MAT4_IDENTITY_INIT
GLMS_MAT4_ZERO_INIT
GLMS_MAT4_IDENTITY
GLMS_MAT4_ZERO
Functions:
CGLM_INLINE mat4s glms_mat4_ucopy(mat4s mat);
CGLM_INLINE mat4s glms_mat4_copy(mat4s mat);
CGLM_INLINE mat4s glms_mat4_identity();
CGLM_INLINE void glms_mat4_identity_array(mat4s * __restrict mat, size_t count);
CGLM_INLINE mat4s glms_mat4_zero();
CGLM_INLINE mat3s glms_mat4_pick3(mat4s mat);
CGLM_INLINE mat3s glms_mat4_pick3t(mat4s mat);
CGLM_INLINE mat4s glms_mat4_ins3(mat3s mat);
CGLM_INLINE mat4s glms_mat4_mul(mat4s m1, mat4s m2);
CGLM_INLINE mat4s glms_mat4_mulN(mat4s * __restrict matrices[], uint32_t len);
CGLM_INLINE vec4s glms_mat4_mulv(mat4s m, vec4s v);
CGLM_INLINE float glms_mat4_trace(mat4s m);
CGLM_INLINE float glms_mat4_trace3(mat4s m);
CGLM_INLINE versors glms_mat4_quat(mat4s m);
CGLM_INLINE vec3s glms_mat4_mulv3(mat4s m, vec3s v, float last);
CGLM_INLINE mat4s glms_mat4_transpose(mat4s m);
CGLM_INLINE mat4s glms_mat4_scale_p(mat4s m, float s);
CGLM_INLINE mat4s glms_mat4_scale(mat4s m, float s);
CGLM_INLINE float glms_mat4_det(mat4s mat);
CGLM_INLINE mat4s glms_mat4_inv(mat4s mat);
CGLM_INLINE mat4s glms_mat4_inv_fast(mat4s mat);
CGLM_INLINE mat4s glms_mat4_swap_col(mat4s mat, int col1, int col2);
CGLM_INLINE mat4s glms_mat4_swap_row(mat4s mat, int row1, int row2);
CGLM_INLINE float glms_mat4_rmc(vec4s r, mat4s m, vec4s c);
*/
#ifndef cglms_mat4s_h
#define cglms_mat4s_h
#include "../common.h"
#include "../types-struct.h"
#include "../mat4.h"
#include "vec4.h"
#include "vec3.h"
#define GLMS_MAT4_IDENTITY_INIT {1.0f, 0.0f, 0.0f, 0.0f, \
0.0f, 1.0f, 0.0f, 0.0f, \
0.0f, 0.0f, 1.0f, 0.0f, \
0.0f, 0.0f, 0.0f, 1.0f}
#define GLMS_MAT4_ZERO_INIT {0.0f, 0.0f, 0.0f, 0.0f, \
0.0f, 0.0f, 0.0f, 0.0f, \
0.0f, 0.0f, 0.0f, 0.0f, \
0.0f, 0.0f, 0.0f, 0.0f}
/* for C only */
#define GLMS_MAT4_IDENTITY ((mat4s)GLMS_MAT4_IDENTITY_INIT)
#define GLMS_MAT4_ZERO ((mat4s)GLMS_MAT4_ZERO_INIT)
/*!
* @brief copy all members of [mat] to [dest]
*
* matrix may not be aligned, u stands for unaligned, this may be useful when
* copying a matrix from external source e.g. asset importer...
*
* @param[in] mat source
* @returns destination
*/
CGLM_INLINE
mat4s
glms_mat4_ucopy(mat4s mat) {
mat4s r;
glm_mat4_ucopy(mat.raw, r.raw);
return r;
}
/*!
* @brief copy all members of [mat] to [dest]
*
* @param[in] mat source
* @returns destination
*/
CGLM_INLINE
mat4s
glms_mat4_copy(mat4s mat) {
mat4s r;
glm_mat4_copy(mat.raw, r.raw);
return r;
}
/*!
* @brief make given matrix identity. It is identical with below,
* but it is more easy to do that with this func especially for members
* e.g. glm_mat4_identity(aStruct->aMatrix);
*
* @code
* glm_mat4_copy(GLM_MAT4_IDENTITY, mat); // C only
*
* // or
* mat4 mat = GLM_MAT4_IDENTITY_INIT;
* @endcode
*
* @retuns destination
*/
CGLM_INLINE
mat4s
glms_mat4_identity() {
mat4s r;
glm_mat4_identity(r.raw);
return r;
}
/*!
* @brief make given matrix array's each element identity matrix
*
* @param[in, out] mat matrix array (must be aligned (16/32)
* if alignment is not disabled)
*
* @param[in] count count of matrices
*/
CGLM_INLINE
void
glms_mat4_identity_array(mat4s * __restrict mat, size_t count) {
CGLM_ALIGN_MAT mat4s t = GLMS_MAT4_IDENTITY_INIT;
size_t i;
for (i = 0; i < count; i++) {
glm_mat4_copy(t.raw, mat[i].raw);
}
}
/*!
* @brief make given matrix zero.
*
* @returns matrix
*/
CGLM_INLINE
mat4s
glms_mat4_zero() {
mat4s r;
glm_mat4_zero(r.raw);
return r;
}
/*!
* @brief copy upper-left of mat4 to mat3
*
* @param[in] mat source
* @returns destination
*/
CGLM_INLINE
mat3s
glms_mat4_pick3(mat4s mat) {
mat3s r;
glm_mat4_pick3(mat.raw, r.raw);
return r;
}
/*!
* @brief copy upper-left of mat4 to mat3 (transposed)
*
* the postfix t stands for transpose
*
* @param[in] mat source
* @returns destination
*/
CGLM_INLINE
mat3s
glms_mat4_pick3t(mat4s mat) {
mat3s r;
glm_mat4_pick3t(mat.raw, r.raw);
return r;
}
/*!
* @brief copy mat3 to mat4's upper-left
*
* @param[in] mat source
* @returns destination
*/
CGLM_INLINE
mat4s
glms_mat4_ins3(mat3s mat) {
mat4s r;
glm_mat4_ins3(mat.raw, r.raw);
return r;
}
/*!
* @brief multiply m1 and m2 to dest
*
* m1, m2 and dest matrices can be same matrix, it is possible to write this:
*
* @code
* mat4 m = GLM_MAT4_IDENTITY_INIT;
* glm_mat4_mul(m, m, m);
* @endcode
*
* @param[in] m1 left matrix
* @param[in] m2 right matrix
* @returns destination matrix
*/
CGLM_INLINE
mat4s
glms_mat4_mul(mat4s m1, mat4s m2) {
mat4s r;
glm_mat4_mul(m1.raw, m2.raw, r.raw);
return r;
}
/*!
* @brief mupliply N mat4 matrices and store result in dest
*
* this function lets you multiply multiple (more than two or more...) matrices
* <br><br>multiplication will be done in loop, this may reduce instructions
* size but if <b>len</b> is too small then compiler may unroll whole loop,
* usage:
* @code
* mat m1, m2, m3, m4, res;
*
* res = glm_mat4_mulN((mat4 *[]){&m1, &m2, &m3, &m4}, 4);
* @endcode
*
* @warning matrices parameter is pointer array not mat4 array!
*
* @param[in] matrices mat4 * array
* @param[in] len matrices count
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_mat4_mulN(mat4s * __restrict matrices[], uint32_t len) {
CGLM_ALIGN_MAT mat4s r = GLMS_MAT4_IDENTITY_INIT;
size_t i;
for (i = 0; i < len; i++) {
r = glms_mat4_mul(r, *matrices[i]);
}
return r;
}
/*!
* @brief multiply mat4 with vec4 (column vector) and store in dest vector
*
* @param[in] m mat4 (left)
* @param[in] v vec4 (right, column vector)
* @returns vec4 (result, column vector)
*/
CGLM_INLINE
vec4s
glms_mat4_mulv(mat4s m, vec4s v) {
vec4s r;
glm_mat4_mulv(m.raw, v.raw, r.raw);
return r;
}
/*!
* @brief trace of matrix
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
CGLM_INLINE
float
glms_mat4_trace(mat4s m) {
return glm_mat4_trace(m.raw);
}
/*!
* @brief trace of matrix (rotation part)
*
* sum of the elements on the main diagonal from upper left to the lower right
*
* @param[in] m matrix
*/
CGLM_INLINE
float
glms_mat4_trace3(mat4s m) {
return glm_mat4_trace3(m.raw);
}
/*!
* @brief convert mat4's rotation part to quaternion
*
* @param[in] m affine matrix
* @returns destination quaternion
*/
CGLM_INLINE
versors
glms_mat4_quat(mat4s m) {
versors r;
glm_mat4_quat(m.raw, r.raw);
return r;
}
/*!
* @brief multiply vector with mat4
*
* @param[in] m mat4(affine transform)
* @param[in] v vec3
* @param[in] last 4th item to make it vec4
* @returns result vector (vec3)
*/
CGLM_INLINE
vec3s
glms_mat4_mulv3(mat4s m, vec3s v, float last) {
vec3s r;
glm_mat4_mulv3(m.raw, v.raw, last, r.raw);
return r;
}
/*!
* @brief tranpose mat4 and store result in same matrix
*
* @param[in] m source
* @returns result
*/
CGLM_INLINE
mat4s
glms_mat4_transpose(mat4s m) {
glm_mat4_transpose(m.raw);
return m;
}
/*!
* @brief scale (multiply with scalar) matrix without simd optimization
*
* multiply matrix with scalar
*
* @param[in] m matrix
* @param[in] s scalar
* @returns matrix
*/
CGLM_INLINE
mat4s
glms_mat4_scale_p(mat4s m, float s) {
glm_mat4_scale_p(m.raw, s);
return m;
}
/*!
* @brief scale (multiply with scalar) matrix
*
* multiply matrix with scalar
*
* @param[in] m matrix
* @param[in] s scalar
* @returns matrix
*/
CGLM_INLINE
mat4s
glms_mat4_scale(mat4s m, float s) {
glm_mat4_scale(m.raw, s);
return m;
}
/*!
* @brief mat4 determinant
*
* @param[in] mat matrix
*
* @return determinant
*/
CGLM_INLINE
float
glms_mat4_det(mat4s mat) {
return glm_mat4_det(mat.raw);
}
/*!
* @brief inverse mat4 and store in dest
*
* @param[in] mat matrix
* @returns inverse matrix
*/
CGLM_INLINE
mat4s
glms_mat4_inv(mat4s mat) {
mat4s r;
glm_mat4_inv(mat.raw, r.raw);
return r;
}
/*!
* @brief inverse mat4 and store in dest
*
* this func uses reciprocal approximation without extra corrections
* e.g Newton-Raphson. this should work faster than normal,
* to get more precise use glm_mat4_inv version.
*
* NOTE: You will lose precision, glm_mat4_inv is more accurate
*
* @param[in] mat matrix
* @returns inverse matrix
*/
CGLM_INLINE
mat4s
glms_mat4_inv_fast(mat4s mat) {
mat4s r;
glm_mat4_inv_fast(mat.raw, r.raw);
return r;
}
/*!
* @brief swap two matrix columns
*
* @param[in] mat matrix
* @param[in] col1 col1
* @param[in] col2 col2
* @returns matrix
*/
CGLM_INLINE
mat4s
glms_mat4_swap_col(mat4s mat, int col1, int col2) {
glm_mat4_swap_col(mat.raw, col1, col2);
return mat;
}
/*!
* @brief swap two matrix rows
*
* @param[in] mat matrix
* @param[in] row1 row1
* @param[in] row2 row2
* @returns matrix
*/
CGLM_INLINE
mat4s
glms_mat4_swap_row(mat4s mat, int row1, int row2) {
glm_mat4_swap_row(mat.raw, row1, row2);
return mat;
}
/*!
* @brief helper for R (row vector) * M (matrix) * C (column vector)
*
* rmc stands for Row * Matrix * Column
*
* the result is scalar because R * M = Matrix1x4 (row vector),
* then Matrix1x4 * Vec4 (column vector) = Matrix1x1 (Scalar)
*
* @param[in] r row vector or matrix1x4
* @param[in] m matrix4x4
* @param[in] c column vector or matrix4x1
*
* @return scalar value e.g. B(s)
*/
CGLM_INLINE
float
glms_mat4_rmc(vec4s r, mat4s m, vec4s c) {
return glm_mat4_rmc(r.raw, m.raw, c.raw);
}
#endif /* cglms_mat4s_h */

View File

@@ -0,0 +1,40 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglms_planes_h
#define cglms_planes_h
#include "../common.h"
#include "../types-struct.h"
#include "../plane.h"
#include "vec4.h"
/*
Plane equation: Ax + By + Cz + D = 0;
It stored in vec4 as [A, B, C, D]. (A, B, C) is normal and D is distance
*/
/*
Functions:
CGLM_INLINE vec4s glms_plane_normalize(vec4s plane);
*/
/*!
* @brief normalizes a plane
*
* @param[in] plane plane to normalize
* @returns normalized plane
*/
CGLM_INLINE
vec4s
glms_plane_normalize(vec4s plane) {
glm_plane_normalize(plane.raw);
return plane;
}
#endif /* cglms_planes_h */

View File

@@ -0,0 +1,104 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglms_projects_h
#define cglms_projects_h
#include "../common.h"
#include "../types-struct.h"
#include "../project.h"
#include "vec3.h"
#include "vec4.h"
#include "mat4.h"
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* if you don't have ( and don't want to have ) an inverse matrix then use
* glm_unproject version. You may use existing inverse of matrix in somewhere
* else, this is why glm_unprojecti exists to save save inversion cost
*
* [1] space:
* 1- if m = invProj: View Space
* 2- if m = invViewProj: World Space
* 3- if m = invMVP: Object Space
*
* You probably want to map the coordinates into object space
* so use invMVP as m
*
* Computing viewProj:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
* glm_mat4_inv(viewProj, invMVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] invMat matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @returns unprojected coordinates
*/
CGLM_INLINE
vec3s
glms_unprojecti(vec3s pos, mat4s invMat, vec4s vp) {
vec3s r;
glm_unprojecti(pos.raw, invMat.raw, vp.raw, r.raw);
return r;
}
/*!
* @brief maps the specified viewport coordinates into specified space [1]
* the matrix should contain projection matrix.
*
* this is same as glm_unprojecti except this function get inverse matrix for
* you.
*
* [1] space:
* 1- if m = proj: View Space
* 2- if m = viewProj: World Space
* 3- if m = MVP: Object Space
*
* You probably want to map the coordinates into object space
* so use MVP as m
*
* Computing viewProj and MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos point/position in viewport coordinates
* @param[in] m matrix (see brief)
* @param[in] vp viewport as [x, y, width, height]
* @returns unprojected coordinates
*/
CGLM_INLINE
vec3s
glms_unproject(vec3s pos, mat4s m, vec4s vp) {
vec3s r;
glm_unproject(pos.raw, m.raw, vp.raw, r.raw);
return r;
}
/*!
* @brief map object coordinates to window coordinates
*
* Computing MVP:
* glm_mat4_mul(proj, view, viewProj);
* glm_mat4_mul(viewProj, model, MVP);
*
* @param[in] pos object coordinates
* @param[in] m MVP matrix
* @param[in] vp viewport as [x, y, width, height]
* @returns projected coordinates
*/
CGLM_INLINE
vec3s
glms_project(vec3s pos, mat4s m, vec4s vp) {
vec3s r;
glm_project(pos.raw, m.raw, vp.raw, r.raw);
return r;
}
#endif /* cglms_projects_h */

514
include/cglm/struct/quat.h Normal file
View File

@@ -0,0 +1,514 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Macros:
GLMS_QUAT_IDENTITY_INIT
GLMS_QUAT_IDENTITY
Functions:
CGLM_INLINE versors glms_quat_identity()
CGLM_INLINE void glms_quat_identity_array(versor *q, size_t count)
CGLM_INLINE versors glms_quat_init(float x, float y, float z, float w)
CGLM_INLINE versors glms_quatv(float angle, vec3s axis)
CGLM_INLINE versors glms_quat(float angle, float x, float y, float z)
CGLM_INLINE float glms_quat_norm(versors q)
CGLM_INLINE versors glms_quat_normalize(versors q)
CGLM_INLINE float glms_quat_dot(versors p, versors q)
CGLM_INLINE versors glms_quat_conjugate(versors q)
CGLM_INLINE versors glms_quat_inv(versors q)
CGLM_INLINE versors glms_quat_add(versors p, versors q)
CGLM_INLINE versors glms_quat_sub(versors p, versors q)
CGLM_INLINE vec3s glms_quat_imagn(versors q)
CGLM_INLINE float glms_quat_imaglen(versors q)
CGLM_INLINE float glms_quat_angle(versors q)
CGLM_INLINE vec3s glms_quat_axis(versors q)
CGLM_INLINE versors glms_quat_mul(versors p, versors q)
CGLM_INLINE mat4s glms_quat_mat4(versors q)
CGLM_INLINE mat4s glms_quat_mat4t(versors q)
CGLM_INLINE mat3s glms_quat_mat3(versors q)
CGLM_INLINE mat3s glms_quat_mat3t(versors q)
CGLM_INLINE versors glms_quat_lerp(versors from, versors to, float t)
CGLM_INLINE versors glms_quat_slerp(versors from, versors to, float t)
CGLM_INLINE mat4s. glms_quat_look(vec3s eye, versors ori)
CGLM_INLINE versors glms_quat_for(vec3s dir, vec3s fwd, vec3s up)
CGLM_INLINE versors glms_quat_forp(vec3s from, vec3s to, vec3s fwd, vec3s up)
CGLM_INLINE vec3s glms_quat_rotatev(versors q, vec3s v)
CGLM_INLINE mat4s glms_quat_rotate(mat4s m, versors q)
CGLM_INLINE mat4s glms_quat_rotate_at(mat4s m, versors q, vec3s pivot)
CGLM_INLINE mat4s glms_quat_rotate_atm(versors q, vec3s pivot)
*/
#ifndef cglms_quat_h
#define cglms_quat_h
#include "../common.h"
#include "../types-struct.h"
#include "../plane.h"
#include "../quat.h"
/*
* IMPORTANT:
* ----------------------------------------------------------------------------
* cglm stores quat as [x, y, z, w] since v0.3.6
*
* it was [w, x, y, z] before v0.3.6 it has been changed to [x, y, z, w]
* with v0.3.6 version.
* ----------------------------------------------------------------------------
*/
#define GLMS_QUAT_IDENTITY_INIT GLM_QUAT_IDENTITY_INIT
#define GLMS_QUAT_IDENTITY ((versors)GLMS_QUAT_IDENTITY_INIT)
/*!
* @brief makes given quat to identity
*
* @returns identity quaternion
*/
CGLM_INLINE
versors
glms_quat_identity() {
versors dest;
glm_quat_identity(dest.raw);
return dest;
}
/*!
* @brief make given quaternion array's each element identity quaternion
*
* @param[in, out] q quat array (must be aligned (16)
* if alignment is not disabled)
*
* @param[in] count count of quaternions
*/
CGLM_INLINE
void
glms_quat_identity_array(versors * __restrict q, size_t count) {
CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
size_t i;
for (i = 0; i < count; i++) {
glm_vec4_copy(v, q[i].raw);
}
}
/*!
* @brief inits quaterion with raw values
*
* @param[in] x x
* @param[in] y y
* @param[in] z z
* @param[in] w w (real part)
* @returns quaternion
*/
CGLM_INLINE
versors
glms_quat_init(float x, float y, float z, float w) {
versors dest;
glm_quat_init(dest.raw, x, y, z, w);
return dest;
}
/*!
* @brief creates NEW quaternion with axis vector
*
* @param[in] angle angle (radians)
* @param[in] axis axis
* @returns quaternion
*/
CGLM_INLINE
versors
glms_quatv(float angle, vec3s axis) {
versors dest;
glm_quatv(dest.raw, angle, axis.raw);
return dest;
}
/*!
* @brief creates NEW quaternion with individual axis components
*
* @param[in] angle angle (radians)
* @param[in] x axis.x
* @param[in] y axis.y
* @param[in] z axis.z
* @returns quaternion
*/
CGLM_INLINE
versors
glms_quat(float angle, float x, float y, float z) {
versors dest;
glm_quat(dest.raw, angle, x, y, z);
return dest;
}
/*!
* @brief returns norm (magnitude) of quaternion
*
* @param[out] q quaternion
*/
CGLM_INLINE
float
glms_quat_norm(versors q) {
return glm_quat_norm(q.raw);
}
/*!
* @brief normalize quaternion
*
* @param[in] q quaternion
* @returns quaternion
*/
CGLM_INLINE
versors
glms_quat_normalize(versors q) {
versors dest;
glm_quat_normalize_to(q.raw, dest.raw);
return dest;
}
/*!
* @brief dot product of two quaternion
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @returns dot product
*/
CGLM_INLINE
float
glms_quat_dot(versors p, versors q) {
return glm_quat_dot(p.raw, q.raw);
}
/*!
* @brief conjugate of quaternion
*
* @param[in] q quaternion
* @returns conjugate
*/
CGLM_INLINE
versors
glms_quat_conjugate(versors q) {
versors dest;
glm_quat_conjugate(q.raw, dest.raw);
return dest;
}
/*!
* @brief inverse of non-zero quaternion
*
* @param[in] q quaternion
* @returns inverse quaternion
*/
CGLM_INLINE
versors
glms_quat_inv(versors q) {
versors dest;
glm_quat_inv(q.raw, dest.raw);
return dest;
}
/*!
* @brief add (componentwise) two quaternions and store result in dest
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @returns result quaternion
*/
CGLM_INLINE
versors
glms_quat_add(versors p, versors q) {
versors dest;
glm_quat_add(p.raw, q.raw, dest.raw);
return dest;
}
/*!
* @brief subtract (componentwise) two quaternions and store result in dest
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @returns result quaternion
*/
CGLM_INLINE
versors
glms_quat_sub(versors p, versors q) {
versors dest;
glm_quat_sub(p.raw, q.raw, dest.raw);
return dest;
}
/*!
* @brief returns normalized imaginary part of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
vec3s
glms_quat_imagn(versors q) {
vec3s dest;
glm_normalize_to(q.imag.raw, dest.raw);
return dest;
}
/*!
* @brief returns length of imaginary part of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
float
glms_quat_imaglen(versors q) {
return glm_quat_imaglen(q.raw);
}
/*!
* @brief returns angle of quaternion
*
* @param[in] q quaternion
*/
CGLM_INLINE
float
glms_quat_angle(versors q) {
return glm_quat_angle(q.raw);
}
/*!
* @brief axis of quaternion
*
* @param[in] q quaternion
* @returns axis of quaternion
*/
CGLM_INLINE
vec3s
glms_quat_axis(versors q) {
vec3s dest;
glm_quat_axis(q.raw, dest.raw);
return dest;
}
/*!
* @brief multiplies two quaternion and stores result in dest
* this is also called Hamilton Product
*
* According to WikiPedia:
* The product of two rotation quaternions [clarification needed] will be
* equivalent to the rotation q followed by the rotation p
*
* @param[in] p quaternion 1
* @param[in] q quaternion 2
* @returns result quaternion
*/
CGLM_INLINE
versors
glms_quat_mul(versors p, versors q) {
versors dest;
glm_quat_mul(p.raw, q.raw, dest.raw);
return dest;
}
/*!
* @brief convert quaternion to mat4
*
* @param[in] q quaternion
* @returns result matrix
*/
CGLM_INLINE
mat4s
glms_quat_mat4(versors q) {
mat4s dest;
glm_quat_mat4(q.raw, dest.raw);
return dest;
}
/*!
* @brief convert quaternion to mat4 (transposed)
*
* @param[in] q quaternion
* @returns result matrix as transposed
*/
CGLM_INLINE
mat4s
glms_quat_mat4t(versors q) {
mat4s dest;
glm_quat_mat4t(q.raw, dest.raw);
return dest;
}
/*!
* @brief convert quaternion to mat3
*
* @param[in] q quaternion
* @returns result matrix
*/
CGLM_INLINE
mat3s
glms_quat_mat3(versors q) {
mat3s dest;
glm_quat_mat3(q.raw, dest.raw);
return dest;
}
/*!
* @brief convert quaternion to mat3 (transposed)
*
* @param[in] q quaternion
* @returns result matrix
*/
CGLM_INLINE
mat3s
glms_quat_mat3t(versors q) {
mat3s dest;
glm_quat_mat3t(q.raw, dest.raw);
return dest;
}
/*!
* @brief interpolates between two quaternions
* using linear interpolation (LERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t interpolant (amount) clamped between 0 and 1
* @returns result quaternion
*/
CGLM_INLINE
versors
glms_quat_lerp(versors from, versors to, float t) {
versors dest;
glm_quat_lerp(from.raw, to.raw, t, dest.raw);
return dest;
}
/*!
* @brief interpolates between two quaternions
* using spherical linear interpolation (SLERP)
*
* @param[in] from from
* @param[in] to to
* @param[in] t amout
* @returns result quaternion
*/
CGLM_INLINE
versors
glms_quat_slerp(versors from, versors to, float t) {
versors dest;
glm_quat_slerp(from.raw, to.raw, t, dest.raw);
return dest;
}
/*!
* @brief creates view matrix using quaternion as camera orientation
*
* @param[in] eye eye
* @param[in] ori orientation in world space as quaternion
* @returns view matrix
*/
CGLM_INLINE
mat4s
glms_quat_look(vec3s eye, versors ori) {
mat4s dest;
glm_quat_look(eye.raw, ori.raw, dest.raw);
return dest;
}
/*!
* @brief creates look rotation quaternion
*
* @param[in] dir direction to look
* @param[in] fwd forward vector
* @param[in] up up vector
* @returns destination quaternion
*/
CGLM_INLINE
versors
glms_quat_for(vec3s dir, vec3s fwd, vec3s up) {
versors dest;
glm_quat_for(dir.raw, fwd.raw, up.raw, dest.raw);
return dest;
}
/*!
* @brief creates look rotation quaternion using source and
* destination positions p suffix stands for position
*
* @param[in] from source point
* @param[in] to destination point
* @param[in] fwd forward vector
* @param[in] up up vector
* @returns destination quaternion
*/
CGLM_INLINE
versors
glms_quat_forp(vec3s from, vec3s to, vec3s fwd, vec3s up) {
versors dest;
glm_quat_forp(from.raw, to.raw, fwd.raw, up.raw, dest.raw);
return dest;
}
/*!
* @brief rotate vector using using quaternion
*
* @param[in] q quaternion
* @param[in] v vector to rotate
* @returns rotated vector
*/
CGLM_INLINE
vec3s
glms_quat_rotatev(versors q, vec3s v) {
vec3s dest;
glm_quat_rotatev(q.raw, v.raw, dest.raw);
return dest;
}
/*!
* @brief rotate existing transform matrix using quaternion
*
* @param[in] m existing transform matrix
* @param[in] q quaternion
* @returns rotated matrix/transform
*/
CGLM_INLINE
mat4s
glms_quat_rotate(mat4s m, versors q) {
glm_quat_rotate(m.raw, q.raw, m.raw);
return m;
}
/*!
* @brief rotate existing transform matrix using quaternion at pivot point
*
* @param[in, out] m existing transform matrix
* @param[in] q quaternion
* @returns pivot
*/
CGLM_INLINE
mat4s
glms_quat_rotate_at(mat4s m, versors q, vec3s pivot) {
glm_quat_rotate_at(m.raw, q.raw, pivot.raw);
return m;
}
/*!
* @brief rotate NEW transform matrix using quaternion at pivot point
*
* this creates rotation matrix, it assumes you don't have a matrix
*
* this should work faster than glm_quat_rotate_at because it reduces
* one glm_translate.
*
* @param[in] q quaternion
* @returns pivot
*/
CGLM_INLINE
mat4s
glms_quat_rotate_atm(versors q, vec3s pivot) {
mat4s dest;
glm_quat_rotate_atm(dest.raw, q.raw, pivot.raw);
return dest;
}
#endif /* cglms_quat_h */

View File

@@ -0,0 +1,93 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglms_spheres_h
#define cglms_spheres_h
#include "../common.h"
#include "../types-struct.h"
#include "../sphere.h"
#include "mat4.h"
/*
Sphere Representation in cglm: [center.x, center.y, center.z, radii]
You could use this representation or you can convert it to vec4 before call
any function
*/
/*!
* @brief helper for getting sphere radius
*
* @param[in] s sphere
*
* @return returns radii
*/
CGLM_INLINE
float
glms_sphere_radii(vec4s s) {
return glm_sphere_radii(s.raw);
}
/*!
* @brief apply transform to sphere, it is just wrapper for glm_mat4_mulv3
*
* @param[in] s sphere
* @param[in] m transform matrix
* @returns transformed sphere
*/
CGLM_INLINE
vec4s
glms_sphere_transform(vec4s s, mat4 m) {
vec4s r;
glm_sphere_transform(s.raw, m, r.raw);
return r;
}
/*!
* @brief merges two spheres and creates a new one
*
* two sphere must be in same space, for instance if one in world space then
* the other must be in world space too, not in local space.
*
* @param[in] s1 sphere 1
* @param[in] s2 sphere 2
* returns merged/extended sphere
*/
CGLM_INLINE
vec4s
glms_sphere_merge(vec4s s1, vec4s s2) {
vec4s r;
glm_sphere_merge(s1.raw, s2.raw, r.raw);
return r;
}
/*!
* @brief check if two sphere intersects
*
* @param[in] s1 sphere
* @param[in] s2 other sphere
*/
CGLM_INLINE
bool
glms_sphere_sphere(vec4s s1, vec4s s2) {
return glm_sphere_sphere(s1.raw, s2.raw);
}
/*!
* @brief check if sphere intersects with point
*
* @param[in] s sphere
* @param[in] point point
*/
CGLM_INLINE
bool
glms_sphere_point(vec4s s, vec3s point) {
return glm_sphere_point(s.raw, point.raw);
}
#endif /* cglms_spheres_h */

View File

@@ -0,0 +1,198 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*!
* @brief SIMD like functions
*/
/*
Functions:
CGLM_INLINE vec3s glms_vec3_broadcast(float val);
CGLM_INLINE bool glms_vec3_eq(vec3s v, float val);
CGLM_INLINE bool glms_vec3_eq_eps(vec3s v, float val);
CGLM_INLINE bool glms_vec3_eq_all(vec3s v);
CGLM_INLINE bool glms_vec3_eqv(vec3s a, vec3s b);
CGLM_INLINE bool glms_vec3_eqv_eps(vec3s a, vec3s b);
CGLM_INLINE float glms_vec3_max(vec3s v);
CGLM_INLINE float glms_vec3_min(vec3s v);
CGLM_INLINE bool glms_vec3_isnan(vec3s v);
CGLM_INLINE bool glms_vec3_isinf(vec3s v);
CGLM_INLINE bool glms_vec3_isvalid(vec3s v);
CGLM_INLINE vec3s glms_vec3_sign(vec3s v);
CGLM_INLINE vec3s glms_vec3_sqrt(vec3s v);
*/
#ifndef cglms_vec3s_ext_h
#define cglms_vec3s_ext_h
#include "../common.h"
#include "../types-struct.h"
#include "../util.h"
#include "../vec3-ext.h"
/*!
* @brief fill a vector with specified value
*
* @param[in] val value
* @returns dest
*/
CGLM_INLINE
vec3s
glms_vec3_broadcast(float val) {
vec3s r;
glm_vec3_broadcast(val, r.raw);
return r;
}
/*!
* @brief check if vector is equal to value (without epsilon)
*
* @param[in] v vector
* @param[in] val value
*/
CGLM_INLINE
bool
glms_vec3_eq(vec3s v, float val) {
return glm_vec3_eq(v.raw, val);
}
/*!
* @brief check if vector is equal to value (with epsilon)
*
* @param[in] v vector
* @param[in] val value
*/
CGLM_INLINE
bool
glms_vec3_eq_eps(vec3s v, float val) {
return glm_vec3_eq_eps(v.raw, val);
}
/*!
* @brief check if vectors members are equal (without epsilon)
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glms_vec3_eq_all(vec3s v) {
return glm_vec3_eq_all(v.raw);
}
/*!
* @brief check if vector is equal to another (without epsilon)
*
* @param[in] a vector
* @param[in] b vector
*/
CGLM_INLINE
bool
glms_vec3_eqv(vec3s a, vec3s b) {
return glm_vec3_eqv(a.raw, b.raw);
}
/*!
* @brief check if vector is equal to another (with epsilon)
*
* @param[in] a vector
* @param[in] b vector
*/
CGLM_INLINE
bool
glms_vec3_eqv_eps(vec3s a, vec3s b) {
return glm_vec3_eqv_eps(a.raw, b.raw);
}
/*!
* @brief max value of vector
*
* @param[in] v vector
*/
CGLM_INLINE
float
glms_vec3_max(vec3s v) {
return glm_vec3_max(v.raw);
}
/*!
* @brief min value of vector
*
* @param[in] v vector
*/
CGLM_INLINE
float
glms_vec3_min(vec3s v) {
return glm_vec3_min(v.raw);
}
/*!
* @brief check if all items are NaN (not a number)
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glms_vec3_isnan(vec3s v) {
return glm_vec3_isnan(v.raw);
}
/*!
* @brief check if all items are INFINITY
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glms_vec3_isinf(vec3s v) {
return glm_vec3_isinf(v.raw);
}
/*!
* @brief check if all items are valid number
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glms_vec3_isvalid(vec3s v) {
return glm_vec3_isvalid(v.raw);
}
/*!
* @brief get sign of 32 bit float as +1, -1, 0
*
* Important: It returns 0 for zero/NaN input
*
* @param v vector
* @returns sign vector
*/
CGLM_INLINE
vec3s
glms_vec3_sign(vec3s v) {
vec3s r;
glm_vec3_sign(v.raw, r.raw);
return r;
}
/*!
* @brief square root of each vector item
*
* @param[in] v vector
* @returns destination vector
*/
CGLM_INLINE
vec3s
glms_vec3_sqrt(vec3s v) {
vec3s r;
glm_vec3_sqrt(v.raw, r.raw);
return r;
}
#endif /* cglms_vec3s_ext_h */

750
include/cglm/struct/vec3.h Normal file
View File

@@ -0,0 +1,750 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Macros:
GLMS_VEC3_ONE_INIT
GLMS_VEC3_ZERO_INIT
GLMS_VEC3_ONE
GLMS_VEC3_ZERO
GLMS_YUP
GLMS_ZUP
GLMS_XUP
Functions:
CGLM_INLINE vec3s glms_vec3(vec4s v4);
CGLM_INLINE void glms_vec3_pack(vec3s dst[], vec3 src[], size_t len);
CGLM_INLINE void glms_vec3_unpack(vec3 dst[], vec3s src[], size_t len);
CGLM_INLINE vec3s glms_vec3_zero();
CGLM_INLINE vec3s glms_vec3_one();
CGLM_INLINE float glms_vec3_dot(vec3s a, vec3s b);
CGLM_INLINE float glms_vec3_norm2(vec3s v);
CGLM_INLINE float glms_vec3_norm(vec3s v);
CGLM_INLINE vec3s glms_vec3_add(vec3s a, vec3s b);
CGLM_INLINE vec3s glms_vec3_adds(vec3s a, float s);
CGLM_INLINE vec3s glms_vec3_sub(vec3s a, vec3s b);
CGLM_INLINE vec3s glms_vec3_subs(vec3s a, float s);
CGLM_INLINE vec3s glms_vec3_mul(vec3s a, vec3s b);
CGLM_INLINE vec3s glms_vec3_scale(vec3s v, float s);
CGLM_INLINE vec3s glms_vec3_scale_as(vec3s v, float s);
CGLM_INLINE vec3s glms_vec3_div(vec3s a, vec3s b);
CGLM_INLINE vec3s glms_vec3_divs(vec3s a, float s);
CGLM_INLINE vec3s glms_vec3_addadd(vec3s a, vec3s b, vec3s dest);
CGLM_INLINE vec3s glms_vec3_subadd(vec3s a, vec3s b, vec3s dest);
CGLM_INLINE vec3s glms_vec3_muladd(vec3s a, vec3s b, vec3s dest);
CGLM_INLINE vec3s glms_vec3_muladds(vec3s a, float s, vec3s dest);
CGLM_INLINE vec3s glms_vec3_maxadd(vec3s a, vec3s b, vec3s dest);
CGLM_INLINE vec3s glms_vec3_minadd(vec3s a, vec3s b, vec3s dest);
CGLM_INLINE vec3s glms_vec3_flipsign(vec3s v);
CGLM_INLINE vec3s glms_vec3_negate(vec3s v);
CGLM_INLINE vec3s glms_vec3_inv(vec3s v);
CGLM_INLINE vec3s glms_vec3_normalize(vec3s v);
CGLM_INLINE vec3s glms_vec3_cross(vec3s a, vec3s b);
CGLM_INLINE vec3s glms_vec3_crossn(vec3s a, vec3s b);
CGLM_INLINE float glms_vec3_distance(vec3s a, vec3s b);
CGLM_INLINE float glms_vec3_angle(vec3s a, vec3s b);
CGLM_INLINE vec3s glms_vec3_rotate(vec3s v, float angle, vec3s axis);
CGLM_INLINE vec3s glms_vec3_rotate_m4(mat4s m, vec3s v);
CGLM_INLINE vec3s glms_vec3_rotate_m3(mat3s m, vec3s v);
CGLM_INLINE vec3s glms_vec3_proj(vec3s a, vec3s b);
CGLM_INLINE vec3s glms_vec3_center(vec3s a, vec3s b);
CGLM_INLINE float glms_vec3_distance2(vec3s a, vec3s b);
CGLM_INLINE vec3s glms_vec3_maxv(vec3s a, vec3s b);
CGLM_INLINE vec3s glms_vec3_minv(vec3s a, vec3s b);
CGLM_INLINE vec3s glms_vec3_ortho(vec3s v);
CGLM_INLINE vec3s glms_vec3_clamp(vec3s v, float minVal, float maxVal);
CGLM_INLINE vec3s glms_vec3_lerp(vec3s from, vec3s to, float t);
Convenient:
CGLM_INLINE vec3s glms_cross(vec3s a, vec3s b);
CGLM_INLINE float glms_dot(vec3s a, vec3s b);
CGLM_INLINE vec3s glms_normalize(vec3s v);
*/
#ifndef cglms_vec3s_h
#define cglms_vec3s_h
#include "../common.h"
#include "../types-struct.h"
#include "../util.h"
#include "../vec3.h"
#include "vec3-ext.h"
#define GLMS_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
#define GLMS_VEC3_ZERO_INIT {0.0f, 0.0f, 0.0f}
#define GLMS_VEC3_ONE ((vec3s)GLMS_VEC3_ONE_INIT)
#define GLMS_VEC3_ZERO ((vec3s)GLMS_VEC3_ZERO_INIT)
#define GLMS_YUP ((vec3s){0.0f, 1.0f, 0.0f})
#define GLMS_ZUP ((vec3s){0.0f, 0.0f, 1.0f})
#define GLMS_XUP ((vec3s){1.0f, 0.0f, 0.0f})
/*!
* @brief init vec3 using vec4
*
* @param[in] v4 vector4
* @returns destination
*/
CGLM_INLINE
vec3s
glms_vec3(vec4s v4) {
vec3s r;
glm_vec3(v4.raw, r.raw);
return r;
}
/*!
* @brief pack an array of vec3 into an array of vec3s
*
* @param[out] dst array of vec3
* @param[in] src array of vec3s
* @param[in] len number of elements
*/
CGLM_INLINE
void
glms_vec3_pack(vec3s dst[], vec3 src[], size_t len) {
size_t i;
for (i = 0; i < len; i++) {
glm_vec3_copy(src[i], dst[i].raw);
}
}
/*!
* @brief unpack an array of vec3s into an array of vec3
*
* @param[out] dst array of vec3s
* @param[in] src array of vec3
* @param[in] len number of elements
*/
CGLM_INLINE
void
glms_vec3_unpack(vec3 dst[], vec3s src[], size_t len) {
size_t i;
for (i = 0; i < len; i++) {
glm_vec3_copy(src[i].raw, dst[i]);
}
}
/*!
* @brief make vector zero
*
* @returns zero vector
*/
CGLM_INLINE
vec3s
glms_vec3_zero() {
vec3s r;
glm_vec3_zero(r.raw);
return r;
}
/*!
* @brief make vector one
*
* @returns one vector
*/
CGLM_INLINE
vec3s
glms_vec3_one() {
vec3s r;
glm_vec3_one(r.raw);
return r;
}
/*!
* @brief vec3 dot product
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return dot product
*/
CGLM_INLINE
float
glms_vec3_dot(vec3s a, vec3s b) {
return glm_vec3_dot(a.raw, b.raw);
}
/*!
* @brief norm * norm (magnitude) of vec
*
* we can use this func instead of calling norm * norm, because it would call
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
* not good name for this func
*
* @param[in] v vector
*
* @return norm * norm
*/
CGLM_INLINE
float
glms_vec3_norm2(vec3s v) {
return glm_vec3_norm2(v.raw);
}
/*!
* @brief norm (magnitude) of vec3
*
* @param[in] v vector
*
* @return norm
*/
CGLM_INLINE
float
glms_vec3_norm(vec3s v) {
return glm_vec3_norm(v.raw);
}
/*!
* @brief add a vector to b vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @returns destination vector
*/
CGLM_INLINE
vec3s
glms_vec3_add(vec3s a, vec3s b) {
vec3s r;
glm_vec3_add(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief add scalar to v vector store result in dest (d = v + s)
*
* @param[in] a vector
* @param[in] s scalar
* @returns destination vector
*/
CGLM_INLINE
vec3s
glms_vec3_adds(vec3s a, float s) {
vec3s r;
glm_vec3_adds(a.raw, s, r.raw);
return r;
}
/*!
* @brief subtract b vector from a vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @returns destination vector
*/
CGLM_INLINE
vec3s
glms_vec3_sub(vec3s a, vec3s b) {
vec3s r;
glm_vec3_sub(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief subtract scalar from v vector store result in dest (d = v - s)
*
* @param[in] a vector
* @param[in] s scalar
* @returns destination vector
*/
CGLM_INLINE
vec3s
glms_vec3_subs(vec3s a, float s) {
vec3s r;
glm_vec3_subs(a.raw, s, r.raw);
return r;
}
/*!
* @brief multiply two vector (component-wise multiplication)
*
* @param a vector1
* @param b vector2
* @returns v3 = (a[0] * b[0], a[1] * b[1], a[2] * b[2])
*/
CGLM_INLINE
vec3s
glms_vec3_mul(vec3s a, vec3s b) {
vec3s r;
glm_vec3_mul(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief multiply/scale vec3 vector with scalar: result = v * s
*
* @param[in] v vector
* @param[in] s scalar
* @returns destination vector
*/
CGLM_INLINE
vec3s
glms_vec3_scale(vec3s v, float s) {
vec3s r;
glm_vec3_scale(v.raw, s, r.raw);
return r;
}
/*!
* @brief make vec3 vector scale as specified: result = unit(v) * s
*
* @param[in] v vector
* @param[in] s scalar
* @returns destination vector
*/
CGLM_INLINE
vec3s
glms_vec3_scale_as(vec3s v, float s) {
vec3s r;
glm_vec3_scale_as(v.raw, s, r.raw);
return r;
}
/*!
* @brief div vector with another component-wise division: d = a / b
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns result = (a[0]/b[0], a[1]/b[1], a[2]/b[2])
*/
CGLM_INLINE
vec3s
glms_vec3_div(vec3s a, vec3s b) {
vec3s r;
glm_vec3_div(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief div vector with scalar: d = v / s
*
* @param[in] a vector
* @param[in] s scalar
* @returns result = (a[0]/s, a[1]/s, a[2]/s)
*/
CGLM_INLINE
vec3s
glms_vec3_divs(vec3s a, float s) {
vec3s r;
glm_vec3_divs(a.raw, s, r.raw);
return r;
}
/*!
* @brief add two vectors and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns dest += (a + b)
*/
CGLM_INLINE
vec3s
glms_vec3_addadd(vec3s a, vec3s b, vec3s dest) {
glm_vec3_addadd(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief sub two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns dest += (a + b)
*/
CGLM_INLINE
vec3s
glms_vec3_subadd(vec3s a, vec3s b, vec3s dest) {
glm_vec3_subadd(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief mul two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns dest += (a * b)
*/
CGLM_INLINE
vec3s
glms_vec3_muladd(vec3s a, vec3s b, vec3s dest) {
glm_vec3_muladd(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief mul vector with scalar and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector
* @param[in] s scalar
* @returns dest += (a * b)
*/
CGLM_INLINE
vec3s
glms_vec3_muladds(vec3s a, float s, vec3s dest) {
glm_vec3_muladds(a.raw, s, dest.raw);
return dest;
}
/*!
* @brief add max of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns dest += max(a, b)
*/
CGLM_INLINE
vec3s
glms_vec3_maxadd(vec3s a, vec3s b, vec3s dest) {
glm_vec3_maxadd(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief add min of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns dest += min(a, b)
*/
CGLM_INLINE
vec3s
glms_vec3_minadd(vec3s a, vec3s b, vec3s dest) {
glm_vec3_minadd(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief negate vector components and store result in dest
*
* @param[in] v vector
* @returns result vector
*/
CGLM_INLINE
vec3s
glms_vec3_flipsign(vec3s v) {
glm_vec3_flipsign(v.raw);
return v;
}
/*!
* @brief negate vector components
*
* @param[in] v vector
* @returns negated vector
*/
CGLM_INLINE
vec3s
glms_vec3_negate(vec3s v) {
glm_vec3_negate(v.raw);
return v;
}
/*!
* @brief normalize vec3 and store result in same vec
*
* @param[in] v vector
* @returns normalized vector
*/
CGLM_INLINE
vec3s
glms_vec3_normalize(vec3s v) {
glm_vec3_normalize(v.raw);
return v;
}
/*!
* @brief cross product of two vector (RH)
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns destination
*/
CGLM_INLINE
vec3s
glms_vec3_cross(vec3s a, vec3s b) {
vec3s r;
glm_vec3_cross(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief cross product of two vector (RH) and normalize the result
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns destination
*/
CGLM_INLINE
vec3s
glms_vec3_crossn(vec3s a, vec3s b) {
vec3s r;
glm_vec3_crossn(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief angle betwen two vector
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return angle as radians
*/
CGLM_INLINE
float
glms_vec3_angle(vec3s a, vec3s b) {
return glm_vec3_angle(a.raw, b.raw);
}
/*!
* @brief rotate vec3 around axis by angle using Rodrigues' rotation formula
*
* @param[in] v vector
* @param[in] axis axis vector (must be unit vector)
* @param[in] angle angle by radians
* @returns rotated vector
*/
CGLM_INLINE
vec3s
glms_vec3_rotate(vec3s v, float angle, vec3s axis) {
glm_vec3_rotate(v.raw, angle, axis.raw);
return v;
}
/*!
* @brief apply rotation matrix to vector
*
* matrix format should be (no perspective):
* a b c x
* e f g y
* i j k z
* 0 0 0 w
*
* @param[in] m affine matrix or rot matrix
* @param[in] v vector
* @returns rotated vector
*/
CGLM_INLINE
vec3s
glms_vec3_rotate_m4(mat4s m, vec3s v) {
vec3s r;
glm_vec3_rotate_m4(m.raw, v.raw, r.raw);
return r;
}
/*!
* @brief apply rotation matrix to vector
*
* @param[in] m affine matrix or rot matrix
* @param[in] v vector
* @returns rotated vector
*/
CGLM_INLINE
vec3s
glms_vec3_rotate_m3(mat3s m, vec3s v) {
vec3s r;
glm_vec3_rotate_m3(m.raw, v.raw, r.raw);
return r;
}
/*!
* @brief project a vector onto b vector
*
* @param[in] a vector1
* @param[in] b vector2
* @returns projected vector
*/
CGLM_INLINE
vec3s
glms_vec3_proj(vec3s a, vec3s b) {
vec3s r;
glm_vec3_proj(a.raw, b.raw, r.raw);
return r;
}
/**
* @brief find center point of two vector
*
* @param[in] a vector1
* @param[in] b vector2
* @returns center point
*/
CGLM_INLINE
vec3s
glms_vec3_center(vec3s a, vec3s b) {
vec3s r;
glm_vec3_center(a.raw, b.raw, r.raw);
return r;
}
/**
* @brief squared distance between two vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @return squared distance (distance * distance)
*/
CGLM_INLINE
float
glms_vec3_distance2(vec3s a, vec3s b) {
return glm_vec3_distance2(a.raw, b.raw);
}
/**
* @brief distance between two vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @return distance
*/
CGLM_INLINE
float
glms_vec3_distance(vec3s a, vec3s b) {
return glm_vec3_distance(a.raw, b.raw);
}
/*!
* @brief max values of vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @returns destination
*/
CGLM_INLINE
vec3s
glms_vec3_maxv(vec3s a, vec3s b) {
vec3s r;
glm_vec3_maxv(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief min values of vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @returns destination
*/
CGLM_INLINE
vec3s
glms_vec3_minv(vec3s a, vec3s b) {
vec3s r;
glm_vec3_minv(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief possible orthogonal/perpendicular vector
*
* @param[in] v vector
* @returns orthogonal/perpendicular vector
*/
CGLM_INLINE
vec3s
glms_vec3_ortho(vec3s v) {
vec3s r;
glm_vec3_ortho(v.raw, r.raw);
return r;
}
/*!
* @brief clamp vector's individual members between min and max values
*
* @param[in] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
* @returns clamped vector
*/
CGLM_INLINE
vec3s
glms_vec3_clamp(vec3s v, float minVal, float maxVal) {
glm_vec3_clamp(v.raw, minVal, maxVal);
return v;
}
/*!
* @brief linear interpolation between two vector
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @returns destination
*/
CGLM_INLINE
vec3s
glms_vec3_lerp(vec3s from, vec3s to, float t) {
vec3s r;
glm_vec3_lerp(from.raw, to.raw, t, r.raw);
return r;
}
/*!
* @brief vec3 cross product
*
* this is just convenient wrapper
*
* @param[in] a source 1
* @param[in] b source 2
* @returns destination
*/
CGLM_INLINE
vec3s
glms_cross(vec3s a, vec3s b) {
vec3s r;
glm_cross(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief vec3 dot product
*
* this is just convenient wrapper
*
* @param[in] a vector1
* @param[in] b vector2
* @return dot product
*/
CGLM_INLINE
float
glms_dot(vec3s a, vec3s b) {
return glm_dot(a.raw, b.raw);
}
/*!
* @brief normalize vec3 and store result in same vec
*
* this is just convenient wrapper
*
* @param[in] v vector
* @returns normalized vector
*/
CGLM_INLINE
vec3s
glms_normalize(vec3s v) {
glm_normalize(v.raw);
return v;
}
#endif /* cglms_vec3s_h */

View File

@@ -0,0 +1,198 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*!
* @brief SIMD like functions
*/
/*
Functions:
CGLM_INLINE vec4s glms_vec4_broadcast(float val);
CGLM_INLINE bool glms_vec4_eq(vec4s v, float val);
CGLM_INLINE bool glms_vec4_eq_eps(vec4s v, float val);
CGLM_INLINE bool glms_vec4_eq_all(vec4s v);
CGLM_INLINE bool glms_vec4_eqv(vec4s a, vec4s b);
CGLM_INLINE bool glms_vec4_eqv_eps(vec4s a, vec4s b);
CGLM_INLINE float glms_vec4_max(vec4s v);
CGLM_INLINE float glms_vec4_min(vec4s v);
CGLM_INLINE bool glms_vec4_isnan(vec4s v);
CGLM_INLINE bool glms_vec4_isinf(vec4s v);
CGLM_INLINE bool glms_vec4_isvalid(vec4s v);
CGLM_INLINE vec4s glms_vec4_sign(vec4s v);
CGLM_INLINE vec4s glms_vec4_sqrt(vec4s v);
*/
#ifndef cglms_vec4s_ext_h
#define cglms_vec4s_ext_h
#include "../common.h"
#include "../types-struct.h"
#include "../util.h"
#include "../vec4-ext.h"
/*!
* @brief fill a vector with specified value
*
* @param val value
* @returns dest
*/
CGLM_INLINE
vec4s
glms_vec4_broadcast(float val) {
vec4s r;
glm_vec4_broadcast(val, r.raw);
return r;
}
/*!
* @brief check if vector is equal to value (without epsilon)
*
* @param v vector
* @param val value
*/
CGLM_INLINE
bool
glms_vec4_eq(vec4s v, float val) {
return glm_vec4_eq(v.raw, val);
}
/*!
* @brief check if vector is equal to value (with epsilon)
*
* @param v vector
* @param val value
*/
CGLM_INLINE
bool
glms_vec4_eq_eps(vec4s v, float val) {
return glm_vec4_eq_eps(v.raw, val);
}
/*!
* @brief check if vectors members are equal (without epsilon)
*
* @param v vector
*/
CGLM_INLINE
bool
glms_vec4_eq_all(vec4s v) {
return glm_vec4_eq_all(v.raw);
}
/*!
* @brief check if vector is equal to another (without epsilon)
*
* @param a vector
* @param b vector
*/
CGLM_INLINE
bool
glms_vec4_eqv(vec4s a, vec4s b) {
return glm_vec4_eqv(a.raw, b.raw);
}
/*!
* @brief check if vector is equal to another (with epsilon)
*
* @param a vector
* @param b vector
*/
CGLM_INLINE
bool
glms_vec4_eqv_eps(vec4s a, vec4s b) {
return glm_vec4_eqv_eps(a.raw, b.raw);
}
/*!
* @brief max value of vector
*
* @param v vector
*/
CGLM_INLINE
float
glms_vec4_max(vec4s v) {
return glm_vec4_max(v.raw);
}
/*!
* @brief min value of vector
*
* @param v vector
*/
CGLM_INLINE
float
glms_vec4_min(vec4s v) {
return glm_vec4_min(v.raw);
}
/*!
* @brief check if one of items is NaN (not a number)
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glms_vec4_isnan(vec4s v) {
return glm_vec4_isnan(v.raw);
}
/*!
* @brief check if one of items is INFINITY
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glms_vec4_isinf(vec4s v) {
return glm_vec4_isinf(v.raw);
}
/*!
* @brief check if all items are valid number
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glms_vec4_isvalid(vec4s v) {
return glm_vec4_isvalid(v.raw);
}
/*!
* @brief get sign of 32 bit float as +1, -1, 0
*
* Important: It returns 0 for zero/NaN input
*
* @param v vector
* @returns sign vector
*/
CGLM_INLINE
vec4s
glms_vec4_sign(vec4s v) {
vec4s r;
glm_vec4_sign(v.raw, r.raw);
return r;
}
/*!
* @brief square root of each vector item
*
* @param[in] v vector
* @returns destination vector
*/
CGLM_INLINE
vec4s
glms_vec4_sqrt(vec4s v) {
vec4s r;
glm_vec4_sqrt(v.raw, r.raw);
return r;
}
#endif /* cglms_vec4s_ext_h */

580
include/cglm/struct/vec4.h Normal file
View File

@@ -0,0 +1,580 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
/*
Macros:
GLM_VEC4_ONE_INIT
GLM_VEC4_BLACK_INIT
GLM_VEC4_ZERO_INIT
GLM_VEC4_ONE
GLM_VEC4_BLACK
GLM_VEC4_ZERO
Functions:
CGLM_INLINE vec4s glms_vec4(vec3s v3, float last);
CGLM_INLINE vec3s glms_vec4_copy3(vec4s v);
CGLM_INLINE vec4s glms_vec4_copy(vec4s v);
CGLM_INLINE vec4s glms_vec4_ucopy(vec4s v);
CGLM_INLINE void glms_vec4_pack(vec4s dst[], vec4 src[], size_t len);
CGLM_INLINE void glms_vec4_unpack(vec4 dst[], vec4s src[], size_t len);
CGLM_INLINE float glms_vec4_dot(vec4s a, vec4s b);
CGLM_INLINE float glms_vec4_norm2(vec4s v);
CGLM_INLINE float glms_vec4_norm(vec4s v);
CGLM_INLINE vec4s glms_vec4_add(vec4s a, vec4s b);
CGLM_INLINE vec4s glms_vec4_adds(vec4s v, float s);
CGLM_INLINE vec4s glms_vec4_sub(vec4s a, vec4s b);
CGLM_INLINE vec4s glms_vec4_subs(vec4s v, float s);
CGLM_INLINE vec4s glms_vec4_mul(vec4s a, vec4s b);
CGLM_INLINE vec4s glms_vec4_scale(vec4s v, float s);
CGLM_INLINE vec4s glms_vec4_scale_as(vec4s v, float s);
CGLM_INLINE vec4s glms_vec4_div(vec4s a, vec4s b);
CGLM_INLINE vec4s glms_vec4_divs(vec4s v, float s);
CGLM_INLINE vec4s glms_vec4_addadd(vec4s a, vec4s b, vec4s dest);
CGLM_INLINE vec4s glms_vec4_subadd(vec4s a, vec4s b, vec4s dest);
CGLM_INLINE vec4s glms_vec4_muladd(vec4s a, vec4s b, vec4s dest);
CGLM_INLINE vec4s glms_vec4_muladds(vec4s a, float s, vec4s dest);
CGLM_INLINE vec4s glms_vec4_maxadd(vec4s a, vec4s b, vec4s dest);
CGLM_INLINE vec4s glms_vec4_minadd(vec4s a, vec4s b, vec4s dest);
CGLM_INLINE vec4s glms_vec4_negate(vec4s v);
CGLM_INLINE vec4s glms_vec4_inv(vec4s v);
CGLM_INLINE vec4s glms_vec4_normalize(vec4s v);
CGLM_INLINE float glms_vec4_distance(vec4s a, vec4s b);
CGLM_INLINE vec4s glms_vec4_maxv(vec4s a, vec4s b);
CGLM_INLINE vec4s glms_vec4_minv(vec4s a, vec4s b);
CGLM_INLINE vec4s glms_vec4_clamp(vec4s v, float minVal, float maxVal);
CGLM_INLINE vec4s glms_vec4_lerp(vec4s from, vec4s to, float t);
CGLM_INLINE vec4s glms_vec4_cubic(float s);
*/
#ifndef cglms_vec4s_h
#define cglms_vec4s_h
#include "../common.h"
#include "../types-struct.h"
#include "../util.h"
#include "../vec4.h"
#include "vec4-ext.h"
#define GLMS_VEC4_ONE_INIT {1.0f, 1.0f, 1.0f, 1.0f}
#define GLMS_VEC4_BLACK_INIT {0.0f, 0.0f, 0.0f, 1.0f}
#define GLMS_VEC4_ZERO_INIT {0.0f, 0.0f, 0.0f, 0.0f}
#define GLMS_VEC4_ONE ((vec4s)GLM_VEC4_ONE_INIT)
#define GLMS_VEC4_BLACK ((vec4s)GLM_VEC4_BLACK_INIT)
#define GLMS_VEC4_ZERO ((vec4s)GLM_VEC4_ZERO_INIT)
/*!
* @brief init vec4 using vec3
*
* @param[in] v3 vector3
* @param[in] last last item
* @returns destination
*/
CGLM_INLINE
vec4s
glms_vec4(vec3s v3, float last) {
vec4s r;
glm_vec4(v3.raw, last, r.raw);
return r;
}
/*!
* @brief copy first 3 members of [a] to [dest]
*
* @param[in] v source
* @returns vec3
*/
CGLM_INLINE
vec3s
glms_vec4_copy3(vec4s v) {
vec3s r;
glm_vec4_copy3(v.raw, r.raw);
return r;
}
/*!
* @brief copy all members of [a] to [dest]
*
* @param[in] v source
* @returns destination
*/
CGLM_INLINE
vec4s
glms_vec4_copy(vec4s v) {
vec4s r;
glm_vec4_copy(v.raw, r.raw);
return r;
}
/*!
* @brief copy all members of [a] to [dest]
*
* alignment is not required
*
* @param[in] v source
* @returns destination
*/
CGLM_INLINE
vec4s
glms_vec4_ucopy(vec4s v) {
vec4s r;
glm_vec4_ucopy(v.raw, r.raw);
return r;
}
/*!
* @brief pack an array of vec4 into an array of vec4s
*
* @param[out] dst array of vec4
* @param[in] src array of vec4s
* @param[in] len number of elements
*/
CGLM_INLINE
void
glms_vec4_pack(vec4s dst[], vec4 src[], size_t len) {
size_t i;
for (i = 0; i < len; i++) {
glm_vec4_copy(src[i], dst[i].raw);
}
}
/*!
* @brief unpack an array of vec4s into an array of vec4
*
* @param[out] dst array of vec4s
* @param[in] src array of vec4
* @param[in] len number of elements
*/
CGLM_INLINE
void
glms_vec4_unpack(vec4 dst[], vec4s src[], size_t len) {
size_t i;
for (i = 0; i < len; i++) {
glm_vec4_copy(src[i].raw, dst[i]);
}
}
/*!
* @brief make vector zero
*
* @returns zero vector
*/
CGLM_INLINE
vec4s
glms_vec4_zero() {
vec4s r;
glm_vec4_zero(r.raw);
return r;
}
/*!
* @brief make vector one
*
* @returns one vector
*/
CGLM_INLINE
vec4s
glms_vec4_one() {
vec4s r;
glm_vec4_one(r.raw);
return r;
}
/*!
* @brief vec4 dot product
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return dot product
*/
CGLM_INLINE
float
glms_vec4_dot(vec4s a, vec4s b) {
return glm_vec4_dot(a.raw, b.raw);
}
/*!
* @brief norm * norm (magnitude) of vec
*
* we can use this func instead of calling norm * norm, because it would call
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
* not good name for this func
*
* @param[in] v vec4
*
* @return norm * norm
*/
CGLM_INLINE
float
glms_vec4_norm2(vec4s v) {
return glm_vec4_norm2(v.raw);
}
/*!
* @brief norm (magnitude) of vec4
*
* @param[in] v vector
*
* @return norm
*/
CGLM_INLINE
float
glms_vec4_norm(vec4s v) {
return glm_vec4_norm(v.raw);
}
/*!
* @brief add b vector to a vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @returns destination vector
*/
CGLM_INLINE
vec4s
glms_vec4_add(vec4s a, vec4s b) {
vec4s r;
glm_vec4_add(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief add scalar to v vector store result in dest (d = v + vec(s))
*
* @param[in] v vector
* @param[in] s scalar
* @returns destination vector
*/
CGLM_INLINE
vec4s
glms_vec4_adds(vec4s v, float s) {
vec4s r;
glm_vec4_adds(v.raw, s, r.raw);
return r;
}
/*!
* @brief subtract b vector from a vector store result in dest (d = a - b)
*
* @param[in] a vector1
* @param[in] b vector2
* @returns destination vector
*/
CGLM_INLINE
vec4s
glms_vec4_sub(vec4s a, vec4s b) {
vec4s r;
glm_vec4_sub(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief subtract scalar from v vector store result in dest (d = v - vec(s))
*
* @param[in] v vector
* @param[in] s scalar
* @returns destination vector
*/
CGLM_INLINE
vec4s
glms_vec4_subs(vec4s v, float s) {
vec4s r;
glm_vec4_subs(v.raw, s, r.raw);
return r;
}
/*!
* @brief multiply two vector (component-wise multiplication)
*
* @param a vector1
* @param b vector2
* @returns dest = (a[0] * b[0], a[1] * b[1], a[2] * b[2], a[3] * b[3])
*/
CGLM_INLINE
vec4s
glms_vec4_mul(vec4s a, vec4s b) {
vec4s r;
glm_vec4_mul(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief multiply/scale vec4 vector with scalar: result = v * s
*
* @param[in] v vector
* @param[in] s scalar
* @returns destination vector
*/
CGLM_INLINE
vec4s
glms_vec4_scale(vec4s v, float s) {
vec4s r;
glm_vec4_scale(v.raw, s, r.raw);
return r;
}
/*!
* @brief make vec4 vector scale as specified: result = unit(v) * s
*
* @param[in] v vector
* @param[in] s scalar
* @returns destination vector
*/
CGLM_INLINE
vec4s
glms_vec4_scale_as(vec4s v, float s) {
vec4s r;
glm_vec4_scale_as(v.raw, s, r.raw);
return r;
}
/*!
* @brief div vector with another component-wise division: d = a / b
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns result = (a[0]/b[0], a[1]/b[1], a[2]/b[2], a[3]/b[3])
*/
CGLM_INLINE
vec4s
glms_vec4_div(vec4s a, vec4s b) {
vec4s r;
glm_vec4_div(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief div vec4 vector with scalar: d = v / s
*
* @param[in] v vector
* @param[in] s scalar
* @returns destination vector
*/
CGLM_INLINE
vec4s
glms_vec4_divs(vec4s v, float s) {
vec4s r;
glm_vec4_divs(v.raw, s, r.raw);
return r;
}
/*!
* @brief add two vectors and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns dest += (a + b)
*/
CGLM_INLINE
vec4s
glms_vec4_addadd(vec4s a, vec4s b, vec4s dest) {
glm_vec4_addadd(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief sub two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns dest += (a - b)
*/
CGLM_INLINE
vec4s
glms_vec4_subadd(vec4s a, vec4s b, vec4s dest) {
glm_vec4_subadd(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief mul two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns dest += (a * b)
*/
CGLM_INLINE
vec4s
glms_vec4_muladd(vec4s a, vec4s b, vec4s dest) {
glm_vec4_muladd(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief mul vector with scalar and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector
* @param[in] s scalar
* @returns dest += (a * b)
*/
CGLM_INLINE
vec4s
glms_vec4_muladds(vec4s a, float s, vec4s dest) {
glm_vec4_muladds(a.raw, s, dest.raw);
return dest;
}
/*!
* @brief add max of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns dest += max(a, b)
*/
CGLM_INLINE
vec4s
glms_vec4_maxadd(vec4s a, vec4s b, vec4s dest) {
glm_vec4_maxadd(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief add min of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @returns dest += min(a, b)
*/
CGLM_INLINE
vec4s
glms_vec4_minadd(vec4s a, vec4s b, vec4s dest) {
glm_vec4_minadd(a.raw, b.raw, dest.raw);
return dest;
}
/*!
* @brief negate vector components and store result in dest
*
* @param[in] v vector
* @returns result vector
*/
CGLM_INLINE
vec4s
glms_vec4_negate(vec4s v) {
glm_vec4_negate(v.raw);
return v;
}
/*!
* @brief normalize vec4 and store result in same vec
*
* @param[in] v vector
* @returns normalized vector
*/
CGLM_INLINE
vec4s
glms_vec4_normalize(vec4s v) {
glm_vec4_normalize(v.raw);
return v;
}
/**
* @brief distance between two vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @return returns distance
*/
CGLM_INLINE
float
glms_vec4_distance(vec4s a, vec4s b) {
return glm_vec4_distance(a.raw, b.raw);
}
/*!
* @brief max values of vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @returns destination
*/
CGLM_INLINE
vec4s
glms_vec4_maxv(vec4s a, vec4s b) {
vec4s r;
glm_vec4_maxv(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief min values of vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @returns destination
*/
CGLM_INLINE
vec4s
glms_vec4_minv(vec4s a, vec4s b) {
vec4s r;
glm_vec4_minv(a.raw, b.raw, r.raw);
return r;
}
/*!
* @brief clamp vector's individual members between min and max values
*
* @param[in] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
* @returns clamped vector
*/
CGLM_INLINE
vec4s
glms_vec4_clamp(vec4s v, float minVal, float maxVal) {
glm_vec4_clamp(v.raw, minVal, maxVal);
return v;
}
/*!
* @brief linear interpolation between two vector
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @returns destination
*/
CGLM_INLINE
vec4s
glms_vec4_lerp(vec4s from, vec4s to, float t) {
vec4s r;
glm_vec4_lerp(from.raw, to.raw, t, r.raw);
return r;
}
/*!
* @brief helper to fill vec4 as [S^3, S^2, S, 1]
*
* @param[in] s parameter
* @returns destination
*/
CGLM_INLINE
vec4s
glms_vec4_cubic(float s) {
vec4s r;
glm_vec4_cubic(s, r.raw);
return r;
}
#endif /* cglms_vec4s_h */

View File

@@ -0,0 +1,89 @@
/*
* Copyright (c), Recep Aslantas.
*
* MIT License (MIT), http://opensource.org/licenses/MIT
* Full license can be found in the LICENSE file
*/
#ifndef cglm_types_struct_h
#define cglm_types_struct_h
#include "types.h"
typedef union vec3s {
#ifndef CGLM_NO_ANONYMOUS_STRUCT
struct {
float x;
float y;
float z;
};
#endif
vec3 raw;
} vec3s;
typedef union ivec3s {
#ifndef CGLM_NO_ANONYMOUS_STRUCT
struct {
int x;
int y;
int z;
};
#endif
ivec3 raw;
} ivec3s;
typedef union CGLM_ALIGN_IF(16) vec4s {
#ifndef CGLM_NO_ANONYMOUS_STRUCT
struct {
float x;
float y;
float z;
float w;
};
#endif
vec4 raw;
} vec4s;
typedef union CGLM_ALIGN_IF(16) versors {
#ifndef CGLM_NO_ANONYMOUS_STRUCT
struct {
float x;
float y;
float z;
float w;
};
struct {
vec3s imag;
float real;
};
#endif
vec4 raw;
} versors;
typedef union mat3s {
#ifndef CGLM_NO_ANONYMOUS_STRUCT
struct {
float m00, m01, m02;
float m10, m11, m12;
float m20, m21, m22;
};
#endif
vec3s col[3];
mat3 raw;
} mat3s;
typedef union CGLM_ALIGN_MAT mat4s {
#ifndef CGLM_NO_ANONYMOUS_STRUCT
struct {
float m00, m01, m02, m03;
float m10, m11, m12, m13;
float m20, m21, m22, m23;
float m30, m31, m32, m33;
};
#endif
vec4s col[4];
mat4 raw;
} mat4s;
#endif /* cglm_types_struct_h */

View File

@@ -9,22 +9,68 @@
#define cglm_types_h
#if defined(_MSC_VER)
# define CGLM_ALIGN(X) /* __declspec(align(X)) */
/* do not use alignment for older visual studio versions */
# if _MSC_VER < 1913 /* Visual Studio 2017 version 15.6 */
# define CGLM_ALL_UNALIGNED
# define CGLM_ALIGN(X) /* no alignment */
# else
# define CGLM_ALIGN(X) __declspec(align(X))
# endif
#else
# define CGLM_ALIGN(X) __attribute((aligned(X)))
#endif
typedef float vec3[3];
typedef int ivec3[3];
typedef CGLM_ALIGN(16) float vec4[4];
#ifndef CGLM_ALL_UNALIGNED
# define CGLM_ALIGN_IF(X) CGLM_ALIGN(X)
#else
# define CGLM_ALIGN_IF(X) /* no alignment */
#endif
typedef vec3 mat3[3];
typedef vec4 mat4[4];
#ifdef __AVX__
# define CGLM_ALIGN_MAT CGLM_ALIGN(32)
#else
# define CGLM_ALIGN_MAT CGLM_ALIGN(16)
#endif
typedef vec4 versor;
typedef float vec2[2];
typedef float vec3[3];
typedef int ivec3[3];
typedef CGLM_ALIGN_IF(16) float vec4[4];
typedef vec4 versor;
typedef vec3 mat3[3];
typedef CGLM_ALIGN_MAT vec4 mat4[4];
#define CGLM_PI (float)M_PI
#define CGLM_PI_2 (float)M_PI_2
#define CGLM_PI_4 (float)M_PI_4
#define GLM_E 2.71828182845904523536028747135266250 /* e */
#define GLM_LOG2E 1.44269504088896340735992468100189214 /* log2(e) */
#define GLM_LOG10E 0.434294481903251827651128918916605082 /* log10(e) */
#define GLM_LN2 0.693147180559945309417232121458176568 /* loge(2) */
#define GLM_LN10 2.30258509299404568401799145468436421 /* loge(10) */
#define GLM_PI 3.14159265358979323846264338327950288 /* pi */
#define GLM_PI_2 1.57079632679489661923132169163975144 /* pi/2 */
#define GLM_PI_4 0.785398163397448309615660845819875721 /* pi/4 */
#define GLM_1_PI 0.318309886183790671537767526745028724 /* 1/pi */
#define GLM_2_PI 0.636619772367581343075535053490057448 /* 2/pi */
#define GLM_2_SQRTPI 1.12837916709551257389615890312154517 /* 2/sqrt(pi) */
#define GLM_SQRT2 1.41421356237309504880168872420969808 /* sqrt(2) */
#define GLM_SQRT1_2 0.707106781186547524400844362104849039 /* 1/sqrt(2) */
#define GLM_Ef ((float)GLM_E)
#define GLM_LOG2Ef ((float)GLM_LOG2E)
#define GLM_LOG10Ef ((float)GLM_LOG10E)
#define GLM_LN2f ((float)GLM_LN2)
#define GLM_LN10f ((float)GLM_LN10)
#define GLM_PIf ((float)GLM_PI)
#define GLM_PI_2f ((float)GLM_PI_2)
#define GLM_PI_4f ((float)GLM_PI_4)
#define GLM_1_PIf ((float)GLM_1_PI)
#define GLM_2_PIf ((float)GLM_2_PI)
#define GLM_2_SQRTPIf ((float)GLM_2_SQRTPI)
#define GLM_SQRT2f ((float)GLM_SQRT2)
#define GLM_SQRT1_2f ((float)GLM_SQRT1_2)
/* DEPRECATED! use GLM_PI and friends */
#define CGLM_PI GLM_PIf
#define CGLM_PI_2 GLM_PI_2f
#define CGLM_PI_4 GLM_PI_4f
#endif /* cglm_types_h */

View File

@@ -20,8 +20,13 @@
#include "common.h"
#define GLM_MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
#define GLM_MAX(X, Y) (((X) > (Y)) ? (X) : (Y))
/*!
* @brief get sign of 32 bit integer as +1 or -1
* @brief get sign of 32 bit integer as +1, -1, 0
*
* Important: It returns 0 for zero input
*
* @param val integer value
*/
@@ -31,6 +36,19 @@ glm_sign(int val) {
return ((val >> 31) - (-val >> 31));
}
/*!
* @brief get sign of 32 bit float as +1, -1, 0
*
* Important: It returns 0 for zero/NaN input
*
* @param val float value
*/
CGLM_INLINE
float
glm_signf(float val) {
return (float)((val > 0.0f) - (val < 0.0f));
}
/*!
* @brief convert degree to radians
*
@@ -39,7 +57,7 @@ glm_sign(int val) {
CGLM_INLINE
float
glm_rad(float deg) {
return deg * CGLM_PI / 180.0f;
return deg * GLM_PIf / 180.0f;
}
/*!
@@ -50,7 +68,7 @@ glm_rad(float deg) {
CGLM_INLINE
float
glm_deg(float rad) {
return rad * 180.0f / CGLM_PI;
return rad * 180.0f / GLM_PIf;
}
/*!
@@ -61,7 +79,7 @@ glm_deg(float rad) {
CGLM_INLINE
void
glm_make_rad(float *deg) {
*deg = *deg * CGLM_PI / 180.0f;
*deg = *deg * GLM_PIf / 180.0f;
}
/*!
@@ -72,7 +90,7 @@ glm_make_rad(float *deg) {
CGLM_INLINE
void
glm_make_deg(float *rad) {
*rad = *rad * 180.0f / CGLM_PI;
*rad = *rad * 180.0f / GLM_PIf;
}
/*!
@@ -83,7 +101,6 @@ glm_make_deg(float *rad) {
CGLM_INLINE
float
glm_pow2(float x) {
return x * x;
}
@@ -115,4 +132,88 @@ glm_max(float a, float b) {
return b;
}
/*!
* @brief clamp a number between min and max
*
* @param[in] val value to clamp
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
CGLM_INLINE
float
glm_clamp(float val, float minVal, float maxVal) {
return glm_min(glm_max(val, minVal), maxVal);
}
/*!
* @brief clamp a number to zero and one
*
* @param[in] val value to clamp
*/
CGLM_INLINE
float
glm_clamp_zo(float val) {
return glm_clamp(val, 0.0f, 1.0f);
}
/*!
* @brief linear interpolation between two number
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
*/
CGLM_INLINE
float
glm_lerp(float from, float to, float t) {
return from + glm_clamp_zo(t) * (to - from);
}
/*!
* @brief check if two float equal with using EPSILON
*
* @param[in] a a
* @param[in] b b
*/
CGLM_INLINE
bool
glm_eq(float a, float b) {
return fabsf(a - b) <= FLT_EPSILON;
}
/*!
* @brief percentage of current value between start and end value
*
* maybe fraction could be alternative name.
*
* @param[in] from from value
* @param[in] to to value
* @param[in] current current value
*/
CGLM_INLINE
float
glm_percent(float from, float to, float current) {
float t;
if ((t = to - from) == 0.0f)
return 1.0f;
return (current - from) / t;
}
/*!
* @brief clamped percentage of current value between start and end value
*
* @param[in] from from value
* @param[in] to to value
* @param[in] current current value
*/
CGLM_INLINE
float
glm_percentc(float from, float to, float current) {
return glm_clamp(glm_percent(from, to, current), 0.0f, 1.0f);
}
#endif /* cglm_util_h */

View File

@@ -11,73 +11,60 @@
/*
Functions:
CGLM_INLINE void glm_vec_mulv(vec3 a, vec3 b, vec3 d);
CGLM_INLINE void glm_vec_broadcast(float val, vec3 d);
CGLM_INLINE bool glm_vec_eq(vec3 v, float val);
CGLM_INLINE bool glm_vec_eq_eps(vec4 v, float val);
CGLM_INLINE bool glm_vec_eq_all(vec3 v);
CGLM_INLINE bool glm_vec_eqv(vec3 v1, vec3 v2);
CGLM_INLINE bool glm_vec_eqv_eps(vec3 v1, vec3 v2);
CGLM_INLINE float glm_vec_max(vec3 v);
CGLM_INLINE float glm_vec_min(vec3 v);
CGLM_INLINE void glm_vec3_broadcast(float val, vec3 d);
CGLM_INLINE bool glm_vec3_eq(vec3 v, float val);
CGLM_INLINE bool glm_vec3_eq_eps(vec3 v, float val);
CGLM_INLINE bool glm_vec3_eq_all(vec3 v);
CGLM_INLINE bool glm_vec3_eqv(vec3 a, vec3 b);
CGLM_INLINE bool glm_vec3_eqv_eps(vec3 a, vec3 b);
CGLM_INLINE float glm_vec3_max(vec3 v);
CGLM_INLINE float glm_vec3_min(vec3 v);
CGLM_INLINE bool glm_vec3_isnan(vec3 v);
CGLM_INLINE bool glm_vec3_isinf(vec3 v);
CGLM_INLINE bool glm_vec3_isvalid(vec3 v);
CGLM_INLINE void glm_vec3_sign(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_sqrt(vec3 v, vec3 dest);
*/
#ifndef cglm_vec3_ext_h
#define cglm_vec3_ext_h
#include "common.h"
#include <stdbool.h>
#include <math.h>
#include <float.h>
/*!
* @brief multiplies individual items, just for convenient like SIMD
*
* @param a vec1
* @param b vec2
* @param d vec3 = (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2])
*/
CGLM_INLINE
void
glm_vec_mulv(vec3 a, vec3 b, vec3 d) {
d[0] = a[0] * b[0];
d[1] = a[1] * b[1];
d[2] = a[2] * b[2];
}
#include "util.h"
/*!
* @brief fill a vector with specified value
*
* @param val value
* @param d dest
* @param[in] val value
* @param[out] d dest
*/
CGLM_INLINE
void
glm_vec_broadcast(float val, vec3 d) {
glm_vec3_broadcast(float val, vec3 d) {
d[0] = d[1] = d[2] = val;
}
/*!
* @brief check if vector is equal to value (without epsilon)
*
* @param v vector
* @param val value
* @param[in] v vector
* @param[in] val value
*/
CGLM_INLINE
bool
glm_vec_eq(vec3 v, float val) {
glm_vec3_eq(vec3 v, float val) {
return v[0] == val && v[0] == v[1] && v[0] == v[2];
}
/*!
* @brief check if vector is equal to value (with epsilon)
*
* @param v vector
* @param val value
* @param[in] v vector
* @param[in] val value
*/
CGLM_INLINE
bool
glm_vec_eq_eps(vec4 v, float val) {
glm_vec3_eq_eps(vec3 v, float val) {
return fabsf(v[0] - val) <= FLT_EPSILON
&& fabsf(v[1] - val) <= FLT_EPSILON
&& fabsf(v[2] - val) <= FLT_EPSILON;
@@ -86,50 +73,50 @@ glm_vec_eq_eps(vec4 v, float val) {
/*!
* @brief check if vectors members are equal (without epsilon)
*
* @param v vector
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec_eq_all(vec3 v) {
glm_vec3_eq_all(vec3 v) {
return v[0] == v[1] && v[0] == v[2];
}
/*!
* @brief check if vector is equal to another (without epsilon)
*
* @param v1 vector
* @param v2 vector
* @param[in] a vector
* @param[in] b vector
*/
CGLM_INLINE
bool
glm_vec_eqv(vec3 v1, vec3 v2) {
return v1[0] == v2[0]
&& v1[1] == v2[1]
&& v1[2] == v2[2];
glm_vec3_eqv(vec3 a, vec3 b) {
return a[0] == b[0]
&& a[1] == b[1]
&& a[2] == b[2];
}
/*!
* @brief check if vector is equal to another (with epsilon)
*
* @param v1 vector
* @param v2 vector
* @param[in] a vector
* @param[in] b vector
*/
CGLM_INLINE
bool
glm_vec_eqv_eps(vec3 v1, vec3 v2) {
return fabsf(v1[0] - v2[0]) <= FLT_EPSILON
&& fabsf(v1[1] - v2[1]) <= FLT_EPSILON
&& fabsf(v1[2] - v2[2]) <= FLT_EPSILON;
glm_vec3_eqv_eps(vec3 a, vec3 b) {
return fabsf(a[0] - b[0]) <= FLT_EPSILON
&& fabsf(a[1] - b[1]) <= FLT_EPSILON
&& fabsf(a[2] - b[2]) <= FLT_EPSILON;
}
/*!
* @brief max value of vector
*
* @param v vector
* @param[in] v vector
*/
CGLM_INLINE
float
glm_vec_max(vec3 v) {
glm_vec3_max(vec3 v) {
float max;
max = v[0];
@@ -144,11 +131,11 @@ glm_vec_max(vec3 v) {
/*!
* @brief min value of vector
*
* @param v vector
* @param[in] v vector
*/
CGLM_INLINE
float
glm_vec_min(vec3 v) {
glm_vec3_min(vec3 v) {
float min;
min = v[0];
@@ -160,4 +147,69 @@ glm_vec_min(vec3 v) {
return min;
}
/*!
* @brief check if all items are NaN (not a number)
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec3_isnan(vec3 v) {
return isnan(v[0]) || isnan(v[1]) || isnan(v[2]);
}
/*!
* @brief check if all items are INFINITY
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec3_isinf(vec3 v) {
return isinf(v[0]) || isinf(v[1]) || isinf(v[2]);
}
/*!
* @brief check if all items are valid number
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec3_isvalid(vec3 v) {
return !glm_vec3_isnan(v) && !glm_vec3_isinf(v);
}
/*!
* @brief get sign of 32 bit float as +1, -1, 0
*
* Important: It returns 0 for zero/NaN input
*
* @param v vector
*/
CGLM_INLINE
void
glm_vec3_sign(vec3 v, vec3 dest) {
dest[0] = glm_signf(v[0]);
dest[1] = glm_signf(v[1]);
dest[2] = glm_signf(v[2]);
}
/*!
* @brief square root of each vector item
*
* @param[in] v vector
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec3_sqrt(vec3 v, vec3 dest) {
dest[0] = sqrtf(v[0]);
dest[1] = sqrtf(v[1]);
dest[2] = sqrtf(v[2]);
}
#endif /* cglm_vec3_ext_h */

View File

@@ -5,45 +5,62 @@
* Full license can be found in the LICENSE file
*/
/*!
* vec3 functions dont have suffix e.g glm_vec_dot (not glm_vec3_dot)
* all functions without suffix are vec3 functions
*/
/*
Macros:
glm_vec_dup(v, dest)
GLM_VEC3_ONE_INIT
GLM_VEC3_ZERO_INIT
GLM_VEC3_ONE
GLM_VEC3_ZERO
GLM_YUP
GLM_ZUP
GLM_XUP
Functions:
CGLM_INLINE void glm_vec3(vec4 v4, vec3 dest);
CGLM_INLINE void glm_vec_copy(vec3 a, vec3 dest);
CGLM_INLINE float glm_vec_dot(vec3 a, vec3 b);
CGLM_INLINE void glm_vec_cross(vec3 a, vec3 b, vec3 d);
CGLM_INLINE float glm_vec_norm2(vec3 v);
CGLM_INLINE float glm_vec_norm(vec3 vec);
CGLM_INLINE void glm_vec_add(vec3 v1, vec3 v2, vec3 dest);
CGLM_INLINE void glm_vec_sub(vec3 v1, vec3 v2, vec3 dest);
CGLM_INLINE void glm_vec_scale(vec3 v, float s, vec3 dest);
CGLM_INLINE void glm_vec_scale_as(vec3 v, float s, vec3 dest);
CGLM_INLINE void glm_vec_flipsign(vec3 v);
CGLM_INLINE void glm_vec_inv(vec3 v);
CGLM_INLINE void glm_vec_inv_to(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec_normalize(vec3 v);
CGLM_INLINE void glm_vec_normalize_to(vec3 vec, vec3 dest);
CGLM_INLINE float glm_vec_distance(vec3 v1, vec3 v2);
CGLM_INLINE float glm_vec_angle(vec3 v1, vec3 v2);
CGLM_INLINE void glm_vec_rotate(vec3 v, float angle, vec3 axis);
CGLM_INLINE void glm_vec_rotate_m4(mat4 m, vec3 v, vec3 dest);
CGLM_INLINE void glm_vec_proj(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec_center(vec3 v1, vec3 v2, vec3 dest);
CGLM_INLINE void glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest);
CGLM_INLINE void glm_vec_minv(vec3 v1, vec3 v2, vec3 dest);
CGLM_INLINE void glm_vec_ortho(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_copy(vec3 a, vec3 dest);
CGLM_INLINE void glm_vec3_zero(vec3 v);
CGLM_INLINE void glm_vec3_one(vec3 v);
CGLM_INLINE float glm_vec3_dot(vec3 a, vec3 b);
CGLM_INLINE float glm_vec3_norm2(vec3 v);
CGLM_INLINE float glm_vec3_norm(vec3 v);
CGLM_INLINE void glm_vec3_add(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_adds(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec3_sub(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_subs(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec3_mul(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_scale(vec3 v, float s, vec3 dest);
CGLM_INLINE void glm_vec3_scale_as(vec3 v, float s, vec3 dest);
CGLM_INLINE void glm_vec3_div(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_divs(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec3_addadd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_subadd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_muladd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_muladds(vec3 a, float s, vec3 dest);
CGLM_INLINE void glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_minadd(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_flipsign(vec3 v);
CGLM_INLINE void glm_vec3_flipsign_to(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_negate_to(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_negate(vec3 v);
CGLM_INLINE void glm_vec3_inv(vec3 v);
CGLM_INLINE void glm_vec3_inv_to(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_normalize(vec3 v);
CGLM_INLINE void glm_vec3_normalize_to(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_cross(vec3 a, vec3 b, vec3 d);
CGLM_INLINE void glm_vec3_crossn(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE float glm_vec3_distance(vec3 a, vec3 b);
CGLM_INLINE float glm_vec3_angle(vec3 a, vec3 b);
CGLM_INLINE void glm_vec3_rotate(vec3 v, float angle, vec3 axis);
CGLM_INLINE void glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_proj(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_center(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE float glm_vec3_distance2(vec3 a, vec3 b);
CGLM_INLINE void glm_vec3_maxv(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_minv(vec3 a, vec3 b, vec3 dest);
CGLM_INLINE void glm_vec3_ortho(vec3 v, vec3 dest);
CGLM_INLINE void glm_vec3_clamp(vec3 v, float minVal, float maxVal);
CGLM_INLINE void glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest);
CGLM_INLINE void glm_vec_swizzle(vec3 v, int mask, vec3 dest);
Convenient:
@@ -51,24 +68,41 @@
CGLM_INLINE float glm_dot(vec3 a, vec3 b);
CGLM_INLINE void glm_normalize(vec3 v);
CGLM_INLINE void glm_normalize_to(vec3 v, vec3 dest);
DEPRECATED:
glm_vec3_dup
glm_vec3_flipsign
glm_vec3_flipsign_to
glm_vec3_inv
glm_vec3_inv_to
glm_vec3_mulv
*/
#ifndef cglm_vec3_h
#define cglm_vec3_h
#include "common.h"
#include "vec4.h"
#include "vec3-ext.h"
#include "util.h"
/* DEPRECATED! use _copy, _ucopy versions */
#define glm_vec_dup(v, dest) glm_vec_copy(v, dest)
#define glm_vec3_dup(v, dest) glm_vec3_copy(v, dest)
#define glm_vec3_flipsign(v) glm_vec3_negate(v)
#define glm_vec3_flipsign_to(v, dest) glm_vec3_negate_to(v, dest)
#define glm_vec3_inv(v) glm_vec3_negate(v)
#define glm_vec3_inv_to(v, dest) glm_vec3_negate_to(v, dest)
#define glm_vec3_mulv(a, b, d) glm_vec3_mul(a, b, d)
#define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
#define GLM_VEC3_ONE (vec3)GLM_VEC3_ONE_INIT
#define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
#define GLM_VEC3_ZERO_INIT {0.0f, 0.0f, 0.0f}
#define GLM_YUP (vec3){0.0f, 1.0f, 0.0f}
#define GLM_ZUP (vec3){0.0f, 0.0f, 1.0f}
#define GLM_XUP (vec3){1.0f, 0.0f, 0.0f}
#define GLM_VEC3_ONE ((vec3)GLM_VEC3_ONE_INIT)
#define GLM_VEC3_ZERO ((vec3)GLM_VEC3_ZERO_INIT)
#define GLM_YUP ((vec3){0.0f, 1.0f, 0.0f})
#define GLM_ZUP ((vec3){0.0f, 0.0f, 1.0f})
#define GLM_XUP ((vec3){1.0f, 0.0f, 0.0f})
#define GLM_XXX GLM_SHUFFLE3(0, 0, 0)
#define GLM_YYY GLM_SHUFFLE3(1, 1, 1)
@@ -97,12 +131,34 @@ glm_vec3(vec4 v4, vec3 dest) {
*/
CGLM_INLINE
void
glm_vec_copy(vec3 a, vec3 dest) {
glm_vec3_copy(vec3 a, vec3 dest) {
dest[0] = a[0];
dest[1] = a[1];
dest[2] = a[2];
}
/*!
* @brief make vector zero
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec3_zero(vec3 v) {
v[0] = v[1] = v[2] = 0.0f;
}
/*!
* @brief make vector one
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec3_one(vec3 v) {
v[0] = v[1] = v[2] = 1.0f;
}
/*!
* @brief vec3 dot product
*
@@ -113,31 +169,15 @@ glm_vec_copy(vec3 a, vec3 dest) {
*/
CGLM_INLINE
float
glm_vec_dot(vec3 a, vec3 b) {
glm_vec3_dot(vec3 a, vec3 b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
}
/*!
* @brief vec3 cross product
*
* @param[in] a source 1
* @param[in] b source 2
* @param[out] d destination
*/
CGLM_INLINE
void
glm_vec_cross(vec3 a, vec3 b, vec3 d) {
/* (u2.v3 - u3.v2, u3.v1 - u1.v3, u1.v2 - u2.v1) */
d[0] = a[1] * b[2] - a[2] * b[1];
d[1] = a[2] * b[0] - a[0] * b[2];
d[2] = a[0] * b[1] - a[1] * b[0];
}
/*!
* @brief norm * norm (magnitude) of vec
*
* we can use this func instead of calling norm * norm, because it would call
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
* we can use this func instead of calling norm * norm, because it would call
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
* not good name for this func
*
* @param[in] v vector
@@ -146,51 +186,96 @@ glm_vec_cross(vec3 a, vec3 b, vec3 d) {
*/
CGLM_INLINE
float
glm_vec_norm2(vec3 v) {
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
glm_vec3_norm2(vec3 v) {
return glm_vec3_dot(v, v);
}
/*!
* @brief norm (magnitude) of vec3
*
* @param[in] vec vector
* @param[in] v vector
*
* @return norm
*/
CGLM_INLINE
float
glm_vec_norm(vec3 vec) {
return sqrtf(glm_vec_norm2(vec));
glm_vec3_norm(vec3 v) {
return sqrtf(glm_vec3_norm2(v));
}
/*!
* @brief add v2 vector to v1 vector store result in dest
* @brief add a vector to b vector store result in dest
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_add(vec3 v1, vec3 v2, vec3 dest) {
dest[0] = v1[0] + v2[0];
dest[1] = v1[1] + v2[1];
dest[2] = v1[2] + v2[2];
glm_vec3_add(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
dest[2] = a[2] + b[2];
}
/*!
* @brief subtract v2 vector from v1 vector store result in dest
* @brief add scalar to v vector store result in dest (d = v + s)
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec_sub(vec3 v1, vec3 v2, vec3 dest) {
dest[0] = v1[0] - v2[0];
dest[1] = v1[1] - v2[1];
dest[2] = v1[2] - v2[2];
glm_vec3_adds(vec3 v, float s, vec3 dest) {
dest[0] = v[0] + s;
dest[1] = v[1] + s;
dest[2] = v[2] + s;
}
/*!
* @brief subtract b vector from a vector store result in dest
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec3_sub(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
dest[2] = a[2] - b[2];
}
/*!
* @brief subtract scalar from v vector store result in dest (d = v - s)
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec3_subs(vec3 v, float s, vec3 dest) {
dest[0] = v[0] - s;
dest[1] = v[1] - s;
dest[2] = v[2] - s;
}
/*!
* @brief multiply two vector (component-wise multiplication)
*
* @param a vector1
* @param b vector2
* @param dest v3 = (a[0] * b[0], a[1] * b[1], a[2] * b[2])
*/
CGLM_INLINE
void
glm_vec3_mul(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] * b[0];
dest[1] = a[1] * b[1];
dest[2] = a[2] * b[2];
}
/*!
@@ -202,7 +287,7 @@ glm_vec_sub(vec3 v1, vec3 v2, vec3 dest) {
*/
CGLM_INLINE
void
glm_vec_scale(vec3 v, float s, vec3 dest) {
glm_vec3_scale(vec3 v, float s, vec3 dest) {
dest[0] = v[0] * s;
dest[1] = v[1] * s;
dest[2] = v[2] * s;
@@ -217,53 +302,173 @@ glm_vec_scale(vec3 v, float s, vec3 dest) {
*/
CGLM_INLINE
void
glm_vec_scale_as(vec3 v, float s, vec3 dest) {
glm_vec3_scale_as(vec3 v, float s, vec3 dest) {
float norm;
norm = glm_vec_norm(v);
norm = glm_vec3_norm(v);
if (norm == 0) {
glm_vec_copy(v, dest);
if (norm == 0.0f) {
glm_vec3_zero(dest);
return;
}
glm_vec_scale(v, s / norm, dest);
glm_vec3_scale(v, s / norm, dest);
}
/*!
* @brief flip sign of all vec3 members
* @brief div vector with another component-wise division: d = a / b
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2])
*/
CGLM_INLINE
void
glm_vec3_div(vec3 a, vec3 b, vec3 dest) {
dest[0] = a[0] / b[0];
dest[1] = a[1] / b[1];
dest[2] = a[2] / b[2];
}
/*!
* @brief div vector with scalar: d = v / s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest result = (a[0]/s, a[1]/s, a[2]/s)
*/
CGLM_INLINE
void
glm_vec3_divs(vec3 v, float s, vec3 dest) {
dest[0] = v[0] / s;
dest[1] = v[1] / s;
dest[2] = v[2] / s;
}
/*!
* @brief add two vectors and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
CGLM_INLINE
void
glm_vec3_addadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] + b[0];
dest[1] += a[1] + b[1];
dest[2] += a[2] + b[2];
}
/*!
* @brief sub two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
CGLM_INLINE
void
glm_vec3_subadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] - b[0];
dest[1] += a[1] - b[1];
dest[2] += a[2] - b[2];
}
/*!
* @brief mul two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a * b)
*/
CGLM_INLINE
void
glm_vec3_muladd(vec3 a, vec3 b, vec3 dest) {
dest[0] += a[0] * b[0];
dest[1] += a[1] * b[1];
dest[2] += a[2] * b[2];
}
/*!
* @brief mul vector with scalar and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector
* @param[in] s scalar
* @param[out] dest dest += (a * b)
*/
CGLM_INLINE
void
glm_vec3_muladds(vec3 a, float s, vec3 dest) {
dest[0] += a[0] * s;
dest[1] += a[1] * s;
dest[2] += a[2] * s;
}
/*!
* @brief add max of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += max(a, b)
*/
CGLM_INLINE
void
glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += glm_max(a[0], b[0]);
dest[1] += glm_max(a[1], b[1]);
dest[2] += glm_max(a[2], b[2]);
}
/*!
* @brief add min of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += min(a, b)
*/
CGLM_INLINE
void
glm_vec3_minadd(vec3 a, vec3 b, vec3 dest) {
dest[0] += glm_min(a[0], b[0]);
dest[1] += glm_min(a[1], b[1]);
dest[2] += glm_min(a[2], b[2]);
}
/*!
* @brief negate vector components and store result in dest
*
* @param[in] v vector
* @param[out] dest result vector
*/
CGLM_INLINE
void
glm_vec3_negate_to(vec3 v, vec3 dest) {
dest[0] = -v[0];
dest[1] = -v[1];
dest[2] = -v[2];
}
/*!
* @brief negate vector components
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec_flipsign(vec3 v) {
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
}
/*!
* @brief make vector as inverse/opposite of itself
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec_inv(vec3 v) {
glm_vec_flipsign(v);
}
/*!
* @brief inverse/opposite vector
*
* @param[in] v source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_inv_to(vec3 v, vec3 dest) {
glm_vec_copy(v, dest);
glm_vec_flipsign(dest);
glm_vec3_negate(vec3 v) {
glm_vec3_negate_to(v, v);
}
/*!
@@ -273,60 +478,94 @@ glm_vec_inv_to(vec3 v, vec3 dest) {
*/
CGLM_INLINE
void
glm_vec_normalize(vec3 v) {
glm_vec3_normalize(vec3 v) {
float norm;
norm = glm_vec_norm(v);
norm = glm_vec3_norm(v);
if (norm == 0.0f) {
v[0] = v[1] = v[2] = 0.0f;
return;
}
glm_vec_scale(v, 1.0f / norm, v);
glm_vec3_scale(v, 1.0f / norm, v);
}
/*!
* @brief normalize vec3 to dest
*
* @param[in] vec source
* @param[in] v source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_normalize_to(vec3 vec, vec3 dest) {
glm_vec3_normalize_to(vec3 v, vec3 dest) {
float norm;
norm = glm_vec_norm(vec);
norm = glm_vec3_norm(v);
if (norm == 0.0f) {
dest[0] = dest[1] = dest[2] = 0.0f;
glm_vec3_zero(dest);
return;
}
glm_vec_scale(vec, 1.0f / norm, dest);
glm_vec3_scale(v, 1.0f / norm, dest);
}
/*!
* @brief cross product of two vector (RH)
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_cross(vec3 a, vec3 b, vec3 dest) {
/* (u2.v3 - u3.v2, u3.v1 - u1.v3, u1.v2 - u2.v1) */
dest[0] = a[1] * b[2] - a[2] * b[1];
dest[1] = a[2] * b[0] - a[0] * b[2];
dest[2] = a[0] * b[1] - a[1] * b[0];
}
/*!
* @brief cross product of two vector (RH) and normalize the result
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_crossn(vec3 a, vec3 b, vec3 dest) {
glm_vec3_cross(a, b, dest);
glm_vec3_normalize(dest);
}
/*!
* @brief angle betwen two vector
*
* @param[in] a vector1
* @param[in] b vector2
*
* @return angle as radians
*/
CGLM_INLINE
float
glm_vec_angle(vec3 v1, vec3 v2) {
float norm;
/* maybe compiler generate approximation instruction (rcp) */
norm = 1.0f / (glm_vec_norm(v1) * glm_vec_norm(v2));
return acosf(glm_vec_dot(v1, v2) * norm);
}
glm_vec3_angle(vec3 a, vec3 b) {
float norm, dot;
CGLM_INLINE
void
glm_quatv(versor q,
float angle,
vec3 v);
/* maybe compiler generate approximation instruction (rcp) */
norm = 1.0f / (glm_vec3_norm(a) * glm_vec3_norm(b));
dot = glm_vec3_dot(a, b) * norm;
if (dot > 1.0f)
return 0.0f;
else if (dot < -1.0f)
return CGLM_PI;
return acosf(dot);
}
/*!
* @brief rotate vec3 around axis by angle using Rodrigues' rotation formula
@@ -337,32 +576,56 @@ glm_quatv(versor q,
*/
CGLM_INLINE
void
glm_vec_rotate(vec3 v, float angle, vec3 axis) {
versor q;
vec3 v1, v2, v3;
glm_vec3_rotate(vec3 v, float angle, vec3 axis) {
vec3 v1, v2, k;
float c, s;
c = cosf(angle);
s = sinf(angle);
glm_vec3_normalize_to(axis, k);
/* Right Hand, Rodrigues' rotation formula:
v = v*cos(t) + (kxv)sin(t) + k*(k.v)(1 - cos(t))
*/
glm_vec3_scale(v, c, v1);
/* quaternion */
glm_quatv(q, angle, v);
glm_vec3_cross(k, v, v2);
glm_vec3_scale(v2, s, v2);
glm_vec_scale(v, c, v1);
glm_vec3_add(v1, v2, v1);
glm_vec_cross(axis, v, v2);
glm_vec_scale(v2, s, v2);
glm_vec3_scale(k, glm_vec3_dot(k, v) * (1.0f - c), v2);
glm_vec3_add(v1, v2, v);
}
glm_vec_scale(axis,
glm_vec_dot(axis, v) * (1.0f - c),
v3);
/*!
* @brief apply rotation matrix to vector
*
* matrix format should be (no perspective):
* a b c x
* e f g y
* i j k z
* 0 0 0 w
*
* @param[in] m affine matrix or rot matrix
* @param[in] v vector
* @param[out] dest rotated vector
*/
CGLM_INLINE
void
glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest) {
vec4 x, y, z, res;
glm_vec_add(v1, v2, v1);
glm_vec_add(v1, v3, v);
glm_vec4_normalize_to(m[0], x);
glm_vec4_normalize_to(m[1], y);
glm_vec4_normalize_to(m[2], z);
glm_vec4_scale(x, v[0], res);
glm_vec4_muladds(y, v[1], res);
glm_vec4_muladds(z, v[2], res);
glm_vec3(res, dest);
}
/*!
@@ -374,92 +637,109 @@ glm_vec_rotate(vec3 v, float angle, vec3 axis) {
*/
CGLM_INLINE
void
glm_vec_rotate_m4(mat4 m, vec3 v, vec3 dest) {
vec3 res, x, y, z;
glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest) {
vec4 res, x, y, z;
glm_vec_normalize_to(m[0], x);
glm_vec_normalize_to(m[1], y);
glm_vec_normalize_to(m[2], z);
glm_vec4(m[0], 0.0f, x);
glm_vec4(m[1], 0.0f, y);
glm_vec4(m[2], 0.0f, z);
res[0] = x[0] * v[0] + y[0] * v[1] + z[0] * v[2];
res[1] = x[1] * v[0] + y[1] * v[1] + z[1] * v[2];
res[2] = x[2] * v[0] + y[2] * v[1] + z[2] * v[2];
glm_vec4_normalize(x);
glm_vec4_normalize(y);
glm_vec4_normalize(z);
glm_vec_copy(res, dest);
glm_vec4_scale(x, v[0], res);
glm_vec4_muladds(y, v[1], res);
glm_vec4_muladds(z, v[2], res);
glm_vec3(res, dest);
}
/*!
* @brief project a vector onto b vector
*
* @param[in] a vector1
* @param[in] b vector2
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest projected vector
*/
CGLM_INLINE
void
glm_vec_proj(vec3 a, vec3 b, vec3 dest) {
glm_vec_scale(b,
glm_vec_dot(a, b) / glm_vec_norm2(b),
dest);
glm_vec3_proj(vec3 a, vec3 b, vec3 dest) {
glm_vec3_scale(b,
glm_vec3_dot(a, b) / glm_vec3_norm2(b),
dest);
}
/**
* @brief find center point of two vector
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest center point
*/
CGLM_INLINE
void
glm_vec_center(vec3 v1, vec3 v2, vec3 dest) {
glm_vec_add(v1, v2, dest);
glm_vec_scale(dest, 0.5f, dest);
glm_vec3_center(vec3 a, vec3 b, vec3 dest) {
glm_vec3_add(a, b, dest);
glm_vec3_scale(dest, 0.5f, dest);
}
/**
* @brief squared distance between two vectors
*
* @param[in] a vector1
* @param[in] b vector2
* @return returns squared distance (distance * distance)
*/
CGLM_INLINE
float
glm_vec3_distance2(vec3 a, vec3 b) {
return glm_pow2(b[0] - a[0])
+ glm_pow2(b[1] - a[1])
+ glm_pow2(b[2] - a[2]);
}
/**
* @brief distance between two vectors
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[in] a vector1
* @param[in] b vector2
* @return returns distance
*/
CGLM_INLINE
float
glm_vec_distance(vec3 v1, vec3 v2) {
return sqrtf(glm_pow2(v2[0] - v1[0])
+ glm_pow2(v2[1] - v1[1])
+ glm_pow2(v2[2] - v1[2]));
glm_vec3_distance(vec3 a, vec3 b) {
return sqrtf(glm_vec3_distance2(a, b));
}
/*!
* @brief max values of vectors
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest) {
dest[0] = glm_max(v1[0], v2[0]);
dest[1] = glm_max(v1[1], v2[1]);
dest[2] = glm_max(v1[2], v2[2]);
glm_vec3_maxv(vec3 a, vec3 b, vec3 dest) {
dest[0] = glm_max(a[0], b[0]);
dest[1] = glm_max(a[1], b[1]);
dest[2] = glm_max(a[2], b[2]);
}
/*!
* @brief min values of vectors
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec_minv(vec3 v1, vec3 v2, vec3 dest) {
dest[0] = glm_min(v1[0], v2[0]);
dest[1] = glm_min(v1[1], v2[1]);
dest[2] = glm_min(v1[2], v2[2]);
glm_vec3_minv(vec3 a, vec3 b, vec3 dest) {
dest[0] = glm_min(a[0], b[0]);
dest[1] = glm_min(a[1], b[1]);
dest[2] = glm_min(a[2], b[2]);
}
/*!
@@ -470,12 +750,49 @@ glm_vec_minv(vec3 v1, vec3 v2, vec3 dest) {
*/
CGLM_INLINE
void
glm_vec_ortho(vec3 v, vec3 dest) {
glm_vec3_ortho(vec3 v, vec3 dest) {
dest[0] = v[1] - v[2];
dest[1] = v[2] - v[0];
dest[2] = v[0] - v[1];
}
/*!
* @brief clamp vector's individual members between min and max values
*
* @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
CGLM_INLINE
void
glm_vec3_clamp(vec3 v, float minVal, float maxVal) {
v[0] = glm_clamp(v[0], minVal, maxVal);
v[1] = glm_clamp(v[1], minVal, maxVal);
v[2] = glm_clamp(v[2], minVal, maxVal);
}
/*!
* @brief linear interpolation between two vector
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest) {
vec3 s, v;
/* from + s * (to - from) */
glm_vec3_broadcast(glm_clamp_zo(t), s);
glm_vec3_sub(to, from, v);
glm_vec3_mul(s, v, v);
glm_vec3_add(from, v, dest);
}
/*!
* @brief vec3 cross product
*
@@ -488,7 +805,7 @@ glm_vec_ortho(vec3 v, vec3 dest) {
CGLM_INLINE
void
glm_cross(vec3 a, vec3 b, vec3 d) {
glm_vec_cross(a, b, d);
glm_vec3_cross(a, b, d);
}
/*!
@@ -504,7 +821,7 @@ glm_cross(vec3 a, vec3 b, vec3 d) {
CGLM_INLINE
float
glm_dot(vec3 a, vec3 b) {
return glm_vec_dot(a, b);
return glm_vec3_dot(a, b);
}
/*!
@@ -517,7 +834,7 @@ glm_dot(vec3 a, vec3 b) {
CGLM_INLINE
void
glm_normalize(vec3 v) {
glm_vec_normalize(v);
glm_vec3_normalize(v);
}
/*!
@@ -531,7 +848,7 @@ glm_normalize(vec3 v) {
CGLM_INLINE
void
glm_normalize_to(vec3 v, vec3 dest) {
glm_vec_normalize_to(v, dest);
glm_vec3_normalize_to(v, dest);
}
/*!

View File

@@ -11,15 +11,19 @@
/*
Functions:
CGLM_INLINE void glm_vec4_mulv(vec4 a, vec4 b, vec4 d);
CGLM_INLINE void glm_vec4_broadcast(float val, vec4 d);
CGLM_INLINE bool glm_vec4_eq(vec4 v, float val);
CGLM_INLINE bool glm_vec4_eq_eps(vec4 v, float val);
CGLM_INLINE bool glm_vec4_eq_all(vec4 v);
CGLM_INLINE bool glm_vec4_eqv(vec4 v1, vec4 v2);
CGLM_INLINE bool glm_vec4_eqv_eps(vec4 v1, vec4 v2);
CGLM_INLINE bool glm_vec4_eqv(vec4 a, vec4 b);
CGLM_INLINE bool glm_vec4_eqv_eps(vec4 a, vec4 b);
CGLM_INLINE float glm_vec4_max(vec4 v);
CGLM_INLINE float glm_vec4_min(vec4 v);
CGLM_INLINE bool glm_vec4_isnan(vec4 v);
CGLM_INLINE bool glm_vec4_isinf(vec4 v);
CGLM_INLINE bool glm_vec4_isvalid(vec4 v);
CGLM_INLINE void glm_vec4_sign(vec4 v, vec4 dest);
CGLM_INLINE void glm_vec4_sqrt(vec4 v, vec4 dest);
*/
#ifndef cglm_vec4_ext_h
@@ -27,29 +31,6 @@
#include "common.h"
#include "vec3-ext.h"
#include <stdbool.h>
#include <math.h>
#include <float.h>
/*!
* @brief multiplies individual items, just for convenient like SIMD
*
* @param a v1
* @param b v2
* @param d v3 = (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2], v1[3] * v2[3])
*/
CGLM_INLINE
void
glm_vec4_mulv(vec4 a, vec4 b, vec4 d) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(d, _mm_mul_ps(_mm_load_ps(a), _mm_load_ps(b)));
#else
d[0] = a[0] * b[0];
d[1] = a[1] * b[1];
d[2] = a[2] * b[2];
d[3] = a[3] * b[3];
#endif
}
/*!
* @brief fill a vector with specified value
@@ -61,7 +42,7 @@ CGLM_INLINE
void
glm_vec4_broadcast(float val, vec4 d) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(d, _mm_set1_ps(val));
glmm_store(d, _mm_set1_ps(val));
#else
d[0] = d[1] = d[2] = d[3] = val;
#endif
@@ -113,31 +94,31 @@ glm_vec4_eq_all(vec4 v) {
/*!
* @brief check if vector is equal to another (without epsilon)
*
* @param v1 vector
* @param v2 vector
* @param a vector
* @param b vector
*/
CGLM_INLINE
bool
glm_vec4_eqv(vec4 v1, vec4 v2) {
return v1[0] == v2[0]
&& v1[1] == v2[1]
&& v1[2] == v2[2]
&& v1[3] == v2[3];
glm_vec4_eqv(vec4 a, vec4 b) {
return a[0] == b[0]
&& a[1] == b[1]
&& a[2] == b[2]
&& a[3] == b[3];
}
/*!
* @brief check if vector is equal to another (with epsilon)
*
* @param v1 vector
* @param v2 vector
* @param a vector
* @param b vector
*/
CGLM_INLINE
bool
glm_vec4_eqv_eps(vec4 v1, vec4 v2) {
return fabsf(v1[0] - v2[0]) <= FLT_EPSILON
&& fabsf(v1[1] - v2[1]) <= FLT_EPSILON
&& fabsf(v1[2] - v2[2]) <= FLT_EPSILON
&& fabsf(v1[3] - v2[3]) <= FLT_EPSILON;
glm_vec4_eqv_eps(vec4 a, vec4 b) {
return fabsf(a[0] - b[0]) <= FLT_EPSILON
&& fabsf(a[1] - b[1]) <= FLT_EPSILON
&& fabsf(a[2] - b[2]) <= FLT_EPSILON
&& fabsf(a[3] - b[3]) <= FLT_EPSILON;
}
/*!
@@ -150,7 +131,7 @@ float
glm_vec4_max(vec4 v) {
float max;
max = glm_vec_max(v);
max = glm_vec3_max(v);
if (v[3] > max)
max = v[3];
@@ -167,12 +148,95 @@ float
glm_vec4_min(vec4 v) {
float min;
min = glm_vec_min(v);
min = glm_vec3_min(v);
if (v[3] < min)
min = v[3];
return min;
}
#endif /* cglm_vec4_ext_h */
/*!
* @brief check if one of items is NaN (not a number)
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec4_isnan(vec4 v) {
return isnan(v[0]) || isnan(v[1]) || isnan(v[2]) || isnan(v[3]);
}
/*!
* @brief check if one of items is INFINITY
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec4_isinf(vec4 v) {
return isinf(v[0]) || isinf(v[1]) || isinf(v[2]) || isinf(v[3]);
}
/*!
* @brief check if all items are valid number
* you should only use this in DEBUG mode or very critical asserts
*
* @param[in] v vector
*/
CGLM_INLINE
bool
glm_vec4_isvalid(vec4 v) {
return !glm_vec4_isnan(v) && !glm_vec4_isinf(v);
}
/*!
* @brief get sign of 32 bit float as +1, -1, 0
*
* Important: It returns 0 for zero/NaN input
*
* @param v vector
*/
CGLM_INLINE
void
glm_vec4_sign(vec4 v, vec4 dest) {
#if defined( __SSE2__ ) || defined( __SSE2__ )
__m128 x0, x1, x2, x3, x4;
x0 = glmm_load(v);
x1 = _mm_set_ps(0.0f, 0.0f, 1.0f, -1.0f);
x2 = glmm_shuff1x(x1, 2);
x3 = _mm_and_ps(_mm_cmpgt_ps(x0, x2), glmm_shuff1x(x1, 1));
x4 = _mm_and_ps(_mm_cmplt_ps(x0, x2), glmm_shuff1x(x1, 0));
glmm_store(dest, _mm_or_ps(x3, x4));
#else
dest[0] = glm_signf(v[0]);
dest[1] = glm_signf(v[1]);
dest[2] = glm_signf(v[2]);
dest[3] = glm_signf(v[3]);
#endif
}
/*!
* @brief square root of each vector item
*
* @param[in] v vector
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_sqrt(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_sqrt_ps(glmm_load(v)));
#else
dest[0] = sqrtf(v[0]);
dest[1] = sqrtf(v[1]);
dest[2] = sqrtf(v[2]);
dest[3] = sqrtf(v[3]);
#endif
}
#endif /* cglm_vec4_ext_h */

View File

@@ -5,40 +5,57 @@
* Full license can be found in the LICENSE file
*/
/*!
* vec3 functions dont have suffix e.g glm_vec_dot (not glm_vec3_dot)
* all functions without suffix are vec3 functions
*/
/*
Macros:
glm_vec4_dup3(v, dest)
glm_vec4_dup(v, dest)
GLM_VEC4_ONE_INIT
GLM_VEC4_BLACK_INIT
GLM_VEC4_ZERO_INIT
GLM_VEC4_ONE
GLM_VEC4_BLACK
GLM_VEC4_ZERO
Functions:
CGLM_INLINE void glm_vec4(vec3 v3, float last, vec4 dest);
CGLM_INLINE void glm_vec4_copy3(vec4 a, vec3 dest);
CGLM_INLINE void glm_vec4_copy(vec4 v, vec4 dest);
CGLM_INLINE void glm_vec4_ucopy(vec4 v, vec4 dest);
CGLM_INLINE float glm_vec4_dot(vec4 a, vec4 b);
CGLM_INLINE float glm_vec4_norm2(vec4 v);
CGLM_INLINE float glm_vec4_norm(vec4 vec);
CGLM_INLINE void glm_vec4_add(vec4 v1, vec4 v2, vec4 dest);
CGLM_INLINE void glm_vec4_sub(vec4 v1, vec4 v2, vec4 dest);
CGLM_INLINE float glm_vec4_norm(vec4 v);
CGLM_INLINE void glm_vec4_add(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_adds(vec4 v, float s, vec4 dest);
CGLM_INLINE void glm_vec4_sub(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_subs(vec4 v, float s, vec4 dest);
CGLM_INLINE void glm_vec4_mul(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_scale(vec4 v, float s, vec4 dest);
CGLM_INLINE void glm_vec4_scale_as(vec4 v, float s, vec4 dest);
CGLM_INLINE void glm_vec4_flipsign(vec4 v);
CGLM_INLINE void glm_vec4_div(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_divs(vec4 v, float s, vec4 dest);
CGLM_INLINE void glm_vec4_addadd(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_subadd(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_muladd(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_muladds(vec4 a, float s, vec4 dest);
CGLM_INLINE void glm_vec4_maxadd(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_minadd(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_negate(vec4 v);
CGLM_INLINE void glm_vec4_inv(vec4 v);
CGLM_INLINE void glm_vec4_inv_to(vec4 v, vec4 dest);
CGLM_INLINE void glm_vec4_normalize(vec4 v);
CGLM_INLINE void glm_vec4_normalize_to(vec4 vec, vec4 dest);
CGLM_INLINE float glm_vec4_distance(vec4 v1, vec4 v2);
CGLM_INLINE void glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest);
CGLM_INLINE void glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest);
CGLM_INLINE float glm_vec4_distance(vec4 a, vec4 b);
CGLM_INLINE void glm_vec4_maxv(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_minv(vec4 a, vec4 b, vec4 dest);
CGLM_INLINE void glm_vec4_clamp(vec4 v, float minVal, float maxVal);
CGLM_INLINE void glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest)
CGLM_INLINE void glm_vec4_swizzle(vec4 v, int mask, vec4 dest);
DEPRECATED:
glm_vec4_dup
glm_vec4_flipsign
glm_vec4_flipsign_to
glm_vec4_inv
glm_vec4_inv_to
glm_vec4_mulv
*/
#ifndef cglm_vec4_h
@@ -48,15 +65,22 @@
#include "vec4-ext.h"
#include "util.h"
/* DEPRECATED! use _copy, _ucopy versions */
#define glm_vec4_dup3(v, dest) glm_vec4_copy3(v, dest)
#define glm_vec4_dup(v, dest) glm_vec4_copy(v, dest)
/* DEPRECATED! functions */
#define glm_vec4_dup3(v, dest) glm_vec4_copy3(v, dest)
#define glm_vec4_dup(v, dest) glm_vec4_copy(v, dest)
#define glm_vec4_flipsign(v) glm_vec4_negate(v)
#define glm_vec4_flipsign_to(v, dest) glm_vec4_negate_to(v, dest)
#define glm_vec4_inv(v) glm_vec4_negate(v)
#define glm_vec4_inv_to(v, dest) glm_vec4_negate_to(v, dest)
#define glm_vec4_mulv(a, b, d) glm_vec4_mul(a, b, d)
#define GLM_VEC4_ONE_INIT {1.0f, 1.0f, 1.0f, 1.0f}
#define GLM_VEC4_BLACK_INIT {0.0f, 0.0f, 0.0f, 1.0f}
#define GLM_VEC4_ZERO_INIT {0.0f, 0.0f, 0.0f, 0.0f}
#define GLM_VEC4_ONE (vec4)GLM_VEC4_ONE_INIT
#define GLM_VEC4_BLACK (vec4)GLM_VEC4_BLACK_INIT
#define GLM_VEC4_ONE ((vec4)GLM_VEC4_ONE_INIT)
#define GLM_VEC4_BLACK ((vec4)GLM_VEC4_BLACK_INIT)
#define GLM_VEC4_ZERO ((vec4)GLM_VEC4_ZERO_INIT)
#define GLM_XXXX GLM_SHUFFLE4(0, 0, 0, 0)
#define GLM_YYYY GLM_SHUFFLE4(1, 1, 1, 1)
@@ -104,7 +128,9 @@ CGLM_INLINE
void
glm_vec4_copy(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest, _mm_load_ps(v));
glmm_store(dest, glmm_load(v));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vld1q_f32(v));
#else
dest[0] = v[0];
dest[1] = v[1];
@@ -113,6 +139,63 @@ glm_vec4_copy(vec4 v, vec4 dest) {
#endif
}
/*!
* @brief copy all members of [a] to [dest]
*
* alignment is not required
*
* @param[in] v source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec4_ucopy(vec4 v, vec4 dest) {
dest[0] = v[0];
dest[1] = v[1];
dest[2] = v[2];
dest[3] = v[3];
}
/*!
* @brief make vector zero
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec4_zero(vec4 v) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(v, _mm_setzero_ps());
#elif defined(CGLM_NEON_FP)
vst1q_f32(v, vdupq_n_f32(0.0f));
#else
v[0] = 0.0f;
v[1] = 0.0f;
v[2] = 0.0f;
v[3] = 0.0f;
#endif
}
/*!
* @brief make vector one
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec4_one(vec4 v) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(v, _mm_set1_ps(1.0f));
#elif defined(CGLM_NEON_FP)
vst1q_f32(v, vdupq_n_f32(1.0f));
#else
v[0] = 1.0f;
v[1] = 1.0f;
v[2] = 1.0f;
v[3] = 1.0f;
#endif
}
/*!
* @brief vec4 dot product
*
@@ -124,7 +207,11 @@ glm_vec4_copy(vec4 v, vec4 dest) {
CGLM_INLINE
float
glm_vec4_dot(vec4 a, vec4 b) {
#if defined(CGLM_SIMD)
return glmm_dot(glmm_load(a), glmm_load(b));
#else
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
#endif
}
/*!
@@ -141,63 +228,133 @@ glm_vec4_dot(vec4 a, vec4 b) {
CGLM_INLINE
float
glm_vec4_norm2(vec4 v) {
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + v[3] * v[3];
return glm_vec4_dot(v, v);
}
/*!
* @brief norm (magnitude) of vec4
*
* @param[in] vec vector
* @param[in] v vector
*
* @return norm
*/
CGLM_INLINE
float
glm_vec4_norm(vec4 vec) {
return sqrtf(glm_vec4_norm2(vec));
}
/*!
* @brief add v2 vector to v1 vector store result in dest
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_add(vec4 v1, vec4 v2, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest,
_mm_add_ps(_mm_load_ps(v1),
_mm_load_ps(v2)));
glm_vec4_norm(vec4 v) {
#if defined(CGLM_SIMD)
return glmm_norm(glmm_load(v));
#else
dest[0] = v1[0] + v2[0];
dest[1] = v1[1] + v2[1];
dest[2] = v1[2] + v2[2];
dest[3] = v1[3] + v2[3];
return sqrtf(glm_vec4_dot(v, v));
#endif
}
/*!
* @brief subtract v2 vector from v1 vector store result in dest
* @brief add b vector to a vector store result in dest
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_sub(vec4 v1, vec4 v2, vec4 dest) {
glm_vec4_add(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest,
_mm_sub_ps(_mm_load_ps(v1),
_mm_load_ps(v2)));
glmm_store(dest, _mm_add_ps(glmm_load(a), glmm_load(b)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(a), vld1q_f32(b)));
#else
dest[0] = v1[0] - v2[0];
dest[1] = v1[1] - v2[1];
dest[2] = v1[2] - v2[2];
dest[3] = v1[3] - v2[3];
dest[0] = a[0] + b[0];
dest[1] = a[1] + b[1];
dest[2] = a[2] + b[2];
dest[3] = a[3] + b[3];
#endif
}
/*!
* @brief add scalar to v vector store result in dest (d = v + vec(s))
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_adds(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(v), _mm_set1_ps(s)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(v), vdupq_n_f32(s)));
#else
dest[0] = v[0] + s;
dest[1] = v[1] + s;
dest[2] = v[2] + s;
dest[3] = v[3] + s;
#endif
}
/*!
* @brief subtract b vector from a vector store result in dest (d = a - b)
*
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_sub(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_sub_ps(glmm_load(a), glmm_load(b)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vsubq_f32(vld1q_f32(a), vld1q_f32(b)));
#else
dest[0] = a[0] - b[0];
dest[1] = a[1] - b[1];
dest[2] = a[2] - b[2];
dest[3] = a[3] - b[3];
#endif
}
/*!
* @brief subtract scalar from v vector store result in dest (d = v - vec(s))
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_subs(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_sub_ps(glmm_load(v), _mm_set1_ps(s)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vsubq_f32(vld1q_f32(v), vdupq_n_f32(s)));
#else
dest[0] = v[0] - s;
dest[1] = v[1] - s;
dest[2] = v[2] - s;
dest[3] = v[3] - s;
#endif
}
/*!
* @brief multiply two vector (component-wise multiplication)
*
* @param a vector1
* @param b vector2
* @param dest dest = (a[0] * b[0], a[1] * b[1], a[2] * b[2], a[3] * b[3])
*/
CGLM_INLINE
void
glm_vec4_mul(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_mul_ps(glmm_load(a), glmm_load(b)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vmulq_f32(vld1q_f32(a), vld1q_f32(b)));
#else
dest[0] = a[0] * b[0];
dest[1] = a[1] * b[1];
dest[2] = a[2] * b[2];
dest[3] = a[3] * b[3];
#endif
}
@@ -212,9 +369,9 @@ CGLM_INLINE
void
glm_vec4_scale(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(dest,
_mm_mul_ps(_mm_load_ps(v),
_mm_set1_ps(s)));
glmm_store(dest, _mm_mul_ps(glmm_load(v), _mm_set1_ps(s)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vmulq_f32(vld1q_f32(v), vdupq_n_f32(s)));
#else
dest[0] = v[0] * s;
dest[1] = v[1] * s;
@@ -236,14 +393,240 @@ glm_vec4_scale_as(vec4 v, float s, vec4 dest) {
float norm;
norm = glm_vec4_norm(v);
if (norm == 0) {
glm_vec4_copy(v, dest);
if (norm == 0.0f) {
glm_vec4_zero(dest);
return;
}
glm_vec4_scale(v, s / norm, dest);
}
/*!
* @brief div vector with another component-wise division: d = a / b
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2], a[3]/b[3])
*/
CGLM_INLINE
void
glm_vec4_div(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_div_ps(glmm_load(a), glmm_load(b)));
#else
dest[0] = a[0] / b[0];
dest[1] = a[1] / b[1];
dest[2] = a[2] / b[2];
dest[3] = a[3] / b[3];
#endif
}
/*!
* @brief div vec4 vector with scalar: d = v / s
*
* @param[in] v vector
* @param[in] s scalar
* @param[out] dest destination vector
*/
CGLM_INLINE
void
glm_vec4_divs(vec4 v, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_div_ps(glmm_load(v), _mm_set1_ps(s)));
#else
glm_vec4_scale(v, 1.0f / s, dest);
#endif
}
/*!
* @brief add two vectors and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a + b)
*/
CGLM_INLINE
void
glm_vec4_addadd(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_add_ps(glmm_load(a),
glmm_load(b))));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
vaddq_f32(vld1q_f32(a),
vld1q_f32(b))));
#else
dest[0] += a[0] + b[0];
dest[1] += a[1] + b[1];
dest[2] += a[2] + b[2];
dest[3] += a[3] + b[3];
#endif
}
/*!
* @brief sub two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a - b)
*/
CGLM_INLINE
void
glm_vec4_subadd(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_sub_ps(glmm_load(a),
glmm_load(b))));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
vsubq_f32(vld1q_f32(a),
vld1q_f32(b))));
#else
dest[0] += a[0] - b[0];
dest[1] += a[1] - b[1];
dest[2] += a[2] - b[2];
dest[3] += a[3] - b[3];
#endif
}
/*!
* @brief mul two vectors and add result to dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += (a * b)
*/
CGLM_INLINE
void
glm_vec4_muladd(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_mul_ps(glmm_load(a),
glmm_load(b))));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
vmulq_f32(vld1q_f32(a),
vld1q_f32(b))));
#else
dest[0] += a[0] * b[0];
dest[1] += a[1] * b[1];
dest[2] += a[2] * b[2];
dest[3] += a[3] * b[3];
#endif
}
/*!
* @brief mul vector with scalar and add result to sum
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector
* @param[in] s scalar
* @param[out] dest dest += (a * b)
*/
CGLM_INLINE
void
glm_vec4_muladds(vec4 a, float s, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_mul_ps(glmm_load(a),
_mm_set1_ps(s))));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
vsubq_f32(vld1q_f32(a),
vdupq_n_f32(s))));
#else
dest[0] += a[0] * s;
dest[1] += a[1] * s;
dest[2] += a[2] * s;
dest[3] += a[3] * s;
#endif
}
/*!
* @brief add max of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += max(a, b)
*/
CGLM_INLINE
void
glm_vec4_maxadd(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_max_ps(glmm_load(a),
glmm_load(b))));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
vmaxq_f32(vld1q_f32(a),
vld1q_f32(b))));
#else
dest[0] += glm_max(a[0], b[0]);
dest[1] += glm_max(a[1], b[1]);
dest[2] += glm_max(a[2], b[2]);
dest[3] += glm_max(a[3], b[3]);
#endif
}
/*!
* @brief add min of two vector to result/dest
*
* it applies += operator so dest must be initialized
*
* @param[in] a vector 1
* @param[in] b vector 2
* @param[out] dest dest += min(a, b)
*/
CGLM_INLINE
void
glm_vec4_minadd(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_add_ps(glmm_load(dest),
_mm_min_ps(glmm_load(a),
glmm_load(b))));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
vminq_f32(vld1q_f32(a),
vld1q_f32(b))));
#else
dest[0] += glm_min(a[0], b[0]);
dest[1] += glm_min(a[1], b[1]);
dest[2] += glm_min(a[2], b[2]);
dest[3] += glm_min(a[3], b[3]);
#endif
}
/*!
* @brief negate vector components and store result in dest
*
* @param[in] v vector
* @param[out] dest result vector
*/
CGLM_INLINE
void
glm_vec4_negate_to(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_xor_ps(glmm_load(v), _mm_set1_ps(-0.0f)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, veorq_s32(vld1q_f32(v), vdupq_n_f32(-0.0f)));
#else
dest[0] = -v[0];
dest[1] = -v[1];
dest[2] = -v[2];
dest[3] = -v[3];
#endif
}
/*!
* @brief flip sign of all vec4 members
*
@@ -251,40 +634,45 @@ glm_vec4_scale_as(vec4 v, float s, vec4 dest) {
*/
CGLM_INLINE
void
glm_vec4_flipsign(vec4 v) {
#if defined( __SSE__ ) || defined( __SSE2__ )
_mm_store_ps(v, _mm_xor_ps(_mm_load_ps(v),
_mm_set1_ps(-0.0f)));
#else
v[0] = -v[0];
v[1] = -v[1];
v[2] = -v[2];
v[3] = -v[3];
#endif
glm_vec4_negate(vec4 v) {
glm_vec4_negate_to(v, v);
}
/*!
* @brief make vector as inverse/opposite of itself
*
* @param[in, out] v vector
*/
CGLM_INLINE
void
glm_vec4_inv(vec4 v) {
glm_vec4_flipsign(v);
}
/*!
* @brief inverse/opposite vector
* @brief normalize vec4 to dest
*
* @param[in] v source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec4_inv_to(vec4 v, vec4 dest) {
glm_vec4_copy(v, dest);
glm_vec4_flipsign(dest);
glm_vec4_normalize_to(vec4 v, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
__m128 xdot, x0;
float dot;
x0 = glmm_load(v);
xdot = glmm_vdot(x0, x0);
dot = _mm_cvtss_f32(xdot);
if (dot == 0.0f) {
glmm_store(dest, _mm_setzero_ps());
return;
}
glmm_store(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
#else
float norm;
norm = glm_vec4_norm(v);
if (norm == 0.0f) {
glm_vec4_zero(dest);
return;
}
glm_vec4_scale(v, 1.0f / norm, dest);
#endif
}
/*!
@@ -295,85 +683,138 @@ glm_vec4_inv_to(vec4 v, vec4 dest) {
CGLM_INLINE
void
glm_vec4_normalize(vec4 v) {
float norm;
norm = glm_vec4_norm(v);
if (norm == 0.0f) {
v[0] = v[1] = v[2] = v[3] = 0.0f;
return;
}
glm_vec4_scale(v, 1.0f / norm, v);
}
/*!
* @brief normalize vec4 to dest
*
* @param[in] vec source
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec4_normalize_to(vec4 vec, vec4 dest) {
float norm;
norm = glm_vec4_norm(vec);
if (norm == 0.0f) {
dest[0] = dest[1] = dest[2] = dest[3] = 0.0f;
return;
}
glm_vec4_scale(vec, 1.0f / norm, dest);
glm_vec4_normalize_to(v, v);
}
/**
* @brief distance between two vectors
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[in] a vector1
* @param[in] b vector2
* @return returns distance
*/
CGLM_INLINE
float
glm_vec4_distance(vec4 v1, vec4 v2) {
return sqrtf(glm_pow2(v2[0] - v1[0])
+ glm_pow2(v2[1] - v1[1])
+ glm_pow2(v2[2] - v1[2])
+ glm_pow2(v2[3] - v1[3]));
glm_vec4_distance(vec4 a, vec4 b) {
#if defined( __SSE__ ) || defined( __SSE2__ )
return glmm_norm(_mm_sub_ps(glmm_load(b), glmm_load(a)));
#elif defined(CGLM_NEON_FP)
return glmm_norm(vsubq_f32(glmm_load(a), glmm_load(b)));
#else
return sqrtf(glm_pow2(b[0] - a[0])
+ glm_pow2(b[1] - a[1])
+ glm_pow2(b[2] - a[2])
+ glm_pow2(b[3] - a[3]));
#endif
}
/*!
* @brief max values of vectors
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest) {
dest[0] = glm_max(v1[0], v2[0]);
dest[1] = glm_max(v1[1], v2[1]);
dest[2] = glm_max(v1[2], v2[2]);
dest[3] = glm_max(v1[3], v2[3]);
glm_vec4_maxv(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_max_ps(glmm_load(a), glmm_load(b)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vmaxq_f32(vld1q_f32(a), vld1q_f32(b)));
#else
dest[0] = glm_max(a[0], b[0]);
dest[1] = glm_max(a[1], b[1]);
dest[2] = glm_max(a[2], b[2]);
dest[3] = glm_max(a[3], b[3]);
#endif
}
/*!
* @brief min values of vectors
*
* @param[in] v1 vector1
* @param[in] v2 vector2
* @param[in] a vector1
* @param[in] b vector2
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest) {
dest[0] = glm_min(v1[0], v2[0]);
dest[1] = glm_min(v1[1], v2[1]);
dest[2] = glm_min(v1[2], v2[2]);
dest[3] = glm_min(v1[3], v2[3]);
glm_vec4_minv(vec4 a, vec4 b, vec4 dest) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(dest, _mm_min_ps(glmm_load(a), glmm_load(b)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(dest, vminq_f32(vld1q_f32(a), vld1q_f32(b)));
#else
dest[0] = glm_min(a[0], b[0]);
dest[1] = glm_min(a[1], b[1]);
dest[2] = glm_min(a[2], b[2]);
dest[3] = glm_min(a[3], b[3]);
#endif
}
/*!
* @brief clamp vector's individual members between min and max values
*
* @param[in, out] v vector
* @param[in] minVal minimum value
* @param[in] maxVal maximum value
*/
CGLM_INLINE
void
glm_vec4_clamp(vec4 v, float minVal, float maxVal) {
#if defined( __SSE__ ) || defined( __SSE2__ )
glmm_store(v, _mm_min_ps(_mm_max_ps(glmm_load(v), _mm_set1_ps(minVal)),
_mm_set1_ps(maxVal)));
#elif defined(CGLM_NEON_FP)
vst1q_f32(v, vminq_f32(vmaxq_f32(vld1q_f32(v), vdupq_n_f32(minVal)),
vdupq_n_f32(maxVal)));
#else
v[0] = glm_clamp(v[0], minVal, maxVal);
v[1] = glm_clamp(v[1], minVal, maxVal);
v[2] = glm_clamp(v[2], minVal, maxVal);
v[3] = glm_clamp(v[3], minVal, maxVal);
#endif
}
/*!
* @brief linear interpolation between two vector
*
* formula: from + s * (to - from)
*
* @param[in] from from value
* @param[in] to to value
* @param[in] t interpolant (amount) clamped between 0 and 1
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest) {
vec4 s, v;
/* from + s * (to - from) */
glm_vec4_broadcast(glm_clamp_zo(t), s);
glm_vec4_sub(to, from, v);
glm_vec4_mul(s, v, v);
glm_vec4_add(from, v, dest);
}
/*!
* @brief helper to fill vec4 as [S^3, S^2, S, 1]
*
* @param[in] s parameter
* @param[out] dest destination
*/
CGLM_INLINE
void
glm_vec4_cubic(float s, vec4 dest) {
float ss;
ss = s * s;
dest[0] = ss * s;
dest[1] = ss;
dest[2] = s;
dest[3] = 1.0f;
}
/*!

View File

@@ -9,7 +9,7 @@
#define cglm_version_h
#define CGLM_VERSION_MAJOR 0
#define CGLM_VERSION_MINOR 3
#define CGLM_VERSION_PATCH 3
#define CGLM_VERSION_MINOR 6
#define CGLM_VERSION_PATCH 0
#endif /* cglm_version_h */