mirror of
https://github.com/recp/cglm.git
synced 2026-02-17 03:39:05 +00:00
Merge branch 'master' into swizzle
This commit is contained in:
@@ -16,6 +16,7 @@
|
||||
|
||||
#include "common.h"
|
||||
#include "mat4.h"
|
||||
#include "mat3.h"
|
||||
|
||||
#ifdef CGLM_SSE_FP
|
||||
# include "simd/sse2/affine.h"
|
||||
@@ -81,6 +82,59 @@ glm_mul(mat4 m1, mat4 m2, mat4 dest) {
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief this is similar to glm_mat4_mul but specialized to affine transform
|
||||
*
|
||||
* Right Matrix format should be:
|
||||
* R R R 0
|
||||
* R R R 0
|
||||
* R R R 0
|
||||
* 0 0 0 1
|
||||
*
|
||||
* this reduces some multiplications. It should be faster than mat4_mul.
|
||||
* if you are not sure about matrix format then DON'T use this! use mat4_mul
|
||||
*
|
||||
* @param[in] m1 affine matrix 1
|
||||
* @param[in] m2 affine matrix 2
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_mul_rot_sse2(m1, m2, dest);
|
||||
#else
|
||||
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
|
||||
a10 = m1[1][0], a11 = m1[1][1], a12 = m1[1][2], a13 = m1[1][3],
|
||||
a20 = m1[2][0], a21 = m1[2][1], a22 = m1[2][2], a23 = m1[2][3],
|
||||
a30 = m1[3][0], a31 = m1[3][1], a32 = m1[3][2], a33 = m1[3][3],
|
||||
|
||||
b00 = m2[0][0], b01 = m2[0][1], b02 = m2[0][2],
|
||||
b10 = m2[1][0], b11 = m2[1][1], b12 = m2[1][2],
|
||||
b20 = m2[2][0], b21 = m2[2][1], b22 = m2[2][2];
|
||||
|
||||
dest[0][0] = a00 * b00 + a10 * b01 + a20 * b02;
|
||||
dest[0][1] = a01 * b00 + a11 * b01 + a21 * b02;
|
||||
dest[0][2] = a02 * b00 + a12 * b01 + a22 * b02;
|
||||
dest[0][3] = a03 * b00 + a13 * b01 + a23 * b02;
|
||||
|
||||
dest[1][0] = a00 * b10 + a10 * b11 + a20 * b12;
|
||||
dest[1][1] = a01 * b10 + a11 * b11 + a21 * b12;
|
||||
dest[1][2] = a02 * b10 + a12 * b11 + a22 * b12;
|
||||
dest[1][3] = a03 * b10 + a13 * b11 + a23 * b12;
|
||||
|
||||
dest[2][0] = a00 * b20 + a10 * b21 + a20 * b22;
|
||||
dest[2][1] = a01 * b20 + a11 * b21 + a21 * b22;
|
||||
dest[2][2] = a02 * b20 + a12 * b21 + a22 * b22;
|
||||
dest[2][3] = a03 * b20 + a13 * b21 + a23 * b22;
|
||||
|
||||
dest[3][0] = a30;
|
||||
dest[3][1] = a31;
|
||||
dest[3][2] = a32;
|
||||
dest[3][3] = a33;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inverse orthonormal rotation + translation matrix (ridig-body)
|
||||
*
|
||||
@@ -97,8 +151,8 @@ glm_inv_tr(mat4 mat) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_inv_tr_sse2(mat);
|
||||
#else
|
||||
CGLM_ALIGN(16) mat3 r;
|
||||
CGLM_ALIGN(16) vec3 t;
|
||||
CGLM_ALIGN_MAT mat3 r;
|
||||
CGLM_ALIGN(8) vec3 t;
|
||||
|
||||
/* rotate */
|
||||
glm_mat4_pick3t(mat, r);
|
||||
@@ -106,8 +160,8 @@ glm_inv_tr(mat4 mat) {
|
||||
|
||||
/* translate */
|
||||
glm_mat3_mulv(r, mat[3], t);
|
||||
glm_vec_flipsign(t);
|
||||
glm_vec_copy(t, mat[3]);
|
||||
glm_vec3_negate(t);
|
||||
glm_vec3_copy(t, mat[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
@@ -16,15 +16,14 @@
|
||||
CGLM_INLINE void glm_scale_to(mat4 m, vec3 v, mat4 dest);
|
||||
CGLM_INLINE void glm_scale_make(mat4 m, vec3 v);
|
||||
CGLM_INLINE void glm_scale(mat4 m, vec3 v);
|
||||
CGLM_INLINE void glm_scale1(mat4 m, float s);
|
||||
CGLM_INLINE void glm_scale_uni(mat4 m, float s);
|
||||
CGLM_INLINE void glm_rotate_x(mat4 m, float angle, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_y(mat4 m, float angle, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_z(mat4 m, float angle, mat4 dest);
|
||||
CGLM_INLINE void glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc);
|
||||
CGLM_INLINE void glm_rotate_make(mat4 m, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_rotate_ndc(mat4 m, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_rotate(mat4 m, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_decompose_scalev(mat4 m, vec3 s);
|
||||
CGLM_INLINE bool glm_uniscaled(mat4 m);
|
||||
CGLM_INLINE void glm_decompose_rs(mat4 m, mat4 r, vec3 s);
|
||||
@@ -35,51 +34,15 @@
|
||||
#define cglm_affine_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec4.h"
|
||||
#include "affine-mat.h"
|
||||
#include "util.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
#include "affine-mat.h"
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by v vector
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] v translate vector [x, y, z]
|
||||
* @param[out] dest translated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_to(mat4 m, vec3 v, mat4 dest) {
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_load_ps(t[0]),
|
||||
_mm_set1_ps(v[0])),
|
||||
_mm_mul_ps(_mm_load_ps(t[1]),
|
||||
_mm_set1_ps(v[1]))),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(t[2]),
|
||||
_mm_set1_ps(v[2])),
|
||||
_mm_load_ps(t[3]))))
|
||||
;
|
||||
|
||||
_mm_store_ps(dest[0], _mm_load_ps(m[0]));
|
||||
_mm_store_ps(dest[1], _mm_load_ps(m[1]));
|
||||
_mm_store_ps(dest[2], _mm_load_ps(m[2]));
|
||||
#else
|
||||
vec4 v1, v2, v3;
|
||||
|
||||
glm_vec4_scale(t[0], v[0], v1);
|
||||
glm_vec4_scale(t[1], v[1], v2);
|
||||
glm_vec4_scale(t[2], v[2], v3);
|
||||
|
||||
glm_vec4_add(v1, t[3], t[3]);
|
||||
glm_vec4_add(v2, t[3], t[3]);
|
||||
glm_vec4_add(v3, t[3], t[3]);
|
||||
|
||||
glm__memcpy(float, dest, t, sizeof(mat4));
|
||||
#endif
|
||||
}
|
||||
glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest);
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by v vector
|
||||
@@ -92,14 +55,14 @@ CGLM_INLINE
|
||||
void
|
||||
glm_translate(mat4 m, vec3 v) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(m[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]),
|
||||
_mm_set1_ps(v[0])),
|
||||
_mm_mul_ps(_mm_load_ps(m[1]),
|
||||
_mm_set1_ps(v[1]))),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]),
|
||||
_mm_set1_ps(v[2])),
|
||||
_mm_load_ps(m[3]))))
|
||||
glmm_store(m[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_load(m[0]),
|
||||
_mm_set1_ps(v[0])),
|
||||
_mm_mul_ps(glmm_load(m[1]),
|
||||
_mm_set1_ps(v[1]))),
|
||||
_mm_add_ps(_mm_mul_ps(glmm_load(m[2]),
|
||||
_mm_set1_ps(v[2])),
|
||||
glmm_load(m[3]))))
|
||||
;
|
||||
#else
|
||||
vec4 v1, v2, v3;
|
||||
@@ -114,6 +77,23 @@ glm_translate(mat4 m, vec3 v) {
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by v vector
|
||||
* and store result in dest
|
||||
*
|
||||
* source matrix will remain same
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] v translate vector [x, y, z]
|
||||
* @param[out] dest translated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_to(mat4 m, vec3 v, mat4 dest) {
|
||||
glm_mat4_copy(m, dest);
|
||||
glm_translate(dest, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by x factor
|
||||
*
|
||||
@@ -124,10 +104,10 @@ CGLM_INLINE
|
||||
void
|
||||
glm_translate_x(mat4 m, float x) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]),
|
||||
_mm_set1_ps(x)),
|
||||
_mm_load_ps(m[3])))
|
||||
glmm_store(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(glmm_load(m[0]),
|
||||
_mm_set1_ps(x)),
|
||||
glmm_load(m[3])))
|
||||
;
|
||||
#else
|
||||
vec4 v1;
|
||||
@@ -146,10 +126,10 @@ CGLM_INLINE
|
||||
void
|
||||
glm_translate_y(mat4 m, float y) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[1]),
|
||||
_mm_set1_ps(y)),
|
||||
_mm_load_ps(m[3])))
|
||||
glmm_store(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(glmm_load(m[1]),
|
||||
_mm_set1_ps(y)),
|
||||
glmm_load(m[3])))
|
||||
;
|
||||
#else
|
||||
vec4 v1;
|
||||
@@ -168,10 +148,10 @@ CGLM_INLINE
|
||||
void
|
||||
glm_translate_z(mat4 m, float z) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]),
|
||||
_mm_set1_ps(z)),
|
||||
_mm_load_ps(m[3])))
|
||||
glmm_store(m[3],
|
||||
_mm_add_ps(_mm_mul_ps(glmm_load(m[2]),
|
||||
_mm_set1_ps(z)),
|
||||
glmm_load(m[3])))
|
||||
;
|
||||
#else
|
||||
vec4 v1;
|
||||
@@ -189,8 +169,8 @@ glm_translate_z(mat4 m, float z) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate_make(mat4 m, vec3 v) {
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
glm_translate_to(t, v, m);
|
||||
glm_mat4_identity(m);
|
||||
glm_vec3_copy(v, m[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -220,8 +200,10 @@ glm_scale_to(mat4 m, vec3 v, mat4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_scale_make(mat4 m, vec3 v) {
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
glm_scale_to(t, v, m);
|
||||
glm_mat4_identity(m);
|
||||
m[0][0] = v[0];
|
||||
m[1][1] = v[1];
|
||||
m[2][2] = v[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -237,16 +219,6 @@ glm_scale(mat4 m, vec3 v) {
|
||||
glm_scale_to(m, v, m);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief DEPRECATED! Use glm_scale_uni
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_scale1(mat4 m, float s) {
|
||||
vec3 v = { s, s, s };
|
||||
glm_scale_to(m, v, m);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief applies uniform scale to existing transform matrix v = [s, s, s]
|
||||
* and stores result in same matrix
|
||||
@@ -257,7 +229,7 @@ glm_scale1(mat4 m, float s) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_scale_uni(mat4 m, float s) {
|
||||
vec3 v = { s, s, s };
|
||||
CGLM_ALIGN(8) vec3 v = { s, s, s };
|
||||
glm_scale_to(m, v, m);
|
||||
}
|
||||
|
||||
@@ -272,19 +244,18 @@ glm_scale_uni(mat4 m, float s) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_x(mat4 m, float angle, mat4 dest) {
|
||||
float cosVal;
|
||||
float sinVal;
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
float c, s;
|
||||
|
||||
cosVal = cosf(angle);
|
||||
sinVal = sinf(angle);
|
||||
c = cosf(angle);
|
||||
s = sinf(angle);
|
||||
|
||||
t[1][1] = cosVal;
|
||||
t[1][2] = sinVal;
|
||||
t[2][1] = -sinVal;
|
||||
t[2][2] = cosVal;
|
||||
t[1][1] = c;
|
||||
t[1][2] = s;
|
||||
t[2][1] = -s;
|
||||
t[2][2] = c;
|
||||
|
||||
glm_mat4_mul(m, t, dest);
|
||||
glm_mul_rot(m, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -298,19 +269,18 @@ glm_rotate_x(mat4 m, float angle, mat4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_y(mat4 m, float angle, mat4 dest) {
|
||||
float cosVal;
|
||||
float sinVal;
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
float c, s;
|
||||
|
||||
cosVal = cosf(angle);
|
||||
sinVal = sinf(angle);
|
||||
c = cosf(angle);
|
||||
s = sinf(angle);
|
||||
|
||||
t[0][0] = cosVal;
|
||||
t[0][2] = -sinVal;
|
||||
t[2][0] = sinVal;
|
||||
t[2][2] = cosVal;
|
||||
t[0][0] = c;
|
||||
t[0][2] = -s;
|
||||
t[2][0] = s;
|
||||
t[2][2] = c;
|
||||
|
||||
glm_mat4_mul(m, t, dest);
|
||||
glm_mul_rot(m, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -324,67 +294,24 @@ glm_rotate_y(mat4 m, float angle, mat4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_z(mat4 m, float angle, mat4 dest) {
|
||||
float cosVal;
|
||||
float sinVal;
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
|
||||
cosVal = cosf(angle);
|
||||
sinVal = sinf(angle);
|
||||
|
||||
t[0][0] = cosVal;
|
||||
t[0][1] = sinVal;
|
||||
t[1][0] = -sinVal;
|
||||
t[1][1] = cosVal;
|
||||
|
||||
glm_mat4_mul(m, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW rotation matrix by angle and axis
|
||||
*
|
||||
* this name may change in the future. axis must be is normalized
|
||||
*
|
||||
* @param[out] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis_ndc normalized axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc) {
|
||||
/* https://www.opengl.org/sdk/docs/man2/xhtml/glRotate.xml */
|
||||
|
||||
vec3 v, vs;
|
||||
float c;
|
||||
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
float c, s;
|
||||
|
||||
c = cosf(angle);
|
||||
s = sinf(angle);
|
||||
|
||||
glm_vec_scale(axis_ndc, 1.0f - c, v);
|
||||
glm_vec_scale(axis_ndc, sinf(angle), vs);
|
||||
t[0][0] = c;
|
||||
t[0][1] = s;
|
||||
t[1][0] = -s;
|
||||
t[1][1] = c;
|
||||
|
||||
glm_vec_scale(axis_ndc, v[0], m[0]);
|
||||
glm_vec_scale(axis_ndc, v[1], m[1]);
|
||||
glm_vec_scale(axis_ndc, v[2], m[2]);
|
||||
|
||||
m[0][0] += c;
|
||||
m[0][1] += vs[2];
|
||||
m[0][2] -= vs[1];
|
||||
|
||||
m[1][0] -= vs[2];
|
||||
m[1][1] += c;
|
||||
m[1][2] += vs[0];
|
||||
|
||||
m[2][0] += vs[1];
|
||||
m[2][1] -= vs[0];
|
||||
m[2][2] += c;
|
||||
|
||||
m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0f;
|
||||
m[3][3] = 1.0f;
|
||||
glm_mul_rot(m, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW rotation matrix by angle and axis
|
||||
*
|
||||
* this name may change in the future. axis must be is normalized
|
||||
* axis will be normalized so you don't need to normalize it
|
||||
*
|
||||
* @param[out] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
@@ -393,53 +320,29 @@ glm_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_make(mat4 m, float angle, vec3 axis) {
|
||||
vec3 axis_ndc;
|
||||
CGLM_ALIGN(8) vec3 axisn, v, vs;
|
||||
float c;
|
||||
|
||||
glm_vec_normalize_to(axis, axis_ndc);
|
||||
glm_rotate_ndc_make(m, angle, axis_ndc);
|
||||
c = cosf(angle);
|
||||
|
||||
glm_vec3_normalize_to(axis, axisn);
|
||||
glm_vec3_scale(axisn, 1.0f - c, v);
|
||||
glm_vec3_scale(axisn, sinf(angle), vs);
|
||||
|
||||
glm_vec3_scale(axisn, v[0], m[0]);
|
||||
glm_vec3_scale(axisn, v[1], m[1]);
|
||||
glm_vec3_scale(axisn, v[2], m[2]);
|
||||
|
||||
m[0][0] += c; m[1][0] -= vs[2]; m[2][0] += vs[1];
|
||||
m[0][1] += vs[2]; m[1][1] += c; m[2][1] -= vs[0];
|
||||
m[0][2] -= vs[1]; m[1][2] += vs[0]; m[2][2] += c;
|
||||
|
||||
m[0][3] = m[1][3] = m[2][3] = m[3][0] = m[3][1] = m[3][2] = 0.0f;
|
||||
m[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around Z axis by angle and axis
|
||||
*
|
||||
* this name may change in the future, axis must be normalized.
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis_ndc normalized axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_ndc(mat4 m, float angle, vec3 axis_ndc) {
|
||||
mat4 rot, tmp;
|
||||
|
||||
glm_rotate_ndc_make(rot, angle, axis_ndc);
|
||||
|
||||
glm_vec4_scale(m[0], rot[0][0], tmp[1]);
|
||||
glm_vec4_scale(m[1], rot[0][1], tmp[0]);
|
||||
glm_vec4_add(tmp[1], tmp[0], tmp[1]);
|
||||
glm_vec4_scale(m[2], rot[0][2], tmp[0]);
|
||||
glm_vec4_add(tmp[1], tmp[0], tmp[1]);
|
||||
|
||||
glm_vec4_scale(m[0], rot[1][0], tmp[2]);
|
||||
glm_vec4_scale(m[1], rot[1][1], tmp[0]);
|
||||
glm_vec4_add(tmp[2], tmp[0], tmp[2]);
|
||||
glm_vec4_scale(m[2], rot[1][2], tmp[0]);
|
||||
glm_vec4_add(tmp[2], tmp[0], tmp[2]);
|
||||
|
||||
glm_vec4_scale(m[0], rot[2][0], tmp[3]);
|
||||
glm_vec4_scale(m[1], rot[2][1], tmp[0]);
|
||||
glm_vec4_add(tmp[3], tmp[0], tmp[3]);
|
||||
glm_vec4_scale(m[2], rot[2][2], tmp[0]);
|
||||
glm_vec4_add(tmp[3], tmp[0], tmp[3]);
|
||||
|
||||
glm_vec4_copy(tmp[1], m[0]);
|
||||
glm_vec4_copy(tmp[2], m[1]);
|
||||
glm_vec4_copy(tmp[3], m[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around Z axis by angle and axis
|
||||
* @brief rotate existing transform matrix around given axis by angle
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
@@ -448,10 +351,55 @@ glm_rotate_ndc(mat4 m, float angle, vec3 axis_ndc) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate(mat4 m, float angle, vec3 axis) {
|
||||
vec3 axis_ndc;
|
||||
CGLM_ALIGN_MAT mat4 rot;
|
||||
glm_rotate_make(rot, angle, axis);
|
||||
glm_mul_rot(m, rot, m);
|
||||
}
|
||||
|
||||
glm_vec_normalize_to(axis, axis_ndc);
|
||||
glm_rotate_ndc(m, angle, axis_ndc);
|
||||
/*!
|
||||
* @brief rotate existing transform
|
||||
* around given axis by angle at given pivot point (rotation center)
|
||||
*
|
||||
* @param[in, out] m affine transfrom
|
||||
* @param[in] pivot rotation center
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis) {
|
||||
CGLM_ALIGN(8) vec3 pivotInv;
|
||||
|
||||
glm_vec3_negate_to(pivot, pivotInv);
|
||||
|
||||
glm_translate(m, pivot);
|
||||
glm_rotate(m, angle, axis);
|
||||
glm_translate(m, pivotInv);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW rotation matrix by angle and axis at given point
|
||||
*
|
||||
* this creates rotation matrix, it assumes you don't have a matrix
|
||||
*
|
||||
* this should work faster than glm_rotate_at because it reduces
|
||||
* one glm_translate.
|
||||
*
|
||||
* @param[out] m affine transfrom
|
||||
* @param[in] pivot rotation center
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis) {
|
||||
CGLM_ALIGN(8) vec3 pivotInv;
|
||||
|
||||
glm_vec3_negate_to(pivot, pivotInv);
|
||||
|
||||
glm_translate_make(m, pivot);
|
||||
glm_rotate(m, angle, axis);
|
||||
glm_translate(m, pivotInv);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -463,13 +411,13 @@ glm_rotate(mat4 m, float angle, vec3 axis) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_decompose_scalev(mat4 m, vec3 s) {
|
||||
s[0] = glm_vec_norm(m[0]);
|
||||
s[1] = glm_vec_norm(m[1]);
|
||||
s[2] = glm_vec_norm(m[2]);
|
||||
s[0] = glm_vec3_norm(m[0]);
|
||||
s[1] = glm_vec3_norm(m[1]);
|
||||
s[2] = glm_vec3_norm(m[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns true if matrix is uniform scaled. This is helpful for
|
||||
* @brief returns true if matrix is uniform scaled. This is helpful for
|
||||
* creating normal matrix.
|
||||
*
|
||||
* @param[in] m m
|
||||
@@ -479,10 +427,9 @@ glm_decompose_scalev(mat4 m, vec3 s) {
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_uniscaled(mat4 m) {
|
||||
vec3 s;
|
||||
CGLM_ALIGN(8) vec3 s;
|
||||
glm_decompose_scalev(m, s);
|
||||
|
||||
return glm_vec_eq_all(s);
|
||||
return glm_vec3_eq_all(s);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -496,17 +443,17 @@ glm_uniscaled(mat4 m) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_decompose_rs(mat4 m, mat4 r, vec3 s) {
|
||||
vec4 t = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
vec3 v;
|
||||
CGLM_ALIGN(16) vec4 t = {0.0f, 0.0f, 0.0f, 1.0f};
|
||||
CGLM_ALIGN(8) vec3 v;
|
||||
|
||||
glm_vec4_copy(m[0], r[0]);
|
||||
glm_vec4_copy(m[1], r[1]);
|
||||
glm_vec4_copy(m[2], r[2]);
|
||||
glm_vec4_copy(t, r[3]);
|
||||
|
||||
s[0] = glm_vec_norm(m[0]);
|
||||
s[1] = glm_vec_norm(m[1]);
|
||||
s[2] = glm_vec_norm(m[2]);
|
||||
s[0] = glm_vec3_norm(m[0]);
|
||||
s[1] = glm_vec3_norm(m[1]);
|
||||
s[2] = glm_vec3_norm(m[2]);
|
||||
|
||||
glm_vec4_scale(r[0], 1.0f/s[0], r[0]);
|
||||
glm_vec4_scale(r[1], 1.0f/s[1], r[1]);
|
||||
@@ -515,12 +462,12 @@ glm_decompose_rs(mat4 m, mat4 r, vec3 s) {
|
||||
/* Note from Apple Open Source (asume that the matrix is orthonormal):
|
||||
check for a coordinate system flip. If the determinant
|
||||
is -1, then negate the matrix and the scaling factors. */
|
||||
glm_vec_cross(m[0], m[1], v);
|
||||
if (glm_vec_dot(v, m[2]) < 0.0f) {
|
||||
glm_vec4_flipsign(r[0]);
|
||||
glm_vec4_flipsign(r[1]);
|
||||
glm_vec4_flipsign(r[2]);
|
||||
glm_vec_flipsign(s);
|
||||
glm_vec3_cross(m[0], m[1], v);
|
||||
if (glm_vec3_dot(v, m[2]) < 0.0f) {
|
||||
glm_vec4_negate(r[0]);
|
||||
glm_vec4_negate(r[1]);
|
||||
glm_vec4_negate(r[2]);
|
||||
glm_vec3_negate(s);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
154
include/cglm/bezier.h
Normal file
154
include/cglm/bezier.h
Normal file
@@ -0,0 +1,154 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_bezier_h
|
||||
#define cglm_bezier_h
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#define GLM_BEZIER_MAT_INIT {{-1.0f, 3.0f, -3.0f, 1.0f}, \
|
||||
{ 3.0f, -6.0f, 3.0f, 0.0f}, \
|
||||
{-3.0f, 3.0f, 0.0f, 0.0f}, \
|
||||
{ 1.0f, 0.0f, 0.0f, 0.0f}}
|
||||
#define GLM_HERMITE_MAT_INIT {{ 2.0f, -3.0f, 0.0f, 1.0f}, \
|
||||
{-2.0f, 3.0f, 0.0f, 0.0f}, \
|
||||
{ 1.0f, -2.0f, 1.0f, 0.0f}, \
|
||||
{ 1.0f, -1.0f, 0.0f, 0.0f}}
|
||||
/* for C only */
|
||||
#define GLM_BEZIER_MAT ((mat4)GLM_BEZIER_MAT_INIT)
|
||||
#define GLM_HERMITE_MAT ((mat4)GLM_HERMITE_MAT_INIT)
|
||||
|
||||
#define CGLM_DECASTEL_EPS 1e-9
|
||||
#define CGLM_DECASTEL_MAX 1000
|
||||
#define CGLM_DECASTEL_SMALL 1e-20
|
||||
|
||||
/*!
|
||||
* @brief cubic bezier interpolation
|
||||
*
|
||||
* Formula:
|
||||
* B(s) = P0*(1-s)^3 + 3*C0*s*(1-s)^2 + 3*C1*s^2*(1-s) + P1*s^3
|
||||
*
|
||||
* similar result using matrix:
|
||||
* B(s) = glm_smc(t, GLM_BEZIER_MAT, (vec4){p0, c0, c1, p1})
|
||||
*
|
||||
* glm_eq(glm_smc(...), glm_bezier(...)) should return TRUE
|
||||
*
|
||||
* @param[in] s parameter between 0 and 1
|
||||
* @param[in] p0 begin point
|
||||
* @param[in] c0 control point 1
|
||||
* @param[in] c1 control point 2
|
||||
* @param[in] p1 end point
|
||||
*
|
||||
* @return B(s)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_bezier(float s, float p0, float c0, float c1, float p1) {
|
||||
float x, xx, ss, xs3, a;
|
||||
|
||||
x = 1.0f - s;
|
||||
xx = x * x;
|
||||
ss = s * s;
|
||||
xs3 = (s - ss) * 3.0f;
|
||||
a = p0 * xx + c0 * xs3;
|
||||
|
||||
return a + s * (c1 * xs3 + p1 * ss - a);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief cubic hermite interpolation
|
||||
*
|
||||
* Formula:
|
||||
* H(s) = P0*(2*s^3 - 3*s^2 + 1) + T0*(s^3 - 2*s^2 + s)
|
||||
* + P1*(-2*s^3 + 3*s^2) + T1*(s^3 - s^2)
|
||||
*
|
||||
* similar result using matrix:
|
||||
* H(s) = glm_smc(t, GLM_HERMITE_MAT, (vec4){p0, p1, c0, c1})
|
||||
*
|
||||
* glm_eq(glm_smc(...), glm_hermite(...)) should return TRUE
|
||||
*
|
||||
* @param[in] s parameter between 0 and 1
|
||||
* @param[in] p0 begin point
|
||||
* @param[in] t0 tangent 1
|
||||
* @param[in] t1 tangent 2
|
||||
* @param[in] p1 end point
|
||||
*
|
||||
* @return H(s)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_hermite(float s, float p0, float t0, float t1, float p1) {
|
||||
float ss, d, a, b, c, e, f;
|
||||
|
||||
ss = s * s;
|
||||
a = ss + ss;
|
||||
c = a + ss;
|
||||
b = a * s;
|
||||
d = s * ss;
|
||||
f = d - ss;
|
||||
e = b - c;
|
||||
|
||||
return p0 * (e + 1.0f) + t0 * (f - ss + s) + t1 * f - p1 * e;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief iterative way to solve cubic equation
|
||||
*
|
||||
* @param[in] prm parameter between 0 and 1
|
||||
* @param[in] p0 begin point
|
||||
* @param[in] c0 control point 1
|
||||
* @param[in] c1 control point 2
|
||||
* @param[in] p1 end point
|
||||
*
|
||||
* @return parameter to use in cubic equation
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_decasteljau(float prm, float p0, float c0, float c1, float p1) {
|
||||
float u, v, a, b, c, d, e, f;
|
||||
int i;
|
||||
|
||||
if (prm - p0 < CGLM_DECASTEL_SMALL)
|
||||
return 0.0f;
|
||||
|
||||
if (p1 - prm < CGLM_DECASTEL_SMALL)
|
||||
return 1.0f;
|
||||
|
||||
u = 0.0f;
|
||||
v = 1.0f;
|
||||
|
||||
for (i = 0; i < CGLM_DECASTEL_MAX; i++) {
|
||||
/* de Casteljau Subdivision */
|
||||
a = (p0 + c0) * 0.5f;
|
||||
b = (c0 + c1) * 0.5f;
|
||||
c = (c1 + p1) * 0.5f;
|
||||
d = (a + b) * 0.5f;
|
||||
e = (b + c) * 0.5f;
|
||||
f = (d + e) * 0.5f; /* this one is on the curve! */
|
||||
|
||||
/* The curve point is close enough to our wanted t */
|
||||
if (fabsf(f - prm) < CGLM_DECASTEL_EPS)
|
||||
return glm_clamp_zo((u + v) * 0.5f);
|
||||
|
||||
/* dichotomy */
|
||||
if (f < prm) {
|
||||
p0 = f;
|
||||
c0 = e;
|
||||
c1 = c;
|
||||
u = (u + v) * 0.5f;
|
||||
} else {
|
||||
c0 = a;
|
||||
c1 = d;
|
||||
p1 = f;
|
||||
v = (u + v) * 0.5f;
|
||||
}
|
||||
}
|
||||
|
||||
return glm_clamp_zo((u + v) * 0.5f);
|
||||
}
|
||||
|
||||
#endif /* cglm_bezier_h */
|
||||
@@ -11,6 +11,7 @@
|
||||
#include "common.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "util.h"
|
||||
|
||||
/*!
|
||||
* @brief apply transform to Axis-Aligned Bounding Box
|
||||
@@ -22,35 +23,31 @@
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_transform(vec3 box[2], mat4 m, vec3 dest[2]) {
|
||||
vec3 v[2], xa, xb, ya, yb, za, zb, tmp;
|
||||
vec3 v[2], xa, xb, ya, yb, za, zb;
|
||||
|
||||
glm_vec_scale(m[0], box[0][0], xa);
|
||||
glm_vec_scale(m[0], box[1][0], xb);
|
||||
glm_vec3_scale(m[0], box[0][0], xa);
|
||||
glm_vec3_scale(m[0], box[1][0], xb);
|
||||
|
||||
glm_vec_scale(m[1], box[0][1], ya);
|
||||
glm_vec_scale(m[1], box[1][1], yb);
|
||||
glm_vec3_scale(m[1], box[0][1], ya);
|
||||
glm_vec3_scale(m[1], box[1][1], yb);
|
||||
|
||||
glm_vec_scale(m[2], box[0][2], za);
|
||||
glm_vec_scale(m[2], box[1][2], zb);
|
||||
glm_vec3_scale(m[2], box[0][2], za);
|
||||
glm_vec3_scale(m[2], box[1][2], zb);
|
||||
|
||||
/* min(xa, xb) + min(ya, yb) + min(za, zb) + translation */
|
||||
glm_vec_minv(xa, xb, v[0]);
|
||||
glm_vec_minv(ya, yb, tmp);
|
||||
glm_vec_add(v[0], tmp, v[0]);
|
||||
glm_vec_minv(za, zb, tmp);
|
||||
glm_vec_add(v[0], tmp, v[0]);
|
||||
glm_vec_add(v[0], m[3], v[0]);
|
||||
/* translation + min(xa, xb) + min(ya, yb) + min(za, zb) */
|
||||
glm_vec3(m[3], v[0]);
|
||||
glm_vec3_minadd(xa, xb, v[0]);
|
||||
glm_vec3_minadd(ya, yb, v[0]);
|
||||
glm_vec3_minadd(za, zb, v[0]);
|
||||
|
||||
/* max(xa, xb) + max(ya, yb) + max(za, zb) + translation */
|
||||
glm_vec_maxv(xa, xb, v[1]);
|
||||
glm_vec_maxv(ya, yb, tmp);
|
||||
glm_vec_add(v[1], tmp, v[1]);
|
||||
glm_vec_maxv(za, zb, tmp);
|
||||
glm_vec_add(v[1], tmp, v[1]);
|
||||
glm_vec_add(v[1], m[3], v[1]);
|
||||
/* translation + max(xa, xb) + max(ya, yb) + max(za, zb) */
|
||||
glm_vec3(m[3], v[1]);
|
||||
glm_vec3_maxadd(xa, xb, v[1]);
|
||||
glm_vec3_maxadd(ya, yb, v[1]);
|
||||
glm_vec3_maxadd(za, zb, v[1]);
|
||||
|
||||
glm_vec_copy(v[0], dest[0]);
|
||||
glm_vec_copy(v[1], dest[1]);
|
||||
glm_vec3_copy(v[0], dest[0]);
|
||||
glm_vec3_copy(v[1], dest[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -153,4 +150,130 @@ glm_aabb_frustum(vec3 box[2], vec4 planes[6]) {
|
||||
return true;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief invalidate AABB min and max values
|
||||
*
|
||||
* @param[in, out] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_invalidate(vec3 box[2]) {
|
||||
glm_vec3_broadcast(FLT_MAX, box[0]);
|
||||
glm_vec3_broadcast(-FLT_MAX, box[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB is valid or not
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_isvalid(vec3 box[2]) {
|
||||
return glm_vec3_max(box[0]) != FLT_MAX
|
||||
&& glm_vec3_min(box[1]) != -FLT_MAX;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief distance between of min and max
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_aabb_size(vec3 box[2]) {
|
||||
return glm_vec3_distance(box[0], box[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief radius of sphere which surrounds AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_aabb_radius(vec3 box[2]) {
|
||||
return glm_aabb_size(box) * 0.5f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief computes center point of AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[out] dest center of bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_center(vec3 box[2], vec3 dest) {
|
||||
glm_vec3_center(box[0], box[1], dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if two AABB intersects
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] other other bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_aabb(vec3 box[2], vec3 other[2]) {
|
||||
return (box[0][0] <= other[1][0] && box[1][0] >= other[0][0])
|
||||
&& (box[0][1] <= other[1][1] && box[1][1] >= other[0][1])
|
||||
&& (box[0][2] <= other[1][2] && box[1][2] >= other[0][2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB intersects with sphere
|
||||
*
|
||||
* https://github.com/erich666/GraphicsGems/blob/master/gems/BoxSphere.c
|
||||
* Solid Box - Solid Sphere test.
|
||||
*
|
||||
* @param[in] box solid bounding box
|
||||
* @param[in] s solid sphere
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_sphere(vec3 box[2], vec4 s) {
|
||||
float dmin;
|
||||
int a, b, c;
|
||||
|
||||
a = s[0] >= box[0][0];
|
||||
b = s[1] >= box[0][1];
|
||||
c = s[2] >= box[0][2];
|
||||
|
||||
dmin = glm_pow2(s[0] - box[a][0])
|
||||
+ glm_pow2(s[1] - box[b][1])
|
||||
+ glm_pow2(s[2] - box[c][2]);
|
||||
|
||||
return dmin <= glm_pow2(s[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if point is inside of AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] point point
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_point(vec3 box[2], vec3 point) {
|
||||
return (point[0] >= box[0][0] && point[0] <= box[1][0])
|
||||
&& (point[1] >= box[0][1] && point[1] <= box[1][1])
|
||||
&& (point[2] >= box[0][2] && point[2] <= box[1][2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB contains other AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] other other bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_aabb_contains(vec3 box[2], vec3 other[2]) {
|
||||
return (box[0][0] <= other[0][0] && box[1][0] >= other[1][0])
|
||||
&& (box[0][1] <= other[0][1] && box[1][1] >= other[1][1])
|
||||
&& (box[0][2] <= other[0][2] && box[1][2] >= other[1][2]);
|
||||
}
|
||||
|
||||
#endif /* cglm_box_h */
|
||||
|
||||
@@ -24,6 +24,11 @@ extern "C" {
|
||||
#include "call/frustum.h"
|
||||
#include "call/box.h"
|
||||
#include "call/io.h"
|
||||
#include "call/project.h"
|
||||
#include "call/sphere.h"
|
||||
#include "call/ease.h"
|
||||
#include "call/curve.h"
|
||||
#include "call/bezier.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@@ -13,6 +13,10 @@ extern "C" {
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_translate_make(mat4 m, vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_translate_to(mat4 m, vec3 v, mat4 dest);
|
||||
@@ -33,6 +37,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_translate_z(mat4 m, float to);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_scale_make(mat4 m, vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_scale_to(mat4 m, vec3 v, mat4 dest);
|
||||
@@ -43,7 +51,7 @@ glmc_scale(mat4 m, vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_scale1(mat4 m, float s);
|
||||
glmc_scale_uni(mat4 m, float s);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
@@ -57,26 +65,30 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_z(mat4 m, float rad, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_ndc_make(mat4 m, float angle, vec3 axis_ndc);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_make(mat4 m, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_ndc(mat4 m, float angle, vec3 axis_ndc);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate(mat4 m, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_at(mat4 m, vec3 pivot, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_rotate_atm(mat4 m, vec3 pivot, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_decompose_scalev(mat4 m, vec3 s);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_uniscaled(mat4 m);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_decompose_rs(mat4 m, mat4 r, vec3 s);
|
||||
@@ -85,6 +97,20 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_decompose(mat4 m, vec4 t, mat4 r, vec3 s);
|
||||
|
||||
/* affine-mat */
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mul(mat4 m1, mat4 m2, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mul_rot(mat4 m1, mat4 m2, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_inv_tr(mat4 mat);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
31
include/cglm/call/bezier.h
Normal file
31
include/cglm/call/bezier.h
Normal file
@@ -0,0 +1,31 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_bezier_h
|
||||
#define cglmc_bezier_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_bezier(float s, float p0, float c0, float c1, float p1);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_hermite(float s, float p0, float t0, float t1, float p1);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_decasteljau(float prm, float p0, float c0, float c1, float p1);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_bezier_h */
|
||||
@@ -32,6 +32,46 @@ glmc_aabb_crop_until(vec3 box[2],
|
||||
vec3 clampBox[2],
|
||||
vec3 dest[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_frustum(vec3 box[2], vec4 planes[6]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_invalidate(vec3 box[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_isvalid(vec3 box[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_aabb_size(vec3 box[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_aabb_radius(vec3 box[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_aabb_center(vec3 box[2], vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_aabb(vec3 box[2], vec3 other[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_point(vec3 box[2], vec3 point);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_contains(vec3 box[2], vec3 other[2]);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_aabb_sphere(vec3 box[2], vec4 s);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -33,6 +33,26 @@ glmc_ortho(float left,
|
||||
float farVal,
|
||||
mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_aabb(vec3 box[2], mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_aabb_p(vec3 box[2], float padding, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_default(float aspect, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_ortho_default_s(float aspect, float size, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_perspective(float fovy,
|
||||
@@ -41,6 +61,18 @@ glmc_perspective(float fovy,
|
||||
float farVal,
|
||||
mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_move_far(mat4 proj, float deltaFar);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_perspective_default(float aspect, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_perspective_resize(float aspect, mat4 proj);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest);
|
||||
@@ -53,6 +85,58 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_look_anyup(vec3 eye, vec3 dir, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom,
|
||||
float * __restrict left,
|
||||
float * __restrict right);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decompv(mat4 proj, float dest[6]);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_x(mat4 proj,
|
||||
float * __restrict left,
|
||||
float * __restrict right);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_y(mat4 proj,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_z(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_far(mat4 proj, float * __restrict farVal);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_decomp_near(mat4 proj, float * __restrict nearVal);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_persp_fovy(mat4 proj);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_persp_aspect(mat4 proj);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_persp_sizes(mat4 proj, float fovy, vec4 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
23
include/cglm/call/curve.h
Normal file
23
include/cglm/call/curve.h
Normal file
@@ -0,0 +1,23 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_curve_h
|
||||
#define cglmc_curve_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_smc(float s, mat4 m, vec4 c);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_curve_h */
|
||||
143
include/cglm/call/ease.h
Normal file
143
include/cglm/call/ease.h
Normal file
@@ -0,0 +1,143 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_ease_h
|
||||
#define cglmc_ease_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_linear(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_sine_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_sine_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_sine_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quad_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quad_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quad_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_cubic_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_cubic_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_cubic_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quart_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quart_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quart_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quint_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quint_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_quint_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_exp_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_exp_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_exp_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_circ_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_circ_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_circ_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_back_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_back_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_back_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_elast_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_elast_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_elast_inout(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_bounce_out(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_bounce_in(float t);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_ease_bounce_inout(float t);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_ease_h */
|
||||
@@ -21,6 +21,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_euler(vec3 angles, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_xyz(vec3 angles, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_euler_zyx(vec3 angles, mat4 dest);
|
||||
|
||||
@@ -24,6 +24,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_identity(mat3 mat);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_identity_array(mat3 * __restrict mat, size_t count);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_mul(mat3 m1, mat3 m2, mat3 dest);
|
||||
@@ -40,6 +44,14 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_mulv(mat3 m, vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_mat3_trace(mat3 m);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_quat(mat3 m, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_scale(mat3 m, float s);
|
||||
@@ -60,6 +72,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_mat3_swap_row(mat3 mat, int row1, int row2);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_mat3_rmc(vec3 r, mat3 m, vec3 c);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
@@ -29,6 +29,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_identity(mat4 mat);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_identity_array(mat4 * __restrict mat, size_t count);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_pick3(mat4 mat, mat3 dest);
|
||||
@@ -47,12 +51,28 @@ glmc_mat4_mul(mat4 m1, mat4 m2, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest);
|
||||
glmc_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_mulv(mat4 m, vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_mat4_trace(mat4 m);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_mat4_trace3(mat4 m);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_quat(mat4 m, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_transpose_to(mat4 m, mat4 dest);
|
||||
@@ -81,6 +101,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_inv_precise(mat4 mat, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_inv_fast(mat4 mat, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_swap_col(mat4 mat, int col1, int col2);
|
||||
@@ -89,6 +113,10 @@ CGLM_EXPORT
|
||||
void
|
||||
glmc_mat4_swap_row(mat4 mat, int row1, int row2);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_mat4_rmc(vec4 r, mat4 m, vec4 c);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
|
||||
33
include/cglm/call/project.h
Normal file
33
include/cglm/call/project.h
Normal file
@@ -0,0 +1,33 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_project_h
|
||||
#define cglmc_project_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_project(vec3 pos, mat4 m, vec4 vp, vec3 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_project_h */
|
||||
|
||||
|
||||
@@ -19,33 +19,83 @@ glmc_quat_identity(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat(versor q,
|
||||
float angle,
|
||||
float x,
|
||||
float y,
|
||||
float z);
|
||||
glmc_quat_identity_array(versor * __restrict q, size_t count);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quatv(versor q,
|
||||
float angle,
|
||||
vec3 v);
|
||||
glmc_quat_init(versor q, float x, float y, float z, float w);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat(versor q, float angle, float x, float y, float z);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quatv(versor q, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_copy(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_norm(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_normalize_to(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_normalize(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_dot(versor q, versor r);
|
||||
glmc_quat_dot(versor p, versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mulv(versor q1, versor q2, versor dest);
|
||||
glmc_quat_conjugate(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_inv(versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_add(versor p, versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_sub(versor p, versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_real(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_imag(versor q, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_imagn(versor q, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_imaglen(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_quat_angle(versor q);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_axis(versor q, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mul(versor p, versor q, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
@@ -53,10 +103,51 @@ glmc_quat_mat4(versor q, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_slerp(versor q,
|
||||
versor r,
|
||||
float t,
|
||||
versor dest);
|
||||
glmc_quat_mat4t(versor q, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mat3(versor q, mat3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_mat3t(versor q, mat3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_lerp(versor from, versor to, float t, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_slerp(versor q, versor r, float t, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_look(vec3 eye, versor ori, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotatev(versor from, vec3 to, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotate(mat4 m, versor q, mat4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotate_at(mat4 model, versor q, vec3 pivot);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_quat_rotate_atm(mat4 m, versor q, vec3 pivot);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
39
include/cglm/call/sphere.h
Normal file
39
include/cglm/call/sphere.h
Normal file
@@ -0,0 +1,39 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglmc_sphere_h
|
||||
#define cglmc_sphere_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "../cglm.h"
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_sphere_radii(vec4 s);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_sphere_transform(vec4 s, mat4 m, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_sphere_merge(vec4 s1, vec4 s2, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_sphere_sphere(vec4 s1, vec4 s2);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_sphere_point(vec4 s, vec3 point);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglmc_sphere_h */
|
||||
@@ -14,95 +14,233 @@ extern "C" {
|
||||
#include "../cglm.h"
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glmc_vec_dup(v, dest) glmc_vec_copy(v, dest)
|
||||
#define glmc_vec_dup(v, dest) glmc_vec3_copy(v, dest)
|
||||
#define glmc_vec3_flipsign(v) glmc_vec3_negate(v)
|
||||
#define glmc_vec3_flipsign_to(v, dest) glmc_vec3_negate_to(v, dest)
|
||||
#define glmc_vec3_inv(v) glmc_vec3_negate(v)
|
||||
#define glmc_vec3_inv_to(v, dest) glmc_vec3_negate_to(v, dest)
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_copy(vec3 a, vec3 dest);
|
||||
glmc_vec3(vec4 v4, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_copy(vec3 a, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_zero(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_one(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_dot(vec3 a, vec3 b);
|
||||
glmc_vec3_dot(vec3 a, vec3 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_cross(vec3 a, vec3 b, vec3 d);
|
||||
glmc_vec3_cross(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_crossn(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_norm(vec3 vec);
|
||||
glmc_vec3_norm(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_norm2(vec3 vec);
|
||||
glmc_vec3_norm2(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_normalize_to(vec3 vec, vec3 dest);
|
||||
glmc_vec3_normalize_to(vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_normalize(vec3 v);
|
||||
glmc_vec3_normalize(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_add(vec3 v1, vec3 v2, vec3 dest);
|
||||
glmc_vec3_add(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_sub(vec3 v1, vec3 v2, vec3 dest);
|
||||
glmc_vec3_adds(vec3 v, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_scale(vec3 v, float s, vec3 dest);
|
||||
glmc_vec3_sub(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_scale_as(vec3 v, float s, vec3 dest);
|
||||
glmc_vec3_subs(vec3 v, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_flipsign(vec3 v);
|
||||
glmc_vec3_mul(vec3 a, vec3 b, vec3 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_inv(vec3 v);
|
||||
glmc_vec3_scale(vec3 v, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_inv_to(vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_angle(vec3 v1, vec3 v2);
|
||||
glmc_vec3_scale_as(vec3 v, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_rotate(vec3 v, float angle, vec3 axis);
|
||||
glmc_vec3_div(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_rotate_m4(mat4 m, vec3 v, vec3 dest);
|
||||
glmc_vec3_divs(vec3 a, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_proj(vec3 a, vec3 b, vec3 dest);
|
||||
glmc_vec3_addadd(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_center(vec3 v1, vec3 v2, vec3 dest);
|
||||
glmc_vec3_subadd(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_muladd(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_muladds(vec3 a, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_maxadd(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_minadd(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_negate(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_negate_to(vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec_distance(vec3 v1, vec3 v2);
|
||||
glmc_vec3_angle(vec3 a, vec3 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_maxv(vec3 v1, vec3 v2, vec3 dest);
|
||||
glmc_vec3_rotate(vec3 v, float angle, vec3 axis);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec_minv(vec3 v1, vec3 v2, vec3 dest);
|
||||
glmc_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_proj(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_center(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec3_distance2(vec3 a, vec3 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec3_distance(vec3 a, vec3 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_maxv(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_minv(vec3 a, vec3 b, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_clamp(vec3 v, float minVal, float maxVal);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_ortho(vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest);
|
||||
|
||||
/* ext */
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_mulv(vec3 a, vec3 b, vec3 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_broadcast(float val, vec3 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eq(vec3 v, float val);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eq_eps(vec3 v, float val);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eq_all(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eqv(vec3 a, vec3 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_eqv_eps(vec3 a, vec3 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec3_max(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec3_min(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_isnan(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_isinf(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec3_isvalid(vec3 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_sign(vec3 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec3_sqrt(vec3 v, vec3 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@@ -14,32 +14,52 @@ extern "C" {
|
||||
#include "../cglm.h"
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glmc_vec4_dup3(v, dest) glmc_vec4_copy3(v, dest)
|
||||
#define glmc_vec4_dup(v, dest) glmc_vec4_copy(v, dest)
|
||||
#define glmc_vec4_dup3(v, dest) glmc_vec4_copy3(v, dest)
|
||||
#define glmc_vec4_dup(v, dest) glmc_vec4_copy(v, dest)
|
||||
#define glmc_vec4_flipsign(v) glmc_vec4_negate(v)
|
||||
#define glmc_vec4_flipsign_to(v, dest) glmc_vec4_negate_to(v, dest)
|
||||
#define glmc_vec4_inv(v) glmc_vec4_negate(v)
|
||||
#define glmc_vec4_inv_to(v, dest) glmc_vec4_negate_to(v, dest)
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_copy3(vec4 a, vec3 dest);
|
||||
glmc_vec4(vec3 v3, float last, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_zero(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_one(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_copy3(vec4 v, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_copy(vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_ucopy(vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_dot(vec4 a, vec4 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_norm(vec4 vec);
|
||||
glmc_vec4_norm(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_norm2(vec4 vec);
|
||||
glmc_vec4_norm2(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_normalize_to(vec4 vec, vec4 dest);
|
||||
glmc_vec4_normalize_to(vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
@@ -47,11 +67,23 @@ glmc_vec4_normalize(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_add(vec4 v1, vec4 v2, vec4 dest);
|
||||
glmc_vec4_add(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sub(vec4 v1, vec4 v2, vec4 dest);
|
||||
glmc_vec4_adds(vec4 v, float s, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sub(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_subs(vec4 v, float s, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_mul(vec4 a, vec4 b, vec4 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
@@ -63,27 +95,125 @@ glmc_vec4_scale_as(vec3 v, float s, vec3 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_flipsign(vec4 v);
|
||||
glmc_vec4_div(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_inv(vec4 v);
|
||||
glmc_vec4_divs(vec4 v, float s, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_inv_to(vec4 v, vec4 dest);
|
||||
glmc_vec4_addadd(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_subadd(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_muladd(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_muladds(vec4 a, float s, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_maxadd(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_minadd(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_negate(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_negate_to(vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_distance(vec4 v1, vec4 v2);
|
||||
glmc_vec4_distance(vec4 a, vec4 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_maxv(vec4 v1, vec4 v2, vec4 dest);
|
||||
glmc_vec4_maxv(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_minv(vec4 v1, vec4 v2, vec4 dest);
|
||||
glmc_vec4_minv(vec4 a, vec4 b, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_clamp(vec4 v, float minVal, float maxVal);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_cubic(float s, vec4 dest);
|
||||
|
||||
/* ext */
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_mulv(vec4 a, vec4 b, vec4 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_broadcast(float val, vec4 d);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq(vec4 v, float val);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq_eps(vec4 v, float val);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eq_all(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eqv(vec4 a, vec4 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_eqv_eps(vec4 a, vec4 b);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_max(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
float
|
||||
glmc_vec4_min(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isnan(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isinf(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
bool
|
||||
glmc_vec4_isvalid(vec4 v);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sign(vec4 v, vec4 dest);
|
||||
|
||||
CGLM_EXPORT
|
||||
void
|
||||
glmc_vec4_sqrt(vec4 v, vec4 dest);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
|
||||
@@ -7,54 +7,42 @@
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE void glm_frustum(float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest);
|
||||
CGLM_INLINE void glm_ortho(float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest);
|
||||
CGLM_INLINE void glm_ortho_default(float aspect, mat4 dest);
|
||||
CGLM_INLINE void glm_ortho_default_s(float aspect, float size, mat4 dest);
|
||||
CGLM_INLINE void glm_perspective(float fovy,
|
||||
float aspect,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest);
|
||||
CGLM_INLINE void glm_perspective_default(float aspect, mat4 dest);
|
||||
CGLM_INLINE void glm_perspective_resize(float aspect, mat4 proj);
|
||||
CGLM_INLINE void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest);
|
||||
CGLM_INLINE void glm_persp_decomp(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom,
|
||||
float * __restrict left,
|
||||
float * __restrict right);
|
||||
CGLM_INLINE void glm_persp_decompv(mat4 proj, float dest[6]);
|
||||
CGLM_INLINE void glm_persp_decomp_x(mat4 proj,
|
||||
float * __restrict left,
|
||||
float * __restrict right);
|
||||
CGLM_INLINE void glm_persp_decomp_y(mat4 proj,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom);
|
||||
CGLM_INLINE void glm_persp_decomp_z(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal);
|
||||
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float * __restrict farVal);
|
||||
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *__restrict nearVal);
|
||||
CGLM_INLINE void glm_frustum_planes(mat4 m, vec4 dest[6]);
|
||||
CGLM_INLINE void glm_frustum_corners(mat4 invMat, vec4 dest[8]);
|
||||
CGLM_INLINE glm_ortho_box(vec3 box[2], mat4 dest);
|
||||
CGLM_INLINE void glm_ortho_boxp(vec3 box[2], float padding, mat4 dest);
|
||||
CGLM_INLINE void glm_ortho_boxp(vec3 box[2], float padding, mat4 dest);
|
||||
CGLM_INLINE void glm_frustum(float left, float right,
|
||||
float bottom, float top,
|
||||
float nearVal, float farVal,
|
||||
mat4 dest)
|
||||
CGLM_INLINE void glm_ortho(float left, float right,
|
||||
float bottom, float top,
|
||||
float nearVal, float farVal,
|
||||
mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_aabb(vec3 box[2], mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_aabb_p(vec3 box[2], float padding, mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_default(float aspect, mat4 dest)
|
||||
CGLM_INLINE void glm_ortho_default_s(float aspect, float size, mat4 dest)
|
||||
CGLM_INLINE void glm_perspective(float fovy,
|
||||
float aspect,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
mat4 dest)
|
||||
CGLM_INLINE void glm_perspective_default(float aspect, mat4 dest)
|
||||
CGLM_INLINE void glm_perspective_resize(float aspect, mat4 proj)
|
||||
CGLM_INLINE void glm_lookat(vec3 eye, vec3 center, vec3 up, mat4 dest)
|
||||
CGLM_INLINE void glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest)
|
||||
CGLM_INLINE void glm_look_anyup(vec3 eye, vec3 dir, mat4 dest)
|
||||
CGLM_INLINE void glm_persp_decomp(mat4 proj,
|
||||
float *nearVal, float *farVal,
|
||||
float *top, float *bottom,
|
||||
float *left, float *right)
|
||||
CGLM_INLINE void glm_persp_decompv(mat4 proj, float dest[6])
|
||||
CGLM_INLINE void glm_persp_decomp_x(mat4 proj, float *left, float *right)
|
||||
CGLM_INLINE void glm_persp_decomp_y(mat4 proj, float *top, float *bottom)
|
||||
CGLM_INLINE void glm_persp_decomp_z(mat4 proj, float *nearv, float *farv)
|
||||
CGLM_INLINE void glm_persp_decomp_far(mat4 proj, float *farVal)
|
||||
CGLM_INLINE void glm_persp_decomp_near(mat4 proj, float *nearVal)
|
||||
CGLM_INLINE float glm_persp_fovy(mat4 proj)
|
||||
CGLM_INLINE float glm_persp_aspect(mat4 proj)
|
||||
CGLM_INLINE void glm_persp_sizes(mat4 proj, float fovy, vec4 dest)
|
||||
*/
|
||||
|
||||
#ifndef cglm_vcam_h
|
||||
@@ -76,16 +64,13 @@
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_frustum(float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
glm_frustum(float left, float right,
|
||||
float bottom, float top,
|
||||
float nearVal, float farVal,
|
||||
mat4 dest) {
|
||||
float rl, tb, fn, nv;
|
||||
|
||||
glm__memzero(float, dest, sizeof(mat4));
|
||||
glm_mat4_zero(dest);
|
||||
|
||||
rl = 1.0f / (right - left);
|
||||
tb = 1.0f / (top - bottom);
|
||||
@@ -114,16 +99,13 @@ glm_frustum(float left,
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_ortho(float left,
|
||||
float right,
|
||||
float bottom,
|
||||
float top,
|
||||
float nearVal,
|
||||
float farVal,
|
||||
glm_ortho(float left, float right,
|
||||
float bottom, float top,
|
||||
float nearVal, float farVal,
|
||||
mat4 dest) {
|
||||
float rl, tb, fn;
|
||||
|
||||
glm__memzero(float, dest, sizeof(mat4));
|
||||
glm_mat4_zero(dest);
|
||||
|
||||
rl = 1.0f / (right - left);
|
||||
tb = 1.0f / (top - bottom);
|
||||
@@ -199,26 +181,15 @@ glm_ortho_aabb_pz(vec3 box[2], float padding, mat4 dest) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_ortho_default(float aspect,
|
||||
mat4 dest) {
|
||||
glm_ortho_default(float aspect, mat4 dest) {
|
||||
if (aspect >= 1.0f) {
|
||||
glm_ortho(-1.0f * aspect,
|
||||
1.0f * aspect,
|
||||
-1.0f,
|
||||
1.0f,
|
||||
-100.0f,
|
||||
100.0f,
|
||||
dest);
|
||||
return;
|
||||
glm_ortho(-aspect, aspect, -1.0f, 1.0f, -100.0f, 100.0f, dest);
|
||||
return;
|
||||
}
|
||||
|
||||
glm_ortho(-1.0f,
|
||||
1.0f,
|
||||
-1.0f / aspect,
|
||||
1.0f / aspect,
|
||||
-100.0f,
|
||||
100.0f,
|
||||
dest);
|
||||
aspect = 1.0f / aspect;
|
||||
|
||||
glm_ortho(-1.0f, 1.0f, -aspect, aspect, -100.0f, 100.0f, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -230,9 +201,7 @@ glm_ortho_default(float aspect,
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_ortho_default_s(float aspect,
|
||||
float size,
|
||||
mat4 dest) {
|
||||
glm_ortho_default_s(float aspect, float size, mat4 dest) {
|
||||
if (aspect >= 1.0f) {
|
||||
glm_ortho(-size * aspect,
|
||||
size * aspect,
|
||||
@@ -241,7 +210,7 @@ glm_ortho_default_s(float aspect,
|
||||
-size - 100.0f,
|
||||
size + 100.0f,
|
||||
dest);
|
||||
return;
|
||||
return;
|
||||
}
|
||||
|
||||
glm_ortho(-size,
|
||||
@@ -271,7 +240,7 @@ glm_perspective(float fovy,
|
||||
mat4 dest) {
|
||||
float f, fn;
|
||||
|
||||
glm__memzero(float, dest, sizeof(mat4));
|
||||
glm_mat4_zero(dest);
|
||||
|
||||
f = 1.0f / tanf(fovy * 0.5f);
|
||||
fn = 1.0f / (nearVal - farVal);
|
||||
@@ -283,6 +252,30 @@ glm_perspective(float fovy,
|
||||
dest[3][2] = 2.0f * nearVal * farVal * fn;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief extend perspective projection matrix's far distance
|
||||
*
|
||||
* this function does not guarantee far >= near, be aware of that!
|
||||
*
|
||||
* @param[in, out] proj projection matrix to extend
|
||||
* @param[in] deltaFar distance from existing far (negative to shink)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_persp_move_far(mat4 proj, float deltaFar) {
|
||||
float fn, farVal, nearVal, p22, p32;
|
||||
|
||||
p22 = proj[2][2];
|
||||
p32 = proj[3][2];
|
||||
|
||||
nearVal = p32 / (p22 - 1.0f);
|
||||
farVal = p32 / (p22 + 1.0f) + deltaFar;
|
||||
fn = 1.0f / (nearVal - farVal);
|
||||
|
||||
proj[2][2] = (nearVal + farVal) * fn;
|
||||
proj[3][2] = 2.0f * nearVal * farVal * fn;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up perspective projection matrix with default near/far
|
||||
* and angle values
|
||||
@@ -292,18 +285,13 @@ glm_perspective(float fovy,
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_perspective_default(float aspect,
|
||||
mat4 dest) {
|
||||
glm_perspective((float)CGLM_PI_4,
|
||||
aspect,
|
||||
0.01f,
|
||||
100.0f,
|
||||
dest);
|
||||
glm_perspective_default(float aspect, mat4 dest) {
|
||||
glm_perspective(GLM_PI_4f, aspect, 0.01f, 100.0f, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief resize perspective matrix by aspect ratio ( width / height )
|
||||
* this very make easy to resize proj matrix when window, viewport
|
||||
* this makes very easy to resize proj matrix when window /viewport
|
||||
* reized
|
||||
*
|
||||
* @param[in] aspect aspect ratio ( width / height )
|
||||
@@ -311,8 +299,7 @@ glm_perspective_default(float aspect,
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_perspective_resize(float aspect,
|
||||
mat4 proj) {
|
||||
glm_perspective_resize(float aspect, mat4 proj) {
|
||||
if (proj[0][0] == 0.0f)
|
||||
return;
|
||||
|
||||
@@ -322,6 +309,9 @@ glm_perspective_resize(float aspect,
|
||||
/*!
|
||||
* @brief set up view matrix
|
||||
*
|
||||
* NOTE: The UP vector must not be parallel to the line of sight from
|
||||
* the eye point to the reference point
|
||||
*
|
||||
* @param[in] eye eye vector
|
||||
* @param[in] center center vector
|
||||
* @param[in] up up vector
|
||||
@@ -333,15 +323,13 @@ glm_lookat(vec3 eye,
|
||||
vec3 center,
|
||||
vec3 up,
|
||||
mat4 dest) {
|
||||
vec3 f, u, s;
|
||||
CGLM_ALIGN(8) vec3 f, u, s;
|
||||
|
||||
glm_vec_sub(center, eye, f);
|
||||
glm_vec_normalize(f);
|
||||
glm_vec3_sub(center, eye, f);
|
||||
glm_vec3_normalize(f);
|
||||
|
||||
glm_vec_cross(f, up, s);
|
||||
glm_vec_normalize(s);
|
||||
|
||||
glm_vec_cross(s, f, u);
|
||||
glm_vec3_crossn(f, up, s);
|
||||
glm_vec3_cross(s, f, u);
|
||||
|
||||
dest[0][0] = s[0];
|
||||
dest[0][1] = u[0];
|
||||
@@ -352,9 +340,9 @@ glm_lookat(vec3 eye,
|
||||
dest[2][0] = s[2];
|
||||
dest[2][1] = u[2];
|
||||
dest[2][2] =-f[2];
|
||||
dest[3][0] =-glm_vec_dot(s, eye);
|
||||
dest[3][1] =-glm_vec_dot(u, eye);
|
||||
dest[3][2] = glm_vec_dot(f, eye);
|
||||
dest[3][0] =-glm_vec3_dot(s, eye);
|
||||
dest[3][1] =-glm_vec3_dot(u, eye);
|
||||
dest[3][2] = glm_vec3_dot(f, eye);
|
||||
dest[0][3] = dest[1][3] = dest[2][3] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
@@ -365,6 +353,9 @@ glm_lookat(vec3 eye,
|
||||
* convenient wrapper for lookat: if you only have direction not target self
|
||||
* then this might be useful. Because you need to get target from direction.
|
||||
*
|
||||
* NOTE: The UP vector must not be parallel to the line of sight from
|
||||
* the eye point to the reference point
|
||||
*
|
||||
* @param[in] eye eye vector
|
||||
* @param[in] dir direction vector
|
||||
* @param[in] up up vector
|
||||
@@ -373,8 +364,8 @@ glm_lookat(vec3 eye,
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
|
||||
vec3 target;
|
||||
glm_vec_add(eye, dir, target);
|
||||
CGLM_ALIGN(8) vec3 target;
|
||||
glm_vec3_add(eye, dir, target);
|
||||
glm_lookat(eye, target, up, dest);
|
||||
}
|
||||
|
||||
@@ -391,8 +382,8 @@ glm_look(vec3 eye, vec3 dir, vec3 up, mat4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
|
||||
vec3 up;
|
||||
glm_vec_ortho(dir, up);
|
||||
CGLM_ALIGN(8) vec3 up;
|
||||
glm_vec3_ortho(dir, up);
|
||||
glm_look(eye, dir, up, dest);
|
||||
}
|
||||
|
||||
@@ -410,12 +401,9 @@ glm_look_anyup(vec3 eye, vec3 dir, mat4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_persp_decomp(mat4 proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom,
|
||||
float * __restrict left,
|
||||
float * __restrict right) {
|
||||
float * __restrict nearVal, float * __restrict farVal,
|
||||
float * __restrict top, float * __restrict bottom,
|
||||
float * __restrict left, float * __restrict right) {
|
||||
float m00, m11, m20, m21, m22, m32, n, f;
|
||||
float n_m11, n_m00;
|
||||
|
||||
@@ -458,7 +446,7 @@ glm_persp_decompv(mat4 proj, float dest[6]) {
|
||||
* @brief decomposes left and right values of perspective projection.
|
||||
* x stands for x axis (left / right axis)
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[out] left left
|
||||
* @param[out] right right
|
||||
*/
|
||||
@@ -572,10 +560,7 @@ glm_persp_aspect(mat4 proj) {
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns aspect ratio of perspective projection
|
||||
*
|
||||
* if you don't have fovy then use glm_persp_fovy(proj) to get it
|
||||
* or pass directly: glm_persp_sizes(proj, glm_persp_fovy(proj), sizes);
|
||||
* @brief returns sizes of near and far planes of perspective projection
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[in] fovy fovy (see brief)
|
||||
|
||||
@@ -20,7 +20,13 @@
|
||||
#include "euler.h"
|
||||
#include "plane.h"
|
||||
#include "box.h"
|
||||
#include "color.h"
|
||||
#include "util.h"
|
||||
#include "io.h"
|
||||
#include "project.h"
|
||||
#include "sphere.h"
|
||||
#include "ease.h"
|
||||
#include "curve.h"
|
||||
#include "bezier.h"
|
||||
|
||||
#endif /* cglm_h */
|
||||
|
||||
26
include/cglm/color.h
Normal file
26
include/cglm/color.h
Normal file
@@ -0,0 +1,26 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_color_h
|
||||
#define cglm_color_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec3.h"
|
||||
|
||||
/*!
|
||||
* @brief averages the color channels into one value
|
||||
*
|
||||
* @param[in] rgb RGB color
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_luminance(vec3 rgb) {
|
||||
vec3 l = {0.212671f, 0.715160f, 0.072169f};
|
||||
return glm_dot(rgb, l);
|
||||
}
|
||||
|
||||
#endif /* cglm_color_h */
|
||||
@@ -11,10 +11,12 @@
|
||||
#define _USE_MATH_DEFINES /* for windows */
|
||||
|
||||
#include <stdint.h>
|
||||
#include <stddef.h>
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
#include <stdbool.h>
|
||||
|
||||
#if defined(_WIN32)
|
||||
#if defined(_MSC_VER)
|
||||
# ifdef CGLM_DLL
|
||||
# define CGLM_EXPORT __declspec(dllexport)
|
||||
# else
|
||||
@@ -26,34 +28,6 @@
|
||||
# define CGLM_INLINE static inline __attribute((always_inline))
|
||||
#endif
|
||||
|
||||
#define glm__memcpy(type, dest, src, size) \
|
||||
do { \
|
||||
type *srci; \
|
||||
type *srci_end; \
|
||||
type *desti; \
|
||||
\
|
||||
srci = (type *)src; \
|
||||
srci_end = (type *)((char *)srci + size); \
|
||||
desti = (type *)dest; \
|
||||
\
|
||||
while (srci != srci_end) \
|
||||
*desti++ = *srci++; \
|
||||
} while (0)
|
||||
|
||||
#define glm__memset(type, dest, size, val) \
|
||||
do { \
|
||||
type *desti; \
|
||||
type *desti_end; \
|
||||
\
|
||||
desti = (type *)dest; \
|
||||
desti_end = (type *)((char *)desti + size); \
|
||||
\
|
||||
while (desti != desti_end) \
|
||||
*desti++ = val; \
|
||||
} while (0)
|
||||
|
||||
#define glm__memzero(type, dest, size) glm__memset(type, dest, size, 0)
|
||||
|
||||
#define GLM_SHUFFLE4(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w))
|
||||
#define GLM_SHUFFLE3(z, y, x) (((z) << 4) | ((y) << 2) | (x))
|
||||
|
||||
|
||||
40
include/cglm/curve.h
Normal file
40
include/cglm/curve.h
Normal file
@@ -0,0 +1,40 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_curve_h
|
||||
#define cglm_curve_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
|
||||
/*!
|
||||
* @brief helper function to calculate S*M*C multiplication for curves
|
||||
*
|
||||
* This function does not encourage you to use SMC,
|
||||
* instead it is a helper if you use SMC.
|
||||
*
|
||||
* if you want to specify S as vector then use more generic glm_mat4_rmc() func.
|
||||
*
|
||||
* Example usage:
|
||||
* B(s) = glm_smc(s, GLM_BEZIER_MAT, (vec4){p0, c0, c1, p1})
|
||||
*
|
||||
* @param[in] s parameter between 0 and 1 (this will be [s3, s2, s, 1])
|
||||
* @param[in] m basis matrix
|
||||
* @param[in] c position/control vector
|
||||
*
|
||||
* @return B(s)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_smc(float s, mat4 m, vec4 c) {
|
||||
vec4 vs;
|
||||
glm_vec4_cubic(s, vs);
|
||||
return glm_mat4_rmc(vs, m, c);
|
||||
}
|
||||
|
||||
#endif /* cglm_curve_h */
|
||||
317
include/cglm/ease.h
Normal file
317
include/cglm/ease.h
Normal file
@@ -0,0 +1,317 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_ease_h
|
||||
#define cglm_ease_h
|
||||
|
||||
#include "common.h"
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_linear(float t) {
|
||||
return t;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_sine_in(float t) {
|
||||
return sinf((t - 1.0f) * GLM_PI_2f) + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_sine_out(float t) {
|
||||
return sinf(t * GLM_PI_2f);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_sine_inout(float t) {
|
||||
return 0.5f * (1.0f - cosf(t * GLM_PIf));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quad_in(float t) {
|
||||
return t * t;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quad_out(float t) {
|
||||
return -(t * (t - 2.0f));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quad_inout(float t) {
|
||||
float tt;
|
||||
|
||||
tt = t * t;
|
||||
if (t < 0.5f)
|
||||
return 2.0f * tt;
|
||||
|
||||
return (-2.0f * tt) + (4.0f * t) - 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_cubic_in(float t) {
|
||||
return t * t * t;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_cubic_out(float t) {
|
||||
float f;
|
||||
f = t - 1.0f;
|
||||
return f * f * f + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_cubic_inout(float t) {
|
||||
float f;
|
||||
|
||||
if (t < 0.5f)
|
||||
return 4.0f * t * t * t;
|
||||
|
||||
f = 2.0f * t - 2.0f;
|
||||
|
||||
return 0.5f * f * f * f + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quart_in(float t) {
|
||||
float f;
|
||||
f = t * t;
|
||||
return f * f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quart_out(float t) {
|
||||
float f;
|
||||
|
||||
f = t - 1.0f;
|
||||
|
||||
return f * f * f * (1.0f - t) + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quart_inout(float t) {
|
||||
float f, g;
|
||||
|
||||
if (t < 0.5f) {
|
||||
f = t * t;
|
||||
return 8.0f * f * f;
|
||||
}
|
||||
|
||||
f = t - 1.0f;
|
||||
g = f * f;
|
||||
|
||||
return -8.0f * g * g + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quint_in(float t) {
|
||||
float f;
|
||||
f = t * t;
|
||||
return f * f * t;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quint_out(float t) {
|
||||
float f, g;
|
||||
|
||||
f = t - 1.0f;
|
||||
g = f * f;
|
||||
|
||||
return g * g * f + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_quint_inout(float t) {
|
||||
float f, g;
|
||||
|
||||
if (t < 0.5f) {
|
||||
f = t * t;
|
||||
return 16.0f * f * f * t;
|
||||
}
|
||||
|
||||
f = 2.0f * t - 2.0f;
|
||||
g = f * f;
|
||||
|
||||
return 0.5f * g * g * f + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_exp_in(float t) {
|
||||
if (t == 0.0f)
|
||||
return t;
|
||||
|
||||
return powf(2.0f, 10.0f * (t - 1.0f));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_exp_out(float t) {
|
||||
if (t == 1.0f)
|
||||
return t;
|
||||
|
||||
return 1.0f - powf(2.0f, -10.0f * t);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_exp_inout(float t) {
|
||||
if (t == 0.0f || t == 1.0f)
|
||||
return t;
|
||||
|
||||
if (t < 0.5f)
|
||||
return 0.5f * powf(2.0f, (20.0f * t) - 10.0f);
|
||||
|
||||
return -0.5f * powf(2.0f, (-20.0f * t) + 10.0f) + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_circ_in(float t) {
|
||||
return 1.0f - sqrtf(1.0f - (t * t));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_circ_out(float t) {
|
||||
return sqrtf((2.0f - t) * t);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_circ_inout(float t) {
|
||||
if (t < 0.5f)
|
||||
return 0.5f * (1.0f - sqrtf(1.0f - 4.0f * (t * t)));
|
||||
|
||||
return 0.5f * (sqrtf(-((2.0f * t) - 3.0f) * ((2.0f * t) - 1.0f)) + 1.0f);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_back_in(float t) {
|
||||
float o, z;
|
||||
|
||||
o = 1.70158f;
|
||||
z = ((o + 1.0f) * t) - o;
|
||||
|
||||
return t * t * z;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_back_out(float t) {
|
||||
float o, z, n;
|
||||
|
||||
o = 1.70158f;
|
||||
n = t - 1.0f;
|
||||
z = (o + 1.0f) * n + o;
|
||||
|
||||
return n * n * z + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_back_inout(float t) {
|
||||
float o, z, n, m, s, x;
|
||||
|
||||
o = 1.70158f;
|
||||
s = o * 1.525f;
|
||||
x = 0.5;
|
||||
n = t / 0.5f;
|
||||
|
||||
if (n < 1.0f) {
|
||||
z = (s + 1) * n - s;
|
||||
m = n * n * z;
|
||||
return x * m;
|
||||
}
|
||||
|
||||
n -= 2.0f;
|
||||
z = (s + 1.0f) * n + s;
|
||||
m = (n * n * z) + 2;
|
||||
|
||||
return x * m;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_elast_in(float t) {
|
||||
return sinf(13.0f * GLM_PI_2f * t) * powf(2.0f, 10.0f * (t - 1.0f));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_elast_out(float t) {
|
||||
return sinf(-13.0f * GLM_PI_2f * (t + 1.0f)) * powf(2.0f, -10.0f * t) + 1.0f;
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_elast_inout(float t) {
|
||||
float a;
|
||||
|
||||
a = 2.0f * t;
|
||||
|
||||
if (t < 0.5f)
|
||||
return 0.5f * sinf(13.0f * GLM_PI_2f * a)
|
||||
* powf(2.0f, 10.0f * (a - 1.0f));
|
||||
|
||||
return 0.5f * (sinf(-13.0f * GLM_PI_2f * a)
|
||||
* powf(2.0f, -10.0f * (a - 1.0f)) + 2.0f);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_bounce_out(float t) {
|
||||
float tt;
|
||||
|
||||
tt = t * t;
|
||||
|
||||
if (t < (4.0f / 11.0f))
|
||||
return (121.0f * tt) / 16.0f;
|
||||
|
||||
if (t < 8.0f / 11.0f)
|
||||
return ((363.0f / 40.0f) * tt) - ((99.0f / 10.0f) * t) + (17.0f / 5.0f);
|
||||
|
||||
if (t < (9.0f / 10.0f))
|
||||
return (4356.0f / 361.0f) * tt
|
||||
- (35442.0f / 1805.0f) * t
|
||||
+ (16061.0f / 1805.0f);
|
||||
|
||||
return ((54.0f / 5.0f) * tt) - ((513.0f / 25.0f) * t) + (268.0f / 25.0f);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_bounce_in(float t) {
|
||||
return 1.0f - glm_ease_bounce_out(1.0f - t);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_ease_bounce_inout(float t) {
|
||||
if (t < 0.5f)
|
||||
return 0.5f * (1.0f - glm_ease_bounce_out(t * 2.0f));
|
||||
|
||||
return 0.5f * glm_ease_bounce_out(t * 2.0f - 1.0f) + 0.5f;
|
||||
}
|
||||
|
||||
#endif /* cglm_ease_h */
|
||||
@@ -5,21 +5,30 @@
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*
|
||||
NOTE:
|
||||
angles must be passed as [X-Angle, Y-Angle, Z-angle] order
|
||||
For instance you don't pass angles as [Z-Angle, X-Angle, Y-angle] to
|
||||
glm_euler_zxy funciton, All RELATED functions accept angles same order
|
||||
which is [X, Y, Z].
|
||||
*/
|
||||
|
||||
/*
|
||||
Types:
|
||||
enum glm_euler_sq
|
||||
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE glm_euler_sq glm_euler_order(int newOrder[3]);
|
||||
CGLM_INLINE void glm_euler_angles(mat4 m, vec3 dest);
|
||||
CGLM_INLINE void glm_euler(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_xyz(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_zyx(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_zxy(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_xzy(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_yzx(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_yxz(vec3 angles, mat4 dest);
|
||||
CGLM_INLINE void glm_euler_by_order(vec3 angles,
|
||||
glm_euler_sq axis,
|
||||
glm_euler_sq ord,
|
||||
mat4 dest);
|
||||
*/
|
||||
|
||||
@@ -48,12 +57,12 @@ typedef enum glm_euler_sq {
|
||||
|
||||
CGLM_INLINE
|
||||
glm_euler_sq
|
||||
glm_euler_order(int newOrder[3]) {
|
||||
return (glm_euler_sq)(newOrder[0] | newOrder[1] << 2 | newOrder[2] << 4);
|
||||
glm_euler_order(int ord[3]) {
|
||||
return (glm_euler_sq)(ord[0] << 0 | ord[1] << 2 | ord[2] << 4);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief euler angles (in radian) using xyz sequence
|
||||
* @brief extract euler angles (in radians) using xyz order
|
||||
*
|
||||
* @param[in] m affine transform
|
||||
* @param[out] dest angles vector [x, y, z]
|
||||
@@ -61,225 +70,289 @@ glm_euler_order(int newOrder[3]) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_angles(mat4 m, vec3 dest) {
|
||||
if (m[0][2] < 1.0f) {
|
||||
if (m[0][2] > -1.0f) {
|
||||
vec3 a[2];
|
||||
float cy1, cy2;
|
||||
int path;
|
||||
|
||||
a[0][1] = asinf(-m[0][2]);
|
||||
a[1][1] = CGLM_PI - a[0][1];
|
||||
float m00, m01, m10, m11, m20, m21, m22;
|
||||
float thetaX, thetaY, thetaZ;
|
||||
|
||||
cy1 = cosf(a[0][1]);
|
||||
cy2 = cosf(a[1][1]);
|
||||
m00 = m[0][0]; m10 = m[1][0]; m20 = m[2][0];
|
||||
m01 = m[0][1]; m11 = m[1][1]; m21 = m[2][1];
|
||||
m22 = m[2][2];
|
||||
|
||||
a[0][0] = atan2f(m[1][2] / cy1, m[2][2] / cy1);
|
||||
a[1][0] = atan2f(m[1][2] / cy2, m[2][2] / cy2);
|
||||
|
||||
a[0][2] = atan2f(m[0][1] / cy1, m[0][0] / cy1);
|
||||
a[1][2] = atan2f(m[0][1] / cy2, m[0][0] / cy2);
|
||||
|
||||
path = (fabsf(a[0][0]) + fabsf(a[0][1]) + fabsf(a[0][2])) >=
|
||||
(fabsf(a[1][0]) + fabsf(a[1][1]) + fabsf(a[1][2]));
|
||||
|
||||
glm_vec_copy(a[path], dest);
|
||||
} else {
|
||||
dest[0] = atan2f(m[1][0], m[2][0]);
|
||||
dest[1] = CGLM_PI_2;
|
||||
dest[2] = 0.0f;
|
||||
if (m20 < 1.0f) {
|
||||
if (m20 > -1.0f) {
|
||||
thetaY = asinf(m20);
|
||||
thetaX = atan2f(-m21, m22);
|
||||
thetaZ = atan2f(-m10, m00);
|
||||
} else { /* m20 == -1 */
|
||||
/* Not a unique solution */
|
||||
thetaY = -GLM_PI_2f;
|
||||
thetaX = -atan2f(m01, m11);
|
||||
thetaZ = 0.0f;
|
||||
}
|
||||
} else {
|
||||
dest[0] = atan2f(-m[1][0], -m[2][0]);
|
||||
dest[1] =-CGLM_PI_2;
|
||||
dest[2] = 0.0f;
|
||||
} else { /* m20 == +1 */
|
||||
thetaY = GLM_PI_2f;
|
||||
thetaX = atan2f(m01, m11);
|
||||
thetaZ = 0.0f;
|
||||
}
|
||||
|
||||
dest[0] = thetaX;
|
||||
dest[1] = thetaY;
|
||||
dest[2] = thetaZ;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles(ExEyEz/RzRyRx)
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Ex, Ey, Ez]
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_xyz(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz, czsx, cxcz, sysz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
czsx = cz * sx;
|
||||
cxcz = cx * cz;
|
||||
sysz = sy * sz;
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = czsx * sy + cx * sz;
|
||||
dest[0][2] = -cxcz * sy + sx * sz;
|
||||
dest[1][0] = -cy * sz;
|
||||
dest[1][1] = cxcz - sx * sysz;
|
||||
dest[1][2] = czsx + cx * sysz;
|
||||
dest[2][0] = sy;
|
||||
dest[2][1] = -cy * sx;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = cy * sz;
|
||||
dest[0][2] =-sy;
|
||||
dest[1][0] = cz * sx * sy - cx * sz;
|
||||
dest[1][1] = cx * cz + sx * sy * sz;
|
||||
dest[1][2] = cy * sx;
|
||||
dest[2][0] = cx * cz * sy + sx * sz;
|
||||
dest[2][1] =-cz * sx + cx * sy * sz;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
glm_euler_xyz(angles, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles (EzEyEx/RxRyRz)
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_zyx(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_xzy(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, sxsy, cysx, cxsy, cxcy;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = cz * sx * sy + cx * sz;
|
||||
dest[0][2] =-cx * cz * sy + sx * sz;
|
||||
dest[1][0] =-cy * sz;
|
||||
dest[1][1] = cx * cz - sx * sy * sz;
|
||||
dest[1][2] = cz * sx + cx * sy * sz;
|
||||
dest[2][0] = sy;
|
||||
dest[2][1] =-cy * sx;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
sxsy = sx * sy;
|
||||
cysx = cy * sx;
|
||||
cxsy = cx * sy;
|
||||
cxcy = cx * cy;
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = sxsy + cxcy * sz;
|
||||
dest[0][2] = -cxsy + cysx * sz;
|
||||
dest[1][0] = -sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cz * sx;
|
||||
dest[2][0] = cz * sy;
|
||||
dest[2][1] = -cysx + cxsy * sz;
|
||||
dest[2][2] = cxcy + sxsy * sz;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_zxy(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_yxz(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, cycz, sysz, czsy, cysz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz + sx * sy * sz;
|
||||
dest[0][1] = cx * sz;
|
||||
dest[0][2] =-cz * sy + cy * sx * sz;
|
||||
dest[1][0] = cz * sx * sy - cy * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cy * cz * sx + sy * sz;
|
||||
dest[2][0] = cx * sy;
|
||||
dest[2][1] =-sx;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
cycz = cy * cz;
|
||||
sysz = sy * sz;
|
||||
czsy = cz * sy;
|
||||
cysz = cy * sz;
|
||||
|
||||
dest[0][0] = cycz + sx * sysz;
|
||||
dest[0][1] = cx * sz;
|
||||
dest[0][2] = -czsy + cysz * sx;
|
||||
dest[1][0] = -cysz + czsy * sx;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cycz * sx + sysz;
|
||||
dest[2][0] = cx * sy;
|
||||
dest[2][1] = -sx;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_xzy(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_yzx(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, sxsy, cxcy, cysx, cxsy;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = sz;
|
||||
dest[0][2] =-cz * sy;
|
||||
dest[1][0] = sx * sy - cx * cy * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cy * sx + cx * sy * sz;
|
||||
dest[2][0] = cx * sy + cy * sx * sz;
|
||||
dest[2][1] =-cz * sx;
|
||||
dest[2][2] = cx * cy - sx * sy * sz;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
sxsy = sx * sy;
|
||||
cxcy = cx * cy;
|
||||
cysx = cy * sx;
|
||||
cxsy = cx * sy;
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = sz;
|
||||
dest[0][2] = -cz * sy;
|
||||
dest[1][0] = sxsy - cxcy * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cysx + cxsy * sz;
|
||||
dest[2][0] = cxsy + cysx * sz;
|
||||
dest[2][1] = -cz * sx;
|
||||
dest[2][2] = cxcy - sxsy * sz;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_yzx(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_zxy(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, cycz, sxsy, cysz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = sx * sy + cx * cy * sz;
|
||||
dest[0][2] =-cx * sy + cy * sx * sz;
|
||||
dest[1][0] =-sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = cz * sx;
|
||||
dest[2][0] = cz * sy;
|
||||
dest[2][1] =-cy * sx + cx * sy * sz;
|
||||
dest[2][2] = cx * cy + sx * sy * sz;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
cycz = cy * cz;
|
||||
sxsy = sx * sy;
|
||||
cysz = cy * sz;
|
||||
|
||||
dest[0][0] = cycz - sxsy * sz;
|
||||
dest[0][1] = cz * sxsy + cysz;
|
||||
dest[0][2] = -cx * sy;
|
||||
dest[1][0] = -cx * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = sx;
|
||||
dest[2][0] = cz * sy + cysz * sx;
|
||||
dest[2][1] = -cycz * sx + sy * sz;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_yxz(vec3 angles,
|
||||
mat4 dest) {
|
||||
glm_euler_zyx(vec3 angles, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
sx, sy, sz, czsx, cxcz, sysz;
|
||||
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
sx = sinf(angles[0]); cx = cosf(angles[0]);
|
||||
sy = sinf(angles[1]); cy = cosf(angles[1]);
|
||||
sz = sinf(angles[2]); cz = cosf(angles[2]);
|
||||
|
||||
dest[0][0] = cy * cz - sx * sy * sz;
|
||||
dest[0][1] = cz * sx * sy + cy * sz;
|
||||
dest[0][2] =-cx * sy;
|
||||
dest[1][0] =-cx * sz;
|
||||
dest[1][1] = cx * cz;
|
||||
dest[1][2] = sx;
|
||||
dest[2][0] = cz * sy + cy * sx * sz;
|
||||
dest[2][1] =-cy * cz * sx + sy * sz;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
czsx = cz * sx;
|
||||
cxcz = cx * cz;
|
||||
sysz = sy * sz;
|
||||
|
||||
dest[0][0] = cy * cz;
|
||||
dest[0][1] = cy * sz;
|
||||
dest[0][2] = -sy;
|
||||
dest[1][0] = czsx * sy - cx * sz;
|
||||
dest[1][1] = cxcz + sx * sysz;
|
||||
dest[1][2] = cy * sx;
|
||||
dest[2][0] = cxcz * sy + sx * sz;
|
||||
dest[2][1] = -czsx + cx * sysz;
|
||||
dest[2][2] = cx * cy;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[in] ord euler order
|
||||
* @param[out] dest rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_euler_by_order(vec3 angles, glm_euler_sq axis, mat4 dest) {
|
||||
glm_euler_by_order(vec3 angles, glm_euler_sq ord, mat4 dest) {
|
||||
float cx, cy, cz,
|
||||
sx, sy, sz;
|
||||
|
||||
@@ -297,72 +370,72 @@ glm_euler_by_order(vec3 angles, glm_euler_sq axis, mat4 dest) {
|
||||
czsx = cz * sx; cxsz = cx * sz;
|
||||
sysz = sy * sz;
|
||||
|
||||
switch (axis) {
|
||||
case GLM_EULER_XYZ:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = cysz;
|
||||
dest[0][2] =-sy;
|
||||
dest[1][0] = czsx * sy - cxsz;
|
||||
dest[1][1] = cxcz + sx * sysz;
|
||||
dest[1][2] = cysx;
|
||||
dest[2][0] = cx * czsy + sx * sz;
|
||||
dest[2][1] =-czsx + cx * sysz;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
switch (ord) {
|
||||
case GLM_EULER_XZY:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = sz;
|
||||
dest[0][2] =-czsy;
|
||||
dest[1][0] = sx * sy - cx * cysz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = cysx + cx * sysz;
|
||||
dest[2][0] = cx * sy + cysx * sz;
|
||||
dest[2][1] =-czsx;
|
||||
dest[2][2] = cxcy - sx * sysz;
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = sx * sy + cx * cysz;
|
||||
dest[0][2] = -cx * sy + cysx * sz;
|
||||
dest[1][0] = -sz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = czsx;
|
||||
dest[2][0] = czsy;
|
||||
dest[2][1] = -cysx + cx * sysz;
|
||||
dest[2][2] = cxcy + sx * sysz;
|
||||
break;
|
||||
case GLM_EULER_ZXY:
|
||||
dest[0][0] = cycz + sx * sysz;
|
||||
dest[0][1] = cxsz;
|
||||
dest[0][2] =-czsy + cysx * sz;
|
||||
dest[1][0] = czsx * sy - cysz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = cycz * sx + sysz;
|
||||
dest[2][0] = cx * sy;
|
||||
dest[2][1] =-sx;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
case GLM_EULER_ZYX:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = czsx * sy + cxsz;
|
||||
dest[0][2] =-cx * czsy + sx * sz;
|
||||
dest[1][0] =-cysz;
|
||||
dest[1][1] = cxcz - sx * sysz;
|
||||
dest[1][2] = czsx + cx * sysz;
|
||||
dest[2][0] = sy;
|
||||
dest[2][1] =-cysx;
|
||||
dest[2][2] = cxcy;
|
||||
case GLM_EULER_XYZ:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = czsx * sy + cxsz;
|
||||
dest[0][2] = -cx * czsy + sx * sz;
|
||||
dest[1][0] = -cysz;
|
||||
dest[1][1] = cxcz - sx * sysz;
|
||||
dest[1][2] = czsx + cx * sysz;
|
||||
dest[2][0] = sy;
|
||||
dest[2][1] = -cysx;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
case GLM_EULER_YXZ:
|
||||
dest[0][0] = cycz - sx * sysz;
|
||||
dest[0][1] = czsx * sy + cysz;
|
||||
dest[0][2] =-cx * sy;
|
||||
dest[1][0] =-cxsz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = sx;
|
||||
dest[2][0] = czsy + cysx * sz;
|
||||
dest[2][1] =-cycz * sx + sysz;
|
||||
dest[2][2] = cxcy;
|
||||
dest[0][0] = cycz + sx * sysz;
|
||||
dest[0][1] = cxsz;
|
||||
dest[0][2] = -czsy + cysx * sz;
|
||||
dest[1][0] = czsx * sy - cysz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = cycz * sx + sysz;
|
||||
dest[2][0] = cx * sy;
|
||||
dest[2][1] = -sx;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
case GLM_EULER_YZX:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = sx * sy + cx * cysz;
|
||||
dest[0][2] =-cx * sy + cysx * sz;
|
||||
dest[1][0] =-sz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = czsx;
|
||||
dest[2][0] = czsy;
|
||||
dest[2][1] =-cysx + cx * sysz;
|
||||
dest[2][2] = cxcy + sx * sysz;
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = sz;
|
||||
dest[0][2] = -czsy;
|
||||
dest[1][0] = sx * sy - cx * cysz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = cysx + cx * sysz;
|
||||
dest[2][0] = cx * sy + cysx * sz;
|
||||
dest[2][1] = -czsx;
|
||||
dest[2][2] = cxcy - sx * sysz;
|
||||
break;
|
||||
case GLM_EULER_ZXY:
|
||||
dest[0][0] = cycz - sx * sysz;
|
||||
dest[0][1] = czsx * sy + cysz;
|
||||
dest[0][2] = -cx * sy;
|
||||
dest[1][0] = -cxsz;
|
||||
dest[1][1] = cxcz;
|
||||
dest[1][2] = sx;
|
||||
dest[2][0] = czsy + cysx * sz;
|
||||
dest[2][1] = -cycz * sx + sysz;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
case GLM_EULER_ZYX:
|
||||
dest[0][0] = cycz;
|
||||
dest[0][1] = cysz;
|
||||
dest[0][2] = -sy;
|
||||
dest[1][0] = czsx * sy - cxsz;
|
||||
dest[1][1] = cxcz + sx * sysz;
|
||||
dest[1][2] = cysx;
|
||||
dest[2][0] = cx * czsy + sx * sz;
|
||||
dest[2][1] = -czsx + cx * sysz;
|
||||
dest[2][2] = cxcy;
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
@@ -10,6 +10,9 @@
|
||||
|
||||
#include "common.h"
|
||||
#include "plane.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
|
||||
#define GLM_LBN 0 /* left bottom near */
|
||||
#define GLM_LTN 1 /* left top near */
|
||||
@@ -62,7 +65,7 @@
|
||||
* Exracted planes order: [left, right, bottom, top, near, far]
|
||||
*
|
||||
* @param[in] m matrix (see brief)
|
||||
* @param[out] dest exracted view frustum planes (see brief)
|
||||
* @param[out] dest extracted view frustum planes (see brief)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
@@ -103,7 +106,7 @@ glm_frustum_planes(mat4 m, vec4 dest[6]) {
|
||||
*
|
||||
* Find center coordinates:
|
||||
* for (j = 0; j < 4; j++) {
|
||||
* glm_vec_center(corners[i], corners[i + 4], centerCorners[i]);
|
||||
* glm_vec3_center(corners[i], corners[i + 4], centerCorners[i]);
|
||||
* }
|
||||
*
|
||||
* @param[in] invMat matrix (see brief)
|
||||
@@ -184,8 +187,8 @@ glm_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]) {
|
||||
vec3 min, max;
|
||||
int i;
|
||||
|
||||
glm_vec_broadcast(FLT_MAX, min);
|
||||
glm_vec_broadcast(-FLT_MAX, max);
|
||||
glm_vec3_broadcast(FLT_MAX, min);
|
||||
glm_vec3_broadcast(-FLT_MAX, max);
|
||||
|
||||
for (i = 0; i < 8; i++) {
|
||||
glm_mat4_mulv(m, corners[i], v);
|
||||
@@ -199,8 +202,8 @@ glm_frustum_box(vec4 corners[8], mat4 m, vec3 box[2]) {
|
||||
max[2] = glm_max(max[2], v[2]);
|
||||
}
|
||||
|
||||
glm_vec_copy(min, box[0]);
|
||||
glm_vec_copy(max, box[1]);
|
||||
glm_vec3_copy(min, box[0]);
|
||||
glm_vec3_copy(max, box[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -225,7 +228,7 @@ glm_frustum_corners_at(vec4 corners[8],
|
||||
float dist, sc;
|
||||
|
||||
/* because distance and scale is same for all */
|
||||
dist = glm_vec_distance(corners[GLM_RTF], corners[GLM_RTN]);
|
||||
dist = glm_vec3_distance(corners[GLM_RTF], corners[GLM_RTN]);
|
||||
sc = dist * (splitDist / farDist);
|
||||
|
||||
/* left bottom */
|
||||
|
||||
@@ -25,7 +25,7 @@
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_print(mat4 matrix,
|
||||
glm_mat4_print(mat4 matrix,
|
||||
FILE * __restrict ostream) {
|
||||
int i;
|
||||
int j;
|
||||
@@ -55,7 +55,7 @@ glm_mat4_print(mat4 matrix,
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_print(mat3 matrix,
|
||||
glm_mat3_print(mat3 matrix,
|
||||
FILE * __restrict ostream) {
|
||||
int i;
|
||||
int j;
|
||||
@@ -85,7 +85,7 @@ glm_mat3_print(mat3 matrix,
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_print(vec4 vec,
|
||||
glm_vec4_print(vec4 vec,
|
||||
FILE * __restrict ostream) {
|
||||
int i;
|
||||
|
||||
@@ -107,7 +107,7 @@ glm_vec4_print(vec4 vec,
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_print(vec3 vec,
|
||||
glm_vec3_print(vec3 vec,
|
||||
FILE * __restrict ostream) {
|
||||
int i;
|
||||
|
||||
@@ -129,7 +129,7 @@ glm_vec3_print(vec3 vec,
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_ivec3_print(ivec3 vec,
|
||||
glm_ivec3_print(ivec3 vec,
|
||||
FILE * __restrict ostream) {
|
||||
int i;
|
||||
|
||||
@@ -151,7 +151,7 @@ glm_ivec3_print(ivec3 vec,
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_versor_print(versor vec,
|
||||
glm_versor_print(versor vec,
|
||||
FILE * __restrict ostream) {
|
||||
int i;
|
||||
|
||||
@@ -171,4 +171,33 @@ glm_versor_print(versor vec,
|
||||
#undef m
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_aabb_print(vec3 bbox[2],
|
||||
const char * __restrict tag,
|
||||
FILE * __restrict ostream) {
|
||||
int i, j;
|
||||
|
||||
#define m 3
|
||||
|
||||
fprintf(ostream, "AABB (%s):\n", tag ? tag: "float");
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
fprintf(ostream, "\t|");
|
||||
|
||||
for (j = 0; j < m; j++) {
|
||||
fprintf(ostream, "%0.4f", bbox[i][j]);
|
||||
|
||||
if (j != m - 1)
|
||||
fprintf(ostream, "\t");
|
||||
}
|
||||
|
||||
fprintf(ostream, "|\n");
|
||||
}
|
||||
|
||||
fprintf(ostream, "\n");
|
||||
|
||||
#undef m
|
||||
}
|
||||
|
||||
#endif /* cglm_io_h */
|
||||
|
||||
@@ -16,21 +16,27 @@
|
||||
Functions:
|
||||
CGLM_INLINE void glm_mat3_copy(mat3 mat, mat3 dest);
|
||||
CGLM_INLINE void glm_mat3_identity(mat3 mat);
|
||||
CGLM_INLINE void glm_mat3_identity_array(mat3 * restrict mat, size_t count);
|
||||
CGLM_INLINE void glm_mat3_zero(mat3 mat);
|
||||
CGLM_INLINE void glm_mat3_mul(mat3 m1, mat3 m2, mat3 dest);
|
||||
CGLM_INLINE void glm_mat3_transpose_to(mat3 m, mat3 dest);
|
||||
CGLM_INLINE void glm_mat3_transpose(mat3 m);
|
||||
CGLM_INLINE void glm_mat3_mulv(mat3 m, vec3 v, vec3 dest);
|
||||
CGLM_INLINE float glm_mat3_trace(mat3 m);
|
||||
CGLM_INLINE void glm_mat3_quat(mat3 m, versor dest);
|
||||
CGLM_INLINE void glm_mat3_scale(mat3 m, float s);
|
||||
CGLM_INLINE float glm_mat3_det(mat3 mat);
|
||||
CGLM_INLINE void glm_mat3_inv(mat3 mat, mat3 dest);
|
||||
CGLM_INLINE void glm_mat3_swap_col(mat3 mat, int col1, int col2);
|
||||
CGLM_INLINE void glm_mat3_swap_row(mat3 mat, int row1, int row2);
|
||||
CGLM_INLINE float glm_mat3_rmc(vec3 r, mat3 m, vec3 c);
|
||||
*/
|
||||
|
||||
#ifndef cglm_mat3_h
|
||||
#define cglm_mat3_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec3.h"
|
||||
|
||||
#ifdef CGLM_SSE_FP
|
||||
# include "simd/sse2/mat3.h"
|
||||
@@ -45,8 +51,8 @@
|
||||
|
||||
|
||||
/* for C only */
|
||||
#define GLM_MAT3_IDENTITY (mat3)GLM_MAT3_IDENTITY_INIT
|
||||
#define GLM_MAT3_ZERO (mat3)GLM_MAT3_ZERO_INIT
|
||||
#define GLM_MAT3_IDENTITY ((mat3)GLM_MAT3_IDENTITY_INIT)
|
||||
#define GLM_MAT3_ZERO ((mat3)GLM_MAT3_ZERO_INIT)
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glm_mat3_dup(mat, dest) glm_mat3_copy(mat, dest)
|
||||
@@ -60,7 +66,17 @@
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_copy(mat3 mat, mat3 dest) {
|
||||
glm__memcpy(float, dest, mat, sizeof(mat3));
|
||||
dest[0][0] = mat[0][0];
|
||||
dest[0][1] = mat[0][1];
|
||||
dest[0][2] = mat[0][2];
|
||||
|
||||
dest[1][0] = mat[1][0];
|
||||
dest[1][1] = mat[1][1];
|
||||
dest[1][2] = mat[1][2];
|
||||
|
||||
dest[2][0] = mat[2][0];
|
||||
dest[2][1] = mat[2][1];
|
||||
dest[2][2] = mat[2][2];
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -80,7 +96,38 @@ glm_mat3_copy(mat3 mat, mat3 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_identity(mat3 mat) {
|
||||
mat3 t = GLM_MAT3_IDENTITY_INIT;
|
||||
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_IDENTITY_INIT;
|
||||
glm_mat3_copy(t, mat);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given matrix array's each element identity matrix
|
||||
*
|
||||
* @param[in, out] mat matrix array (must be aligned (16/32)
|
||||
* if alignment is not disabled)
|
||||
*
|
||||
* @param[in] count count of matrices
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_identity_array(mat3 * __restrict mat, size_t count) {
|
||||
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_IDENTITY_INIT;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
glm_mat3_copy(t, mat[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given matrix zero.
|
||||
*
|
||||
* @param[in, out] mat matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_zero(mat3 mat) {
|
||||
CGLM_ALIGN_MAT mat3 t = GLM_MAT3_ZERO_INIT;
|
||||
glm_mat3_copy(t, mat);
|
||||
}
|
||||
|
||||
@@ -154,7 +201,7 @@ glm_mat3_transpose_to(mat3 m, mat3 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_transpose(mat3 m) {
|
||||
mat3 tmp;
|
||||
CGLM_ALIGN_MAT mat3 tmp;
|
||||
|
||||
tmp[0][1] = m[1][0];
|
||||
tmp[0][2] = m[2][0];
|
||||
@@ -186,6 +233,68 @@ glm_mat3_mulv(mat3 m, vec3 v, vec3 dest) {
|
||||
dest[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief trace of matrix
|
||||
*
|
||||
* sum of the elements on the main diagonal from upper left to the lower right
|
||||
*
|
||||
* @param[in] m matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_mat3_trace(mat3 m) {
|
||||
return m[0][0] + m[1][1] + m[2][2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert mat3 to quaternion
|
||||
*
|
||||
* @param[in] m rotation matrix
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat3_quat(mat3 m, versor dest) {
|
||||
float trace, r, rinv;
|
||||
|
||||
/* it seems using like m12 instead of m[1][2] causes extra instructions */
|
||||
|
||||
trace = m[0][0] + m[1][1] + m[2][2];
|
||||
if (trace >= 0.0f) {
|
||||
r = sqrtf(1.0f + trace);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[1][2] - m[2][1]);
|
||||
dest[1] = rinv * (m[2][0] - m[0][2]);
|
||||
dest[2] = rinv * (m[0][1] - m[1][0]);
|
||||
dest[3] = r * 0.5f;
|
||||
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
|
||||
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = r * 0.5f;
|
||||
dest[1] = rinv * (m[0][1] + m[1][0]);
|
||||
dest[2] = rinv * (m[0][2] + m[2][0]);
|
||||
dest[3] = rinv * (m[1][2] - m[2][1]);
|
||||
} else if (m[1][1] >= m[2][2]) {
|
||||
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[0][1] + m[1][0]);
|
||||
dest[1] = r * 0.5f;
|
||||
dest[2] = rinv * (m[1][2] + m[2][1]);
|
||||
dest[3] = rinv * (m[2][0] - m[0][2]);
|
||||
} else {
|
||||
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[0][2] + m[2][0]);
|
||||
dest[1] = rinv * (m[1][2] + m[2][1]);
|
||||
dest[2] = r * 0.5f;
|
||||
dest[3] = rinv * (m[0][1] - m[1][0]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief scale (multiply with scalar) matrix
|
||||
*
|
||||
@@ -259,9 +368,9 @@ CGLM_INLINE
|
||||
void
|
||||
glm_mat3_swap_col(mat3 mat, int col1, int col2) {
|
||||
vec3 tmp;
|
||||
glm_vec_copy(mat[col1], tmp);
|
||||
glm_vec_copy(mat[col2], mat[col1]);
|
||||
glm_vec_copy(tmp, mat[col2]);
|
||||
glm_vec3_copy(mat[col1], tmp);
|
||||
glm_vec3_copy(mat[col2], mat[col1]);
|
||||
glm_vec3_copy(tmp, mat[col2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -288,4 +397,26 @@ glm_mat3_swap_row(mat3 mat, int row1, int row2) {
|
||||
mat[2][row2] = tmp[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief helper for R (row vector) * M (matrix) * C (column vector)
|
||||
*
|
||||
* rmc stands for Row * Matrix * Column
|
||||
*
|
||||
* the result is scalar because R * M = Matrix1x3 (row vector),
|
||||
* then Matrix1x3 * Vec3 (column vector) = Matrix1x1 (Scalar)
|
||||
*
|
||||
* @param[in] r row vector or matrix1x3
|
||||
* @param[in] m matrix3x3
|
||||
* @param[in] c column vector or matrix3x1
|
||||
*
|
||||
* @return scalar value e.g. Matrix1x1
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_mat3_rmc(vec3 r, mat3 m, vec3 c) {
|
||||
vec3 tmp;
|
||||
glm_mat3_mulv(m, c, tmp);
|
||||
return glm_vec3_dot(r, tmp);
|
||||
}
|
||||
|
||||
#endif /* cglm_mat3_h */
|
||||
|
||||
@@ -16,13 +16,13 @@
|
||||
GLM_MAT4_ZERO_INIT
|
||||
GLM_MAT4_IDENTITY
|
||||
GLM_MAT4_ZERO
|
||||
glm_mat4_udup(mat, dest)
|
||||
glm_mat4_dup(mat, dest)
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE void glm_mat4_ucopy(mat4 mat, mat4 dest);
|
||||
CGLM_INLINE void glm_mat4_copy(mat4 mat, mat4 dest);
|
||||
CGLM_INLINE void glm_mat4_identity(mat4 mat);
|
||||
CGLM_INLINE void glm_mat4_identity_array(mat4 * restrict mat, size_t count);
|
||||
CGLM_INLINE void glm_mat4_zero(mat4 mat);
|
||||
CGLM_INLINE void glm_mat4_pick3(mat4 mat, mat3 dest);
|
||||
CGLM_INLINE void glm_mat4_pick3t(mat4 mat, mat3 dest);
|
||||
CGLM_INLINE void glm_mat4_ins3(mat3 mat, mat4 dest);
|
||||
@@ -30,6 +30,9 @@
|
||||
CGLM_INLINE void glm_mat4_mulN(mat4 *matrices[], int len, mat4 dest);
|
||||
CGLM_INLINE void glm_mat4_mulv(mat4 m, vec4 v, vec4 dest);
|
||||
CGLM_INLINE void glm_mat4_mulv3(mat4 m, vec3 v, vec3 dest);
|
||||
CGLM_INLINE float glm_mat4_trace(mat4 m);
|
||||
CGLM_INLINE float glm_mat4_trace3(mat4 m);
|
||||
CGLM_INLINE void glm_mat4_quat(mat4 m, versor dest) ;
|
||||
CGLM_INLINE void glm_mat4_transpose_to(mat4 m, mat4 dest);
|
||||
CGLM_INLINE void glm_mat4_transpose(mat4 m);
|
||||
CGLM_INLINE void glm_mat4_scale_p(mat4 m, float s);
|
||||
@@ -39,12 +42,15 @@
|
||||
CGLM_INLINE void glm_mat4_inv_fast(mat4 mat, mat4 dest);
|
||||
CGLM_INLINE void glm_mat4_swap_col(mat4 mat, int col1, int col2);
|
||||
CGLM_INLINE void glm_mat4_swap_row(mat4 mat, int row1, int row2);
|
||||
CGLM_INLINE float glm_mat4_rmc(vec4 r, mat4 m, vec4 c);
|
||||
*/
|
||||
|
||||
#ifndef cglm_mat_h
|
||||
#define cglm_mat_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec4.h"
|
||||
#include "vec3.h"
|
||||
|
||||
#ifdef CGLM_SSE_FP
|
||||
# include "simd/sse2/mat4.h"
|
||||
@@ -58,7 +64,9 @@
|
||||
# include "simd/neon/mat4.h"
|
||||
#endif
|
||||
|
||||
#include <assert.h>
|
||||
#ifdef DEBUG
|
||||
# include <assert.h>
|
||||
#endif
|
||||
|
||||
#define GLM_MAT4_IDENTITY_INIT {{1.0f, 0.0f, 0.0f, 0.0f}, \
|
||||
{0.0f, 1.0f, 0.0f, 0.0f}, \
|
||||
@@ -71,8 +79,8 @@
|
||||
{0.0f, 0.0f, 0.0f, 0.0f}}
|
||||
|
||||
/* for C only */
|
||||
#define GLM_MAT4_IDENTITY (mat4)GLM_MAT4_IDENTITY_INIT
|
||||
#define GLM_MAT4_ZERO (mat4)GLM_MAT4_ZERO_INIT
|
||||
#define GLM_MAT4_IDENTITY ((mat4)GLM_MAT4_IDENTITY_INIT)
|
||||
#define GLM_MAT4_ZERO ((mat4)GLM_MAT4_ZERO_INIT)
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glm_mat4_udup(mat, dest) glm_mat4_ucopy(mat, dest)
|
||||
@@ -93,7 +101,15 @@
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_ucopy(mat4 mat, mat4 dest) {
|
||||
glm__memcpy(float, dest, mat, sizeof(mat4));
|
||||
dest[0][0] = mat[0][0]; dest[1][0] = mat[1][0];
|
||||
dest[0][1] = mat[0][1]; dest[1][1] = mat[1][1];
|
||||
dest[0][2] = mat[0][2]; dest[1][2] = mat[1][2];
|
||||
dest[0][3] = mat[0][3]; dest[1][3] = mat[1][3];
|
||||
|
||||
dest[2][0] = mat[2][0]; dest[3][0] = mat[3][0];
|
||||
dest[2][1] = mat[2][1]; dest[3][1] = mat[3][1];
|
||||
dest[2][2] = mat[2][2]; dest[3][2] = mat[3][2];
|
||||
dest[2][3] = mat[2][3]; dest[3][3] = mat[3][3];
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -106,13 +122,18 @@ CGLM_INLINE
|
||||
void
|
||||
glm_mat4_copy(mat4 mat, mat4 dest) {
|
||||
#ifdef __AVX__
|
||||
_mm256_store_ps(dest[0], _mm256_load_ps(mat[0]));
|
||||
_mm256_store_ps(dest[2], _mm256_load_ps(mat[2]));
|
||||
glmm_store256(dest[0], glmm_load256(mat[0]));
|
||||
glmm_store256(dest[2], glmm_load256(mat[2]));
|
||||
#elif defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest[0], _mm_load_ps(mat[0]));
|
||||
_mm_store_ps(dest[1], _mm_load_ps(mat[1]));
|
||||
_mm_store_ps(dest[2], _mm_load_ps(mat[2]));
|
||||
_mm_store_ps(dest[3], _mm_load_ps(mat[3]));
|
||||
glmm_store(dest[0], glmm_load(mat[0]));
|
||||
glmm_store(dest[1], glmm_load(mat[1]));
|
||||
glmm_store(dest[2], glmm_load(mat[2]));
|
||||
glmm_store(dest[3], glmm_load(mat[3]));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest[0], vld1q_f32(mat[0]));
|
||||
vst1q_f32(dest[1], vld1q_f32(mat[1]));
|
||||
vst1q_f32(dest[2], vld1q_f32(mat[2]));
|
||||
vst1q_f32(dest[3], vld1q_f32(mat[3]));
|
||||
#else
|
||||
glm_mat4_ucopy(mat, dest);
|
||||
#endif
|
||||
@@ -135,7 +156,38 @@ glm_mat4_copy(mat4 mat, mat4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_identity(mat4 mat) {
|
||||
mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
glm_mat4_copy(t, mat);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given matrix array's each element identity matrix
|
||||
*
|
||||
* @param[in, out] mat matrix array (must be aligned (16/32)
|
||||
* if alignment is not disabled)
|
||||
*
|
||||
* @param[in] count count of matrices
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_identity_array(mat4 * __restrict mat, size_t count) {
|
||||
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_IDENTITY_INIT;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
glm_mat4_copy(t, mat[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given matrix zero.
|
||||
*
|
||||
* @param[in, out] mat matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_zero(mat4 mat) {
|
||||
CGLM_ALIGN_MAT mat4 t = GLM_MAT4_ZERO_INIT;
|
||||
glm_mat4_copy(t, mat);
|
||||
}
|
||||
|
||||
@@ -228,7 +280,7 @@ glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest) {
|
||||
glm_mat4_mul_avx(m1, m2, dest);
|
||||
#elif defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_mat4_mul_sse2(m1, m2, dest);
|
||||
#elif defined( __ARM_NEON_FP )
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
glm_mat4_mul_neon(m1, m2, dest);
|
||||
#else
|
||||
float a00 = m1[0][0], a01 = m1[0][1], a02 = m1[0][2], a03 = m1[0][3],
|
||||
@@ -281,19 +333,17 @@ glm_mat4_mul(mat4 m1, mat4 m2, mat4 dest) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_mulN(mat4 * __restrict matrices[], int len, mat4 dest) {
|
||||
int i;
|
||||
glm_mat4_mulN(mat4 * __restrict matrices[], uint32_t len, mat4 dest) {
|
||||
uint32_t i;
|
||||
|
||||
#ifdef DEBUG
|
||||
assert(len > 1 && "there must be least 2 matrices to go!");
|
||||
#endif
|
||||
|
||||
glm_mat4_mul(*matrices[0],
|
||||
*matrices[1],
|
||||
dest);
|
||||
glm_mat4_mul(*matrices[0], *matrices[1], dest);
|
||||
|
||||
for (i = 2; i < len; i++)
|
||||
glm_mat4_mul(dest,
|
||||
*matrices[i],
|
||||
dest);
|
||||
glm_mat4_mul(dest, *matrices[i], dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -319,20 +369,95 @@ glm_mat4_mulv(mat4 m, vec4 v, vec4 dest) {
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply vector with mat4's mat3 part(rotation)
|
||||
* @brief trace of matrix
|
||||
*
|
||||
* @param[in] m mat4(affine transform)
|
||||
* @param[in] v vec3
|
||||
* @param[out] dest vec3
|
||||
* sum of the elements on the main diagonal from upper left to the lower right
|
||||
*
|
||||
* @param[in] m matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_mat4_trace(mat4 m) {
|
||||
return m[0][0] + m[1][1] + m[2][2] + m[3][3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief trace of matrix (rotation part)
|
||||
*
|
||||
* sum of the elements on the main diagonal from upper left to the lower right
|
||||
*
|
||||
* @param[in] m matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_mat4_trace3(mat4 m) {
|
||||
return m[0][0] + m[1][1] + m[2][2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert mat4's rotation part to quaternion
|
||||
*
|
||||
* @param[in] m affine matrix
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_mulv3(mat4 m, vec3 v, vec3 dest) {
|
||||
vec3 res;
|
||||
res[0] = m[0][0] * v[0] + m[1][0] * v[1] + m[2][0] * v[2];
|
||||
res[1] = m[0][1] * v[0] + m[1][1] * v[1] + m[2][1] * v[2];
|
||||
res[2] = m[0][2] * v[0] + m[1][2] * v[1] + m[2][2] * v[2];
|
||||
glm_vec_copy(res, dest);
|
||||
glm_mat4_quat(mat4 m, versor dest) {
|
||||
float trace, r, rinv;
|
||||
|
||||
/* it seems using like m12 instead of m[1][2] causes extra instructions */
|
||||
|
||||
trace = m[0][0] + m[1][1] + m[2][2];
|
||||
if (trace >= 0.0f) {
|
||||
r = sqrtf(1.0f + trace);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[1][2] - m[2][1]);
|
||||
dest[1] = rinv * (m[2][0] - m[0][2]);
|
||||
dest[2] = rinv * (m[0][1] - m[1][0]);
|
||||
dest[3] = r * 0.5f;
|
||||
} else if (m[0][0] >= m[1][1] && m[0][0] >= m[2][2]) {
|
||||
r = sqrtf(1.0f - m[1][1] - m[2][2] + m[0][0]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = r * 0.5f;
|
||||
dest[1] = rinv * (m[0][1] + m[1][0]);
|
||||
dest[2] = rinv * (m[0][2] + m[2][0]);
|
||||
dest[3] = rinv * (m[1][2] - m[2][1]);
|
||||
} else if (m[1][1] >= m[2][2]) {
|
||||
r = sqrtf(1.0f - m[0][0] - m[2][2] + m[1][1]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[0][1] + m[1][0]);
|
||||
dest[1] = r * 0.5f;
|
||||
dest[2] = rinv * (m[1][2] + m[2][1]);
|
||||
dest[3] = rinv * (m[2][0] - m[0][2]);
|
||||
} else {
|
||||
r = sqrtf(1.0f - m[0][0] - m[1][1] + m[2][2]);
|
||||
rinv = 0.5f / r;
|
||||
|
||||
dest[0] = rinv * (m[0][2] + m[2][0]);
|
||||
dest[1] = rinv * (m[1][2] + m[2][1]);
|
||||
dest[2] = r * 0.5f;
|
||||
dest[3] = rinv * (m[0][1] - m[1][0]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply vector with mat4
|
||||
*
|
||||
* @param[in] m mat4(affine transform)
|
||||
* @param[in] v vec3
|
||||
* @param[in] last 4th item to make it vec4
|
||||
* @param[out] dest result vector (vec3)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_mulv3(mat4 m, vec3 v, float last, vec3 dest) {
|
||||
vec4 res;
|
||||
glm_vec4(v, last, res);
|
||||
glm_mat4_mulv(m, res, res);
|
||||
glm_vec3(res, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -372,10 +497,8 @@ glm_mat4_transpose(mat4 m) {
|
||||
glm_mat4_transp_sse2(m, m);
|
||||
#else
|
||||
mat4 d;
|
||||
|
||||
glm_mat4_transpose_to(m, d);
|
||||
|
||||
glm__memcpy(float, m, d, sizeof(mat4));
|
||||
glm_mat4_ucopy(d, m);
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -409,6 +532,13 @@ void
|
||||
glm_mat4_scale(mat4 m, float s) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_mat4_scale_sse2(m, s);
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
float32x4_t v0;
|
||||
v0 = vdupq_n_f32(s);
|
||||
vst1q_f32(m[0], vmulq_f32(vld1q_f32(m[0]), v0));
|
||||
vst1q_f32(m[1], vmulq_f32(vld1q_f32(m[1]), v0));
|
||||
vst1q_f32(m[2], vmulq_f32(vld1q_f32(m[2]), v0));
|
||||
vst1q_f32(m[3], vmulq_f32(vld1q_f32(m[3]), v0));
|
||||
#else
|
||||
glm_mat4_scale_p(m, s);
|
||||
#endif
|
||||
@@ -535,7 +665,7 @@ glm_mat4_inv_fast(mat4 mat, mat4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_swap_col(mat4 mat, int col1, int col2) {
|
||||
vec4 tmp;
|
||||
CGLM_ALIGN(16) vec4 tmp;
|
||||
glm_vec4_copy(mat[col1], tmp);
|
||||
glm_vec4_copy(mat[col2], mat[col1]);
|
||||
glm_vec4_copy(tmp, mat[col2]);
|
||||
@@ -551,7 +681,7 @@ glm_mat4_swap_col(mat4 mat, int col1, int col2) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_swap_row(mat4 mat, int row1, int row2) {
|
||||
vec4 tmp;
|
||||
CGLM_ALIGN(16) vec4 tmp;
|
||||
tmp[0] = mat[0][row1];
|
||||
tmp[1] = mat[1][row1];
|
||||
tmp[2] = mat[2][row1];
|
||||
@@ -568,5 +698,26 @@ glm_mat4_swap_row(mat4 mat, int row1, int row2) {
|
||||
mat[3][row2] = tmp[3];
|
||||
}
|
||||
|
||||
#else
|
||||
/*!
|
||||
* @brief helper for R (row vector) * M (matrix) * C (column vector)
|
||||
*
|
||||
* rmc stands for Row * Matrix * Column
|
||||
*
|
||||
* the result is scalar because R * M = Matrix1x4 (row vector),
|
||||
* then Matrix1x4 * Vec4 (column vector) = Matrix1x1 (Scalar)
|
||||
*
|
||||
* @param[in] r row vector or matrix1x4
|
||||
* @param[in] m matrix4x4
|
||||
* @param[in] c column vector or matrix4x1
|
||||
*
|
||||
* @return scalar value e.g. B(s)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_mat4_rmc(vec4 r, mat4 m, vec4 c) {
|
||||
vec4 tmp;
|
||||
glm_mat4_mulv(m, c, tmp);
|
||||
return glm_vec4_dot(r, tmp);
|
||||
}
|
||||
|
||||
#endif /* cglm_mat_h */
|
||||
|
||||
@@ -9,9 +9,7 @@
|
||||
#define cglm_plane_h
|
||||
|
||||
#include "common.h"
|
||||
#include "mat4.h"
|
||||
#include "vec4.h"
|
||||
#include "vec3.h"
|
||||
|
||||
/*
|
||||
Plane equation: Ax + By + Cz + D = 0;
|
||||
@@ -27,12 +25,12 @@
|
||||
/*!
|
||||
* @brief normalizes a plane
|
||||
*
|
||||
* @param[in, out] plane pnale to normalize
|
||||
* @param[in, out] plane plane to normalize
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_plane_normalize(vec4 plane) {
|
||||
glm_vec4_scale(plane, 1.0f / glm_vec_norm(plane), plane);
|
||||
glm_vec4_scale(plane, 1.0f / glm_vec3_norm(plane), plane);
|
||||
}
|
||||
|
||||
#endif /* cglm_plane_h */
|
||||
|
||||
118
include/cglm/project.h
Normal file
118
include/cglm/project.h
Normal file
@@ -0,0 +1,118 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_project_h
|
||||
#define cglm_project_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
|
||||
/*!
|
||||
* @brief maps the specified viewport coordinates into specified space [1]
|
||||
* the matrix should contain projection matrix.
|
||||
*
|
||||
* if you don't have ( and don't want to have ) an inverse matrix then use
|
||||
* glm_unproject version. You may use existing inverse of matrix in somewhere
|
||||
* else, this is why glm_unprojecti exists to save save inversion cost
|
||||
*
|
||||
* [1] space:
|
||||
* 1- if m = invProj: View Space
|
||||
* 2- if m = invViewProj: World Space
|
||||
* 3- if m = invMVP: Object Space
|
||||
*
|
||||
* You probably want to map the coordinates into object space
|
||||
* so use invMVP as m
|
||||
*
|
||||
* Computing viewProj:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* glm_mat4_mul(viewProj, model, MVP);
|
||||
* glm_mat4_inv(viewProj, invMVP);
|
||||
*
|
||||
* @param[in] pos point/position in viewport coordinates
|
||||
* @param[in] invMat matrix (see brief)
|
||||
* @param[in] vp viewport as [x, y, width, height]
|
||||
* @param[out] dest unprojected coordinates
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_unprojecti(vec3 pos, mat4 invMat, vec4 vp, vec3 dest) {
|
||||
vec4 v;
|
||||
|
||||
v[0] = 2.0f * (pos[0] - vp[0]) / vp[2] - 1.0f;
|
||||
v[1] = 2.0f * (pos[1] - vp[1]) / vp[3] - 1.0f;
|
||||
v[2] = 2.0f * pos[2] - 1.0f;
|
||||
v[3] = 1.0f;
|
||||
|
||||
glm_mat4_mulv(invMat, v, v);
|
||||
glm_vec4_scale(v, 1.0f / v[3], v);
|
||||
glm_vec3(v, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief maps the specified viewport coordinates into specified space [1]
|
||||
* the matrix should contain projection matrix.
|
||||
*
|
||||
* this is same as glm_unprojecti except this function get inverse matrix for
|
||||
* you.
|
||||
*
|
||||
* [1] space:
|
||||
* 1- if m = proj: View Space
|
||||
* 2- if m = viewProj: World Space
|
||||
* 3- if m = MVP: Object Space
|
||||
*
|
||||
* You probably want to map the coordinates into object space
|
||||
* so use MVP as m
|
||||
*
|
||||
* Computing viewProj and MVP:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* glm_mat4_mul(viewProj, model, MVP);
|
||||
*
|
||||
* @param[in] pos point/position in viewport coordinates
|
||||
* @param[in] m matrix (see brief)
|
||||
* @param[in] vp viewport as [x, y, width, height]
|
||||
* @param[out] dest unprojected coordinates
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_unproject(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
|
||||
mat4 inv;
|
||||
glm_mat4_inv(m, inv);
|
||||
glm_unprojecti(pos, inv, vp, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief map object coordinates to window coordinates
|
||||
*
|
||||
* Computing MVP:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* glm_mat4_mul(viewProj, model, MVP);
|
||||
*
|
||||
* @param[in] pos object coordinates
|
||||
* @param[in] m MVP matrix
|
||||
* @param[in] vp viewport as [x, y, width, height]
|
||||
* @param[out] dest projected coordinates
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_project(vec3 pos, mat4 m, vec4 vp, vec3 dest) {
|
||||
CGLM_ALIGN(16) vec4 pos4, vone = GLM_VEC4_ONE_INIT;
|
||||
|
||||
glm_vec4(pos, 1.0f, pos4);
|
||||
|
||||
glm_mat4_mulv(m, pos4, pos4);
|
||||
glm_vec4_scale(pos4, 1.0f / pos4[3], pos4); /* pos = pos / pos.w */
|
||||
glm_vec4_add(pos4, vone, pos4);
|
||||
glm_vec4_scale(pos4, 0.5f, pos4);
|
||||
|
||||
dest[0] = pos4[0] * vp[2] + vp[0];
|
||||
dest[1] = pos4[1] * vp[3] + vp[1];
|
||||
dest[2] = pos4[2];
|
||||
}
|
||||
|
||||
#endif /* cglm_project_h */
|
||||
@@ -11,42 +11,85 @@
|
||||
GLM_QUAT_IDENTITY
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE void glm_quat_identity(versor q);
|
||||
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
|
||||
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 v);
|
||||
CGLM_INLINE void glm_quat_identity(versor q);
|
||||
CGLM_INLINE void glm_quat_init(versor q, float x, float y, float z, float w);
|
||||
CGLM_INLINE void glm_quat(versor q, float angle, float x, float y, float z);
|
||||
CGLM_INLINE void glm_quatv(versor q, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_quat_copy(versor q, versor dest);
|
||||
CGLM_INLINE float glm_quat_norm(versor q);
|
||||
CGLM_INLINE void glm_quat_normalize(versor q);
|
||||
CGLM_INLINE float glm_quat_dot(versor q, versor r);
|
||||
CGLM_INLINE void glm_quat_mulv(versor q1, versor q2, versor dest);
|
||||
CGLM_INLINE void glm_quat_mat4(versor q, mat4 dest);
|
||||
CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest);
|
||||
CGLM_INLINE void glm_quat_normalize(versor q);
|
||||
CGLM_INLINE void glm_quat_normalize_to(versor q, versor dest);
|
||||
CGLM_INLINE float glm_quat_dot(versor p, versor q);
|
||||
CGLM_INLINE void glm_quat_conjugate(versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_inv(versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_add(versor p, versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_sub(versor p, versor q, versor dest);
|
||||
CGLM_INLINE float glm_quat_real(versor q);
|
||||
CGLM_INLINE void glm_quat_imag(versor q, vec3 dest);
|
||||
CGLM_INLINE void glm_quat_imagn(versor q, vec3 dest);
|
||||
CGLM_INLINE float glm_quat_imaglen(versor q);
|
||||
CGLM_INLINE float glm_quat_angle(versor q);
|
||||
CGLM_INLINE void glm_quat_axis(versor q, vec3 dest);
|
||||
CGLM_INLINE void glm_quat_mul(versor p, versor q, versor dest);
|
||||
CGLM_INLINE void glm_quat_mat4(versor q, mat4 dest);
|
||||
CGLM_INLINE void glm_quat_mat4t(versor q, mat4 dest);
|
||||
CGLM_INLINE void glm_quat_mat3(versor q, mat3 dest);
|
||||
CGLM_INLINE void glm_quat_mat3t(versor q, mat3 dest);
|
||||
CGLM_INLINE void glm_quat_lerp(versor from, versor to, float t, versor dest);
|
||||
CGLM_INLINE void glm_quat_slerp(versor q, versor r, float t, versor dest);
|
||||
CGLM_INLINE void glm_quat_look(vec3 eye, versor ori, mat4 dest);
|
||||
CGLM_INLINE void glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest);
|
||||
CGLM_INLINE void glm_quat_forp(vec3 from,
|
||||
vec3 to,
|
||||
vec3 fwd,
|
||||
vec3 up,
|
||||
versor dest);
|
||||
CGLM_INLINE void glm_quat_rotatev(versor q, vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_quat_rotate(mat4 m, versor q, mat4 dest);
|
||||
*/
|
||||
|
||||
#ifndef cglm_quat_h
|
||||
#define cglm_quat_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
#include "mat3.h"
|
||||
#include "affine-mat.h"
|
||||
|
||||
#ifdef CGLM_SSE_FP
|
||||
# include "simd/sse2/quat.h"
|
||||
#endif
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_identity(mat4 mat);
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_mulv(mat4 m, vec4 v, vec4 dest);
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mul_rot(mat4 m1, mat4 m2, mat4 dest);
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_translate(mat4 m, vec3 v);
|
||||
|
||||
/*
|
||||
* IMPORTANT! cglm stores quat as [w, x, y, z]
|
||||
* IMPORTANT:
|
||||
* ----------------------------------------------------------------------------
|
||||
* cglm stores quat as [x, y, z, w] since v0.3.6
|
||||
*
|
||||
* Possible changes (these may be changed in the future):
|
||||
* - versor is identity quat, we can define new type for quat.
|
||||
* it can't be quat or quaternion becuase someone can use that name for
|
||||
* variable name. maybe just vec4.
|
||||
* - it stores [w, x, y, z] but it may change to [x, y, z, w] if we get enough
|
||||
* feedback to change it.
|
||||
* - in general we use last param as dest, but this header used first param
|
||||
* as dest this may be changed but decided yet
|
||||
* it was [w, x, y, z] before v0.3.6 it has been changed to [x, y, z, w]
|
||||
* with v0.3.6 version.
|
||||
* ----------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#define GLM_QUAT_IDENTITY_INIT {1.0f, 0.0f, 0.0f, 0.0f}
|
||||
#define GLM_QUAT_IDENTITY (versor)GLM_QUAT_IDENTITY_INIT
|
||||
#define GLM_QUAT_IDENTITY_INIT {0.0f, 0.0f, 0.0f, 1.0f}
|
||||
#define GLM_QUAT_IDENTITY ((versor)GLM_QUAT_IDENTITY_INIT)
|
||||
|
||||
/*!
|
||||
* @brief makes given quat to identity
|
||||
@@ -56,10 +99,72 @@
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_identity(versor q) {
|
||||
versor v = GLM_QUAT_IDENTITY_INIT;
|
||||
CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
|
||||
glm_vec4_copy(v, q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given quaternion array's each element identity quaternion
|
||||
*
|
||||
* @param[in, out] q quat array (must be aligned (16)
|
||||
* if alignment is not disabled)
|
||||
*
|
||||
* @param[in] count count of quaternions
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_identity_array(versor * __restrict q, size_t count) {
|
||||
CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
glm_vec4_copy(v, q[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inits quaterion with raw values
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] x x
|
||||
* @param[in] y y
|
||||
* @param[in] z z
|
||||
* @param[in] w w (real part)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_init(versor q, float x, float y, float z, float w) {
|
||||
q[0] = x;
|
||||
q[1] = y;
|
||||
q[2] = z;
|
||||
q[3] = w;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion with axis vector
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quatv(versor q, float angle, vec3 axis) {
|
||||
CGLM_ALIGN(8) vec3 k;
|
||||
float a, c, s;
|
||||
|
||||
a = angle * 0.5f;
|
||||
c = cosf(a);
|
||||
s = sinf(a);
|
||||
|
||||
glm_normalize_to(axis, k);
|
||||
|
||||
q[0] = s * k[0];
|
||||
q[1] = s * k[1];
|
||||
q[2] = s * k[2];
|
||||
q[3] = c;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion with individual axis components
|
||||
*
|
||||
@@ -71,45 +176,21 @@ glm_quat_identity(versor q) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat(versor q,
|
||||
float angle,
|
||||
float x,
|
||||
float y,
|
||||
float z) {
|
||||
float a, c, s;
|
||||
|
||||
a = angle * 0.5f;
|
||||
c = cosf(a);
|
||||
s = sinf(a);
|
||||
|
||||
q[0] = c;
|
||||
q[1] = s * x;
|
||||
q[2] = s * y;
|
||||
q[3] = s * z;
|
||||
glm_quat(versor q, float angle, float x, float y, float z) {
|
||||
CGLM_ALIGN(8) vec3 axis = {x, y, z};
|
||||
glm_quatv(q, angle, axis);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion with axis vector
|
||||
* @brief copy quaternion to another one
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] v axis
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quatv(versor q,
|
||||
float angle,
|
||||
vec3 v) {
|
||||
float a, c, s;
|
||||
|
||||
a = angle * 0.5f;
|
||||
c = cosf(a);
|
||||
s = sinf(a);
|
||||
|
||||
q[0] = c;
|
||||
q[1] = s * v[0];
|
||||
q[2] = s * v[1];
|
||||
q[3] = s * v[2];
|
||||
glm_quat_copy(versor q, versor dest) {
|
||||
glm_vec4_copy(q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -123,6 +204,43 @@ glm_quat_norm(versor q) {
|
||||
return glm_vec4_norm(q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize quaternion and store result in dest
|
||||
*
|
||||
* @param[in] q quaternion to normalze
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_normalize_to(versor q, versor dest) {
|
||||
#if defined( __SSE2__ ) || defined( __SSE2__ )
|
||||
__m128 xdot, x0;
|
||||
float dot;
|
||||
|
||||
x0 = glmm_load(q);
|
||||
xdot = glmm_vdot(x0, x0);
|
||||
dot = _mm_cvtss_f32(xdot);
|
||||
|
||||
if (dot <= 0.0f) {
|
||||
glm_quat_identity(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
glmm_store(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
|
||||
#else
|
||||
float dot;
|
||||
|
||||
dot = glm_vec4_norm2(q);
|
||||
|
||||
if (dot <= 0.0f) {
|
||||
glm_quat_identity(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec4_scale(q, 1.0f / sqrtf(dot), dest);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize quaternion
|
||||
*
|
||||
@@ -131,45 +249,178 @@ glm_quat_norm(versor q) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_normalize(versor q) {
|
||||
float sum;
|
||||
|
||||
sum = q[0] * q[0] + q[1] * q[1]
|
||||
+ q[2] * q[2] + q[3] * q[3];
|
||||
|
||||
if (fabs(1.0f - sum) < 0.0001f)
|
||||
return;
|
||||
|
||||
glm_vec4_scale(q, 1.0f / sqrtf(sum), q);
|
||||
glm_quat_normalize_to(q, q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief dot product of two quaternion
|
||||
*
|
||||
* @param[in] q quaternion 1
|
||||
* @param[in] r quaternion 2
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_dot(versor q, versor r) {
|
||||
return glm_vec4_dot(q, r);
|
||||
glm_quat_dot(versor p, versor q) {
|
||||
return glm_vec4_dot(p, q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief conjugate of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest conjugate
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_conjugate(versor q, versor dest) {
|
||||
glm_vec4_negate_to(q, dest);
|
||||
dest[3] = -dest[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inverse of non-zero quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest inverse quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_inv(versor q, versor dest) {
|
||||
CGLM_ALIGN(16) versor conj;
|
||||
glm_quat_conjugate(q, conj);
|
||||
glm_vec4_scale(conj, 1.0f / glm_vec4_norm2(q), dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add (componentwise) two quaternions and store result in dest
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_add(versor p, versor q, versor dest) {
|
||||
glm_vec4_add(p, q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract (componentwise) two quaternions and store result in dest
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_sub(versor p, versor q, versor dest) {
|
||||
glm_vec4_sub(p, q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns real part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_real(versor q) {
|
||||
return q[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns imaginary part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest imag
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_imag(versor q, vec3 dest) {
|
||||
dest[0] = q[0];
|
||||
dest[1] = q[1];
|
||||
dest[2] = q[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns normalized imaginary part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_imagn(versor q, vec3 dest) {
|
||||
glm_normalize_to(q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns length of imaginary part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_imaglen(versor q) {
|
||||
return glm_vec3_norm(q);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns angle of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_quat_angle(versor q) {
|
||||
/*
|
||||
sin(theta / 2) = length(x*x + y*y + z*z)
|
||||
cos(theta / 2) = w
|
||||
theta = 2 * atan(sin(theta / 2) / cos(theta / 2))
|
||||
*/
|
||||
return 2.0f * atan2f(glm_quat_imaglen(q), glm_quat_real(q));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief axis of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest axis of quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_axis(versor q, vec3 dest) {
|
||||
glm_quat_imagn(q, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiplies two quaternion and stores result in dest
|
||||
* this is also called Hamilton Product
|
||||
*
|
||||
* @param[in] q1 quaternion 1
|
||||
* @param[in] q2 quaternion 2
|
||||
* According to WikiPedia:
|
||||
* The product of two rotation quaternions [clarification needed] will be
|
||||
* equivalent to the rotation q followed by the rotation p
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mulv(versor q1, versor q2, versor dest) {
|
||||
dest[0] = q2[0] * q1[0] - q2[1] * q1[1] - q2[2] * q1[2] - q2[3] * q1[3];
|
||||
dest[1] = q2[0] * q1[1] + q2[1] * q1[0] - q2[2] * q1[3] + q2[3] * q1[2];
|
||||
dest[2] = q2[0] * q1[2] + q2[1] * q1[3] + q2[2] * q1[0] - q2[3] * q1[1];
|
||||
dest[3] = q2[0] * q1[3] - q2[1] * q1[2] + q2[2] * q1[1] + q2[3] * q1[0];
|
||||
|
||||
glm_quat_normalize(dest);
|
||||
glm_quat_mul(versor p, versor q, versor dest) {
|
||||
/*
|
||||
+ (a1 b2 + b1 a2 + c1 d2 − d1 c2)i
|
||||
+ (a1 c2 − b1 d2 + c1 a2 + d1 b2)j
|
||||
+ (a1 d2 + b1 c2 − c1 b2 + d1 a2)k
|
||||
a1 a2 − b1 b2 − c1 c2 − d1 d2
|
||||
*/
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_quat_mul_sse2(p, q, dest);
|
||||
#else
|
||||
dest[0] = p[3] * q[0] + p[0] * q[3] + p[1] * q[2] - p[2] * q[1];
|
||||
dest[1] = p[3] * q[1] - p[0] * q[2] + p[1] * q[3] + p[2] * q[0];
|
||||
dest[2] = p[3] * q[2] + p[0] * q[1] - p[1] * q[0] + p[2] * q[3];
|
||||
dest[3] = p[3] * q[3] - p[0] * q[0] - p[1] * q[1] - p[2] * q[2];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -181,19 +432,22 @@ glm_quat_mulv(versor q1, versor q2, versor dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mat4(versor q, mat4 dest) {
|
||||
float w, x, y, z;
|
||||
float xx, yy, zz;
|
||||
float xy, yz, xz;
|
||||
float wx, wy, wz;
|
||||
float w, x, y, z,
|
||||
xx, yy, zz,
|
||||
xy, yz, xz,
|
||||
wx, wy, wz, norm, s;
|
||||
|
||||
w = q[0];
|
||||
x = q[1];
|
||||
y = q[2];
|
||||
z = q[3];
|
||||
norm = glm_quat_norm(q);
|
||||
s = norm > 0.0f ? 2.0f / norm : 0.0f;
|
||||
|
||||
xx = 2.0f * x * x; xy = 2.0f * x * y; wx = 2.0f * w * x;
|
||||
yy = 2.0f * y * y; yz = 2.0f * y * z; wy = 2.0f * w * y;
|
||||
zz = 2.0f * z * z; xz = 2.0f * x * z; wz = 2.0f * w * z;
|
||||
x = q[0];
|
||||
y = q[1];
|
||||
z = q[2];
|
||||
w = q[3];
|
||||
|
||||
xx = s * x * x; xy = s * x * y; wx = s * w * x;
|
||||
yy = s * y * y; yz = s * y * z; wy = s * w * y;
|
||||
zz = s * z * z; xz = s * x * z; wz = s * w * z;
|
||||
|
||||
dest[0][0] = 1.0f - yy - zz;
|
||||
dest[1][1] = 1.0f - xx - zz;
|
||||
@@ -207,8 +461,8 @@ glm_quat_mat4(versor q, mat4 dest) {
|
||||
dest[2][1] = yz - wx;
|
||||
dest[0][2] = xz - wy;
|
||||
|
||||
dest[1][3] = 0.0f;
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
@@ -216,69 +470,343 @@ glm_quat_mat4(versor q, mat4 dest) {
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat4 (transposed)
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest result matrix as transposed
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mat4t(versor q, mat4 dest) {
|
||||
float w, x, y, z,
|
||||
xx, yy, zz,
|
||||
xy, yz, xz,
|
||||
wx, wy, wz, norm, s;
|
||||
|
||||
norm = glm_quat_norm(q);
|
||||
s = norm > 0.0f ? 2.0f / norm : 0.0f;
|
||||
|
||||
x = q[0];
|
||||
y = q[1];
|
||||
z = q[2];
|
||||
w = q[3];
|
||||
|
||||
xx = s * x * x; xy = s * x * y; wx = s * w * x;
|
||||
yy = s * y * y; yz = s * y * z; wy = s * w * y;
|
||||
zz = s * z * z; xz = s * x * z; wz = s * w * z;
|
||||
|
||||
dest[0][0] = 1.0f - yy - zz;
|
||||
dest[1][1] = 1.0f - xx - zz;
|
||||
dest[2][2] = 1.0f - xx - yy;
|
||||
|
||||
dest[1][0] = xy + wz;
|
||||
dest[2][1] = yz + wx;
|
||||
dest[0][2] = xz + wy;
|
||||
|
||||
dest[0][1] = xy - wz;
|
||||
dest[1][2] = yz - wx;
|
||||
dest[2][0] = xz - wy;
|
||||
|
||||
dest[0][3] = 0.0f;
|
||||
dest[1][3] = 0.0f;
|
||||
dest[2][3] = 0.0f;
|
||||
dest[3][0] = 0.0f;
|
||||
dest[3][1] = 0.0f;
|
||||
dest[3][2] = 0.0f;
|
||||
dest[3][3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat3
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mat3(versor q, mat3 dest) {
|
||||
float w, x, y, z,
|
||||
xx, yy, zz,
|
||||
xy, yz, xz,
|
||||
wx, wy, wz, norm, s;
|
||||
|
||||
norm = glm_quat_norm(q);
|
||||
s = norm > 0.0f ? 2.0f / norm : 0.0f;
|
||||
|
||||
x = q[0];
|
||||
y = q[1];
|
||||
z = q[2];
|
||||
w = q[3];
|
||||
|
||||
xx = s * x * x; xy = s * x * y; wx = s * w * x;
|
||||
yy = s * y * y; yz = s * y * z; wy = s * w * y;
|
||||
zz = s * z * z; xz = s * x * z; wz = s * w * z;
|
||||
|
||||
dest[0][0] = 1.0f - yy - zz;
|
||||
dest[1][1] = 1.0f - xx - zz;
|
||||
dest[2][2] = 1.0f - xx - yy;
|
||||
|
||||
dest[0][1] = xy + wz;
|
||||
dest[1][2] = yz + wx;
|
||||
dest[2][0] = xz + wy;
|
||||
|
||||
dest[1][0] = xy - wz;
|
||||
dest[2][1] = yz - wx;
|
||||
dest[0][2] = xz - wy;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat3 (transposed)
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_mat3t(versor q, mat3 dest) {
|
||||
float w, x, y, z,
|
||||
xx, yy, zz,
|
||||
xy, yz, xz,
|
||||
wx, wy, wz, norm, s;
|
||||
|
||||
norm = glm_quat_norm(q);
|
||||
s = norm > 0.0f ? 2.0f / norm : 0.0f;
|
||||
|
||||
x = q[0];
|
||||
y = q[1];
|
||||
z = q[2];
|
||||
w = q[3];
|
||||
|
||||
xx = s * x * x; xy = s * x * y; wx = s * w * x;
|
||||
yy = s * y * y; yz = s * y * z; wy = s * w * y;
|
||||
zz = s * z * z; xz = s * x * z; wz = s * w * z;
|
||||
|
||||
dest[0][0] = 1.0f - yy - zz;
|
||||
dest[1][1] = 1.0f - xx - zz;
|
||||
dest[2][2] = 1.0f - xx - yy;
|
||||
|
||||
dest[1][0] = xy + wz;
|
||||
dest[2][1] = yz + wx;
|
||||
dest[0][2] = xz + wy;
|
||||
|
||||
dest[0][1] = xy - wz;
|
||||
dest[1][2] = yz - wx;
|
||||
dest[2][0] = xz - wy;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief interpolates between two quaternions
|
||||
* using linear interpolation (LERP)
|
||||
*
|
||||
* @param[in] from from
|
||||
* @param[in] to to
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_lerp(versor from, versor to, float t, versor dest) {
|
||||
glm_vec4_lerp(from, to, t, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief interpolates between two quaternions
|
||||
* using spherical linear interpolation (SLERP)
|
||||
*
|
||||
* @param[in] q from
|
||||
* @param[in] r to
|
||||
* @param[in] from from
|
||||
* @param[in] to to
|
||||
* @param[in] t amout
|
||||
* @param[out] dest result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_slerp(versor q,
|
||||
versor r,
|
||||
float t,
|
||||
versor dest) {
|
||||
/* https://en.wikipedia.org/wiki/Slerp */
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glm_quat_slerp_sse2(q, r, t, dest);
|
||||
#else
|
||||
float cosTheta, sinTheta, angle, a, b, c;
|
||||
glm_quat_slerp(versor from, versor to, float t, versor dest) {
|
||||
CGLM_ALIGN(16) vec4 q1, q2;
|
||||
float cosTheta, sinTheta, angle;
|
||||
|
||||
cosTheta = glm_quat_dot(q, r);
|
||||
if (cosTheta < 0.0f) {
|
||||
q[0] *= -1.0f;
|
||||
q[1] *= -1.0f;
|
||||
q[2] *= -1.0f;
|
||||
q[3] *= -1.0f;
|
||||
cosTheta = glm_quat_dot(from, to);
|
||||
glm_quat_copy(from, q1);
|
||||
|
||||
cosTheta = -cosTheta;
|
||||
}
|
||||
|
||||
if (fabs(cosTheta) >= 1.0f) {
|
||||
dest[0] = q[0];
|
||||
dest[1] = q[1];
|
||||
dest[2] = q[2];
|
||||
dest[3] = q[3];
|
||||
if (fabsf(cosTheta) >= 1.0f) {
|
||||
glm_quat_copy(q1, dest);
|
||||
return;
|
||||
}
|
||||
|
||||
sinTheta = sqrt(1.0f - cosTheta * cosTheta);
|
||||
if (cosTheta < 0.0f) {
|
||||
glm_vec4_negate(q1);
|
||||
cosTheta = -cosTheta;
|
||||
}
|
||||
|
||||
c = 1.0f - t;
|
||||
sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
|
||||
|
||||
/* LERP */
|
||||
/* TODO: FLT_EPSILON vs 0.001? */
|
||||
if (sinTheta < 0.001f) {
|
||||
dest[0] = c * q[0] + t * r[0];
|
||||
dest[1] = c * q[1] + t * r[1];
|
||||
dest[2] = c * q[2] + t * r[2];
|
||||
dest[3] = c * q[3] + t * r[3];
|
||||
/* LERP to avoid zero division */
|
||||
if (fabsf(sinTheta) < 0.001f) {
|
||||
glm_quat_lerp(from, to, t, dest);
|
||||
return;
|
||||
}
|
||||
|
||||
/* SLERP */
|
||||
angle = acosf(cosTheta);
|
||||
a = sinf(c * angle);
|
||||
b = sinf(t * angle);
|
||||
glm_vec4_scale(q1, sinf((1.0f - t) * angle), q1);
|
||||
glm_vec4_scale(to, sinf(t * angle), q2);
|
||||
|
||||
dest[0] = (q[0] * a + r[0] * b) / sinTheta;
|
||||
dest[1] = (q[1] * a + r[1] * b) / sinTheta;
|
||||
dest[2] = (q[2] * a + r[2] * b) / sinTheta;
|
||||
dest[3] = (q[3] * a + r[3] * b) / sinTheta;
|
||||
#endif
|
||||
glm_vec4_add(q1, q2, q1);
|
||||
glm_vec4_scale(q1, 1.0f / sinTheta, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates view matrix using quaternion as camera orientation
|
||||
*
|
||||
* @param[in] eye eye
|
||||
* @param[in] ori orientation in world space as quaternion
|
||||
* @param[out] dest view matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_look(vec3 eye, versor ori, mat4 dest) {
|
||||
/* orientation */
|
||||
glm_quat_mat4t(ori, dest);
|
||||
|
||||
/* translate */
|
||||
glm_mat4_mulv3(dest, eye, 1.0f, dest[3]);
|
||||
glm_vec3_negate(dest[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates look rotation quaternion
|
||||
*
|
||||
* @param[in] dir direction to look
|
||||
* @param[in] fwd forward vector
|
||||
* @param[in] up up vector
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_for(vec3 dir, vec3 fwd, vec3 up, versor dest) {
|
||||
CGLM_ALIGN(8) vec3 axis;
|
||||
float dot, angle;
|
||||
|
||||
dot = glm_vec3_dot(dir, fwd);
|
||||
if (fabsf(dot + 1.0f) < 0.000001f) {
|
||||
glm_quat_init(dest, up[0], up[1], up[2], GLM_PIf);
|
||||
return;
|
||||
}
|
||||
|
||||
if (fabsf(dot - 1.0f) < 0.000001f) {
|
||||
glm_quat_identity(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
angle = acosf(dot);
|
||||
glm_cross(fwd, dir, axis);
|
||||
glm_normalize(axis);
|
||||
|
||||
glm_quatv(dest, angle, axis);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates look rotation quaternion using source and
|
||||
* destination positions p suffix stands for position
|
||||
*
|
||||
* @param[in] from source point
|
||||
* @param[in] to destination point
|
||||
* @param[in] fwd forward vector
|
||||
* @param[in] up up vector
|
||||
* @param[out] dest destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_forp(vec3 from, vec3 to, vec3 fwd, vec3 up, versor dest) {
|
||||
CGLM_ALIGN(8) vec3 dir;
|
||||
glm_vec3_sub(to, from, dir);
|
||||
glm_quat_for(dir, fwd, up, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate vector using using quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[in] v vector to rotate
|
||||
* @param[out] dest rotated vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_rotatev(versor q, vec3 v, vec3 dest) {
|
||||
CGLM_ALIGN(16) versor p;
|
||||
CGLM_ALIGN(8) vec3 u, v1, v2;
|
||||
float s;
|
||||
|
||||
glm_quat_normalize_to(q, p);
|
||||
glm_quat_imag(p, u);
|
||||
s = glm_quat_real(p);
|
||||
|
||||
glm_vec3_scale(u, 2.0f * glm_vec3_dot(u, v), v1);
|
||||
glm_vec3_scale(v, s * s - glm_vec3_dot(u, u), v2);
|
||||
glm_vec3_add(v1, v2, v1);
|
||||
|
||||
glm_vec3_cross(u, v, v2);
|
||||
glm_vec3_scale(v2, 2.0f * s, v2);
|
||||
|
||||
glm_vec3_add(v1, v2, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix using quaternion
|
||||
*
|
||||
* @param[in] m existing transform matrix
|
||||
* @param[in] q quaternion
|
||||
* @param[out] dest rotated matrix/transform
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_rotate(mat4 m, versor q, mat4 dest) {
|
||||
CGLM_ALIGN_MAT mat4 rot;
|
||||
glm_quat_mat4(q, rot);
|
||||
glm_mul_rot(m, rot, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix using quaternion at pivot point
|
||||
*
|
||||
* @param[in, out] m existing transform matrix
|
||||
* @param[in] q quaternion
|
||||
* @param[out] pivot pivot
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_rotate_at(mat4 m, versor q, vec3 pivot) {
|
||||
CGLM_ALIGN(8) vec3 pivotInv;
|
||||
|
||||
glm_vec3_negate_to(pivot, pivotInv);
|
||||
|
||||
glm_translate(m, pivot);
|
||||
glm_quat_rotate(m, q, m);
|
||||
glm_translate(m, pivotInv);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate NEW transform matrix using quaternion at pivot point
|
||||
*
|
||||
* this creates rotation matrix, it assumes you don't have a matrix
|
||||
*
|
||||
* this should work faster than glm_quat_rotate_at because it reduces
|
||||
* one glm_translate.
|
||||
*
|
||||
* @param[out] m existing transform matrix
|
||||
* @param[in] q quaternion
|
||||
* @param[in] pivot pivot
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_rotate_atm(mat4 m, versor q, vec3 pivot) {
|
||||
CGLM_ALIGN(8) vec3 pivotInv;
|
||||
|
||||
glm_vec3_negate_to(pivot, pivotInv);
|
||||
|
||||
glm_translate_make(m, pivot);
|
||||
glm_quat_rotate(m, q, m);
|
||||
glm_translate(m, pivotInv);
|
||||
}
|
||||
|
||||
#endif /* cglm_quat_h */
|
||||
|
||||
41
include/cglm/simd/arm.h
Normal file
41
include/cglm/simd/arm.h
Normal file
@@ -0,0 +1,41 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_simd_arm_h
|
||||
#define cglm_simd_arm_h
|
||||
#include "intrin.h"
|
||||
#ifdef CGLM_SIMD_ARM
|
||||
|
||||
#define glmm_load(p) vld1q_f32(p)
|
||||
#define glmm_store(p, a) vst1q_f32(p, a)
|
||||
|
||||
static inline
|
||||
float
|
||||
glmm_hadd(float32x4_t v) {
|
||||
#if defined(__aarch64__)
|
||||
return vaddvq_f32(v);
|
||||
#else
|
||||
v = vaddq_f32(v, vrev64q_f32(v));
|
||||
v = vaddq_f32(v, vcombine_f32(vget_high_f32(v), vget_low_f32(v)));
|
||||
return vgetq_lane_f32(v, 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline
|
||||
float
|
||||
glmm_dot(float32x4_t a, float32x4_t b) {
|
||||
return glmm_hadd(vmulq_f32(a, b));
|
||||
}
|
||||
|
||||
static inline
|
||||
float
|
||||
glmm_norm(float32x4_t a) {
|
||||
return sqrtf(glmm_dot(a, a));
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif /* cglm_simd_arm_h */
|
||||
@@ -21,27 +21,30 @@ glm_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
|
||||
|
||||
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
|
||||
|
||||
y0 = _mm256_load_ps(m2[0]); /* h g f e d c b a */
|
||||
y1 = _mm256_load_ps(m2[2]); /* p o n m l k j i */
|
||||
y0 = glmm_load256(m2[0]); /* h g f e d c b a */
|
||||
y1 = glmm_load256(m2[2]); /* p o n m l k j i */
|
||||
|
||||
y2 = _mm256_load_ps(m1[0]); /* h g f e d c b a */
|
||||
y3 = _mm256_load_ps(m1[2]); /* p o n m l k j i */
|
||||
y2 = glmm_load256(m1[0]); /* h g f e d c b a */
|
||||
y3 = glmm_load256(m1[2]); /* p o n m l k j i */
|
||||
|
||||
y4 = _mm256_permute2f128_ps(y2, y2, 0b00000011); /* d c b a h g f e */
|
||||
y5 = _mm256_permute2f128_ps(y3, y3, 0b00000000); /* l k j i l k j i */
|
||||
/* 0x03: 0b00000011 */
|
||||
y4 = _mm256_permute2f128_ps(y2, y2, 0x03); /* d c b a h g f e */
|
||||
y5 = _mm256_permute2f128_ps(y3, y3, 0x03); /* l k j i p o n m */
|
||||
|
||||
/* f f f f a a a a */
|
||||
/* g g g g c c c c */
|
||||
/* h h h h c c c c */
|
||||
/* e e e e b b b b */
|
||||
y7 = _mm256_permute_ps(y0, 0b10101010);
|
||||
/* g g g g d d d d */
|
||||
y6 = _mm256_permutevar_ps(y0, _mm256_set_epi32(1, 1, 1, 1, 0, 0, 0, 0));
|
||||
y7 = _mm256_permutevar_ps(y0, _mm256_set_epi32(3, 3, 3, 3, 2, 2, 2, 2));
|
||||
y8 = _mm256_permutevar_ps(y0, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
|
||||
y9 = _mm256_permutevar_ps(y0, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
|
||||
|
||||
_mm256_store_ps(dest[0],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y4, y8)),
|
||||
_mm256_mul_ps(y5, y7)));
|
||||
|
||||
glmm_store256(dest[0],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
|
||||
/* n n n n i i i i */
|
||||
/* p p p p k k k k */
|
||||
@@ -52,11 +55,11 @@ glm_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
|
||||
y8 = _mm256_permutevar_ps(y1, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
|
||||
y9 = _mm256_permutevar_ps(y1, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
|
||||
|
||||
_mm256_store_ps(dest[2],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
glmm_store256(dest[2],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
@@ -21,14 +21,15 @@ glm_mat4_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
|
||||
|
||||
__m256 y0, y1, y2, y3, y4, y5, y6, y7, y8, y9;
|
||||
|
||||
y0 = _mm256_load_ps(m2[0]); /* h g f e d c b a */
|
||||
y1 = _mm256_load_ps(m2[2]); /* p o n m l k j i */
|
||||
y0 = glmm_load256(m2[0]); /* h g f e d c b a */
|
||||
y1 = glmm_load256(m2[2]); /* p o n m l k j i */
|
||||
|
||||
y2 = _mm256_load_ps(m1[0]); /* h g f e d c b a */
|
||||
y3 = _mm256_load_ps(m1[2]); /* p o n m l k j i */
|
||||
y2 = glmm_load256(m1[0]); /* h g f e d c b a */
|
||||
y3 = glmm_load256(m1[2]); /* p o n m l k j i */
|
||||
|
||||
y4 = _mm256_permute2f128_ps(y2, y2, 0b00000011); /* d c b a h g f e */
|
||||
y5 = _mm256_permute2f128_ps(y3, y3, 0b00000011); /* l k j i p o n m */
|
||||
/* 0x03: 0b00000011 */
|
||||
y4 = _mm256_permute2f128_ps(y2, y2, 0x03); /* d c b a h g f e */
|
||||
y5 = _mm256_permute2f128_ps(y3, y3, 0x03); /* l k j i p o n m */
|
||||
|
||||
/* f f f f a a a a */
|
||||
/* h h h h c c c c */
|
||||
@@ -39,11 +40,11 @@ glm_mat4_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
|
||||
y8 = _mm256_permutevar_ps(y0, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
|
||||
y9 = _mm256_permutevar_ps(y0, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
|
||||
|
||||
_mm256_store_ps(dest[0],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
glmm_store256(dest[0],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
|
||||
/* n n n n i i i i */
|
||||
/* p p p p k k k k */
|
||||
@@ -54,11 +55,11 @@ glm_mat4_mul_avx(mat4 m1, mat4 m2, mat4 dest) {
|
||||
y8 = _mm256_permutevar_ps(y1, _mm256_set_epi32(0, 0, 0, 0, 1, 1, 1, 1));
|
||||
y9 = _mm256_permutevar_ps(y1, _mm256_set_epi32(2, 2, 2, 2, 3, 3, 3, 3));
|
||||
|
||||
_mm256_store_ps(dest[2],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
glmm_store256(dest[2],
|
||||
_mm256_add_ps(_mm256_add_ps(_mm256_mul_ps(y2, y6),
|
||||
_mm256_mul_ps(y3, y7)),
|
||||
_mm256_add_ps(_mm256_mul_ps(y4, y8),
|
||||
_mm256_mul_ps(y5, y9))));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
@@ -8,45 +8,83 @@
|
||||
#ifndef cglm_intrin_h
|
||||
#define cglm_intrin_h
|
||||
|
||||
#if defined( _WIN32 )
|
||||
#if defined( _MSC_VER )
|
||||
# if (defined(_M_AMD64) || defined(_M_X64)) || _M_IX86_FP == 2
|
||||
# define __SSE2__
|
||||
# ifndef __SSE2__
|
||||
# define __SSE2__
|
||||
# endif
|
||||
# elif _M_IX86_FP == 1
|
||||
# define __SSE__
|
||||
# ifndef __SSE__
|
||||
# define __SSE__
|
||||
# endif
|
||||
# endif
|
||||
/* do not use alignment for older visual studio versions */
|
||||
# if _MSC_VER < 1913 /* Visual Studio 2017 version 15.6 */
|
||||
# define CGLM_ALL_UNALIGNED
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
# include <xmmintrin.h>
|
||||
# include <emmintrin.h>
|
||||
|
||||
/* float */
|
||||
# define _mm_shuffle1_ps(a, z, y, x, w) \
|
||||
_mm_shuffle_ps(a, a, _MM_SHUFFLE(z, y, x, w))
|
||||
|
||||
# define _mm_shuffle1_ps1(a, x) \
|
||||
_mm_shuffle_ps(a, a, _MM_SHUFFLE(x, x, x, x))
|
||||
|
||||
# define _mm_shuffle2_ps(a, b, z0, y0, x0, w0, z1, y1, x1, w1) \
|
||||
_mm_shuffle1_ps(_mm_shuffle_ps(a, b, _MM_SHUFFLE(z0, y0, x0, w0)), \
|
||||
z1, y1, x1, w1)
|
||||
# define CGLM_SSE_FP 1
|
||||
# ifndef CGLM_SIMD_x86
|
||||
# define CGLM_SIMD_x86
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* x86, x64 */
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
# define CGLM_SSE_FP 1
|
||||
#if defined(__SSE3__)
|
||||
# include <x86intrin.h>
|
||||
# ifndef CGLM_SIMD_x86
|
||||
# define CGLM_SIMD_x86
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(__SSE4_1__)
|
||||
# include <smmintrin.h>
|
||||
# ifndef CGLM_SIMD_x86
|
||||
# define CGLM_SIMD_x86
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(__SSE4_2__)
|
||||
# include <nmmintrin.h>
|
||||
# ifndef CGLM_SIMD_x86
|
||||
# define CGLM_SIMD_x86
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#ifdef __AVX__
|
||||
# include <immintrin.h>
|
||||
# define CGLM_AVX_FP 1
|
||||
# ifndef CGLM_SIMD_x86
|
||||
# define CGLM_SIMD_x86
|
||||
# endif
|
||||
#endif
|
||||
|
||||
/* ARM Neon */
|
||||
#if defined(__ARM_NEON) && defined(__ARM_NEON_FP)
|
||||
#if defined(__ARM_NEON)
|
||||
# include <arm_neon.h>
|
||||
# define CGLM_NEON_FP 1
|
||||
#else
|
||||
# undef CGLM_NEON_FP
|
||||
# if defined(__ARM_NEON_FP)
|
||||
# define CGLM_NEON_FP 1
|
||||
# ifndef CGLM_SIMD_ARM
|
||||
# define CGLM_SIMD_ARM
|
||||
# endif
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(CGLM_SIMD_x86) || defined(CGLM_NEON_FP)
|
||||
# ifndef CGLM_SIMD
|
||||
# define CGLM_SIMD
|
||||
# endif
|
||||
#endif
|
||||
|
||||
#if defined(CGLM_SIMD_x86)
|
||||
# include "x86.h"
|
||||
#endif
|
||||
|
||||
#if defined(CGLM_SIMD_ARM)
|
||||
# include "arm.h"
|
||||
#endif
|
||||
|
||||
#endif /* cglm_intrin_h */
|
||||
|
||||
@@ -18,35 +18,67 @@ glm_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
|
||||
/* D = R * L (Column-Major) */
|
||||
__m128 l0, l1, l2, l3, r;
|
||||
|
||||
l0 = _mm_load_ps(m1[0]);
|
||||
l1 = _mm_load_ps(m1[1]);
|
||||
l2 = _mm_load_ps(m1[2]);
|
||||
l3 = _mm_load_ps(m1[3]);
|
||||
l0 = glmm_load(m1[0]);
|
||||
l1 = glmm_load(m1[1]);
|
||||
l2 = glmm_load(m1[2]);
|
||||
l3 = glmm_load(m1[3]);
|
||||
|
||||
r = _mm_load_ps(m2[0]);
|
||||
_mm_store_ps(dest[0],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2)));
|
||||
r = glmm_load(m2[0]);
|
||||
glmm_store(dest[0],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
|
||||
|
||||
r = _mm_load_ps(m2[1]);
|
||||
_mm_store_ps(dest[1],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2)));
|
||||
r = glmm_load(m2[1]);
|
||||
glmm_store(dest[1],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
|
||||
|
||||
r = _mm_load_ps(m2[2]);
|
||||
_mm_store_ps(dest[2],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2)));
|
||||
r = glmm_load(m2[2]);
|
||||
glmm_store(dest[2],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
|
||||
|
||||
r = _mm_load_ps(m2[3]);
|
||||
_mm_store_ps(dest[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
|
||||
r = glmm_load(m2[3]);
|
||||
glmm_store(dest[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mul_rot_sse2(mat4 m1, mat4 m2, mat4 dest) {
|
||||
/* D = R * L (Column-Major) */
|
||||
__m128 l0, l1, l2, l3, r;
|
||||
|
||||
l0 = glmm_load(m1[0]);
|
||||
l1 = glmm_load(m1[1]);
|
||||
l2 = glmm_load(m1[2]);
|
||||
l3 = glmm_load(m1[3]);
|
||||
|
||||
r = glmm_load(m2[0]);
|
||||
glmm_store(dest[0],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
|
||||
|
||||
r = glmm_load(m2[1]);
|
||||
glmm_store(dest[1],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
|
||||
|
||||
r = glmm_load(m2[2]);
|
||||
glmm_store(dest[2],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 2), l2)));
|
||||
|
||||
glmm_store(dest[3], l3);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
@@ -54,25 +86,25 @@ void
|
||||
glm_inv_tr_sse2(mat4 mat) {
|
||||
__m128 r0, r1, r2, r3, x0, x1;
|
||||
|
||||
r0 = _mm_load_ps(mat[0]);
|
||||
r1 = _mm_load_ps(mat[1]);
|
||||
r2 = _mm_load_ps(mat[2]);
|
||||
r3 = _mm_load_ps(mat[3]);
|
||||
x1 = _mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f);
|
||||
r0 = glmm_load(mat[0]);
|
||||
r1 = glmm_load(mat[1]);
|
||||
r2 = glmm_load(mat[2]);
|
||||
r3 = glmm_load(mat[3]);
|
||||
x1 = _mm_set_ps(1.0f, 0.0f, 0.0f, 0.0f);
|
||||
|
||||
_MM_TRANSPOSE4_PS(r0, r1, r2, x1);
|
||||
|
||||
x0 = _mm_add_ps(_mm_mul_ps(r0, _mm_shuffle1_ps(r3, 0, 0, 0, 0)),
|
||||
_mm_mul_ps(r1, _mm_shuffle1_ps(r3, 1, 1, 1, 1)));
|
||||
x0 = _mm_add_ps(x0, _mm_mul_ps(r2, _mm_shuffle1_ps(r3, 2, 2, 2, 2)));
|
||||
x0 = _mm_add_ps(_mm_mul_ps(r0, glmm_shuff1(r3, 0, 0, 0, 0)),
|
||||
_mm_mul_ps(r1, glmm_shuff1(r3, 1, 1, 1, 1)));
|
||||
x0 = _mm_add_ps(x0, _mm_mul_ps(r2, glmm_shuff1(r3, 2, 2, 2, 2)));
|
||||
x0 = _mm_xor_ps(x0, _mm_set1_ps(-0.f));
|
||||
|
||||
x0 = _mm_add_ps(x0, x1);
|
||||
|
||||
_mm_store_ps(mat[0], r0);
|
||||
_mm_store_ps(mat[1], r1);
|
||||
_mm_store_ps(mat[2], r2);
|
||||
_mm_store_ps(mat[3], x0);
|
||||
glmm_store(mat[0], r0);
|
||||
glmm_store(mat[1], r1);
|
||||
glmm_store(mat[2], r2);
|
||||
glmm_store(mat[3], x0);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
@@ -27,27 +27,25 @@ glm_mat3_mul_sse2(mat3 m1, mat3 m2, mat3 dest) {
|
||||
r1 = _mm_loadu_ps(&m2[1][1]);
|
||||
r2 = _mm_set1_ps(m2[2][2]);
|
||||
|
||||
x1 = _mm_shuffle2_ps(l0, l1, 1, 0, 3, 3, 0, 3, 2, 0);
|
||||
x2 = _mm_shuffle2_ps(l1, l2, 0, 0, 3, 2, 0, 2, 1, 0);
|
||||
x1 = glmm_shuff2(l0, l1, 1, 0, 3, 3, 0, 3, 2, 0);
|
||||
x2 = glmm_shuff2(l1, l2, 0, 0, 3, 2, 0, 2, 1, 0);
|
||||
|
||||
x0 = _mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps(l0, 0, 2, 1, 0),
|
||||
_mm_shuffle1_ps(r0, 3, 0, 0, 0)),
|
||||
_mm_mul_ps(x1,
|
||||
_mm_shuffle2_ps(r0, r1, 0, 0, 1, 1, 2, 0, 0, 0)));
|
||||
x0 = _mm_add_ps(_mm_mul_ps(glmm_shuff1(l0, 0, 2, 1, 0),
|
||||
glmm_shuff1(r0, 3, 0, 0, 0)),
|
||||
_mm_mul_ps(x1, glmm_shuff2(r0, r1, 0, 0, 1, 1, 2, 0, 0, 0)));
|
||||
|
||||
x0 = _mm_add_ps(x0,
|
||||
_mm_mul_ps(x2,
|
||||
_mm_shuffle2_ps(r0, r1, 1, 1, 2, 2, 2, 0, 0, 0)));
|
||||
_mm_mul_ps(x2, glmm_shuff2(r0, r1, 1, 1, 2, 2, 2, 0, 0, 0)));
|
||||
|
||||
_mm_storeu_ps(dest[0], x0);
|
||||
|
||||
x0 = _mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps(l0, 1, 0, 2, 1),
|
||||
x0 = _mm_add_ps(_mm_mul_ps(glmm_shuff1(l0, 1, 0, 2, 1),
|
||||
_mm_shuffle_ps(r0, r1, _MM_SHUFFLE(2, 2, 3, 3))),
|
||||
_mm_mul_ps(_mm_shuffle1_ps(x1, 1, 0, 2, 1),
|
||||
_mm_shuffle1_ps(r1, 3, 3, 0, 0)));
|
||||
_mm_mul_ps(glmm_shuff1(x1, 1, 0, 2, 1),
|
||||
glmm_shuff1(r1, 3, 3, 0, 0)));
|
||||
|
||||
x0 = _mm_add_ps(x0,
|
||||
_mm_mul_ps(_mm_shuffle1_ps(x2, 1, 0, 2, 1),
|
||||
_mm_mul_ps(glmm_shuff1(x2, 1, 0, 2, 1),
|
||||
_mm_shuffle_ps(r1, r2, _MM_SHUFFLE(0, 0, 1, 1))));
|
||||
|
||||
_mm_storeu_ps(&dest[1][1], x0);
|
||||
|
||||
@@ -16,32 +16,32 @@
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_scale_sse2(mat4 m, float s){
|
||||
glm_mat4_scale_sse2(mat4 m, float s) {
|
||||
__m128 x0;
|
||||
x0 = _mm_set1_ps(s);
|
||||
|
||||
_mm_store_ps(m[0], _mm_mul_ps(_mm_load_ps(m[0]), x0));
|
||||
_mm_store_ps(m[1], _mm_mul_ps(_mm_load_ps(m[1]), x0));
|
||||
_mm_store_ps(m[2], _mm_mul_ps(_mm_load_ps(m[2]), x0));
|
||||
_mm_store_ps(m[3], _mm_mul_ps(_mm_load_ps(m[3]), x0));
|
||||
glmm_store(m[0], _mm_mul_ps(glmm_load(m[0]), x0));
|
||||
glmm_store(m[1], _mm_mul_ps(glmm_load(m[1]), x0));
|
||||
glmm_store(m[2], _mm_mul_ps(glmm_load(m[2]), x0));
|
||||
glmm_store(m[3], _mm_mul_ps(glmm_load(m[3]), x0));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_mat4_transp_sse2(mat4 m, mat4 dest){
|
||||
glm_mat4_transp_sse2(mat4 m, mat4 dest) {
|
||||
__m128 r0, r1, r2, r3;
|
||||
|
||||
r0 = _mm_load_ps(m[0]);
|
||||
r1 = _mm_load_ps(m[1]);
|
||||
r2 = _mm_load_ps(m[2]);
|
||||
r3 = _mm_load_ps(m[3]);
|
||||
r0 = glmm_load(m[0]);
|
||||
r1 = glmm_load(m[1]);
|
||||
r2 = glmm_load(m[2]);
|
||||
r3 = glmm_load(m[3]);
|
||||
|
||||
_MM_TRANSPOSE4_PS(r0, r1, r2, r3);
|
||||
|
||||
_mm_store_ps(dest[0], r0);
|
||||
_mm_store_ps(dest[1], r1);
|
||||
_mm_store_ps(dest[2], r2);
|
||||
_mm_store_ps(dest[3], r3);
|
||||
glmm_store(dest[0], r0);
|
||||
glmm_store(dest[1], r1);
|
||||
glmm_store(dest[2], r2);
|
||||
glmm_store(dest[3], r3);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
@@ -51,36 +51,36 @@ glm_mat4_mul_sse2(mat4 m1, mat4 m2, mat4 dest) {
|
||||
|
||||
__m128 l0, l1, l2, l3, r;
|
||||
|
||||
l0 = _mm_load_ps(m1[0]);
|
||||
l1 = _mm_load_ps(m1[1]);
|
||||
l2 = _mm_load_ps(m1[2]);
|
||||
l3 = _mm_load_ps(m1[3]);
|
||||
l0 = glmm_load(m1[0]);
|
||||
l1 = glmm_load(m1[1]);
|
||||
l2 = glmm_load(m1[2]);
|
||||
l3 = glmm_load(m1[3]);
|
||||
|
||||
r = _mm_load_ps(m2[0]);
|
||||
_mm_store_ps(dest[0],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
|
||||
r = _mm_load_ps(m2[1]);
|
||||
_mm_store_ps(dest[1],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
|
||||
r = _mm_load_ps(m2[2]);
|
||||
_mm_store_ps(dest[2],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
|
||||
r = glmm_load(m2[0]);
|
||||
glmm_store(dest[0],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
|
||||
r = glmm_load(m2[1]);
|
||||
glmm_store(dest[1],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
|
||||
r = glmm_load(m2[2]);
|
||||
glmm_store(dest[2],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
|
||||
|
||||
r = _mm_load_ps(m2[3]);
|
||||
_mm_store_ps(dest[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 0), l0),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(_mm_shuffle1_ps1(r, 2), l2),
|
||||
_mm_mul_ps(_mm_shuffle1_ps1(r, 3), l3))));
|
||||
r = glmm_load(m2[3]);
|
||||
glmm_store(dest[3],
|
||||
_mm_add_ps(_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 0), l0),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 1), l1)),
|
||||
_mm_add_ps(_mm_mul_ps(glmm_shuff1x(r, 2), l2),
|
||||
_mm_mul_ps(glmm_shuff1x(r, 3), l3))));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
@@ -88,18 +88,14 @@ void
|
||||
glm_mat4_mulv_sse2(mat4 m, vec4 v, vec4 dest) {
|
||||
__m128 x0, x1, x2;
|
||||
|
||||
x0 = _mm_load_ps(v);
|
||||
x1 = _mm_add_ps(_mm_mul_ps(_mm_load_ps(m[0]),
|
||||
_mm_shuffle1_ps1(x0, 0)),
|
||||
_mm_mul_ps(_mm_load_ps(m[1]),
|
||||
_mm_shuffle1_ps1(x0, 1)));
|
||||
x0 = glmm_load(v);
|
||||
x1 = _mm_add_ps(_mm_mul_ps(glmm_load(m[0]), glmm_shuff1x(x0, 0)),
|
||||
_mm_mul_ps(glmm_load(m[1]), glmm_shuff1x(x0, 1)));
|
||||
|
||||
x2 = _mm_add_ps(_mm_mul_ps(_mm_load_ps(m[2]),
|
||||
_mm_shuffle1_ps1(x0, 2)),
|
||||
_mm_mul_ps(_mm_load_ps(m[3]),
|
||||
_mm_shuffle1_ps1(x0, 3)));
|
||||
x2 = _mm_add_ps(_mm_mul_ps(glmm_load(m[2]), glmm_shuff1x(x0, 2)),
|
||||
_mm_mul_ps(glmm_load(m[3]), glmm_shuff1x(x0, 3)));
|
||||
|
||||
_mm_store_ps(dest, _mm_add_ps(x1, x2));
|
||||
glmm_store(dest, _mm_add_ps(x1, x2));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
@@ -108,10 +104,10 @@ glm_mat4_det_sse2(mat4 mat) {
|
||||
__m128 r0, r1, r2, r3, x0, x1, x2;
|
||||
|
||||
/* 127 <- 0, [square] det(A) = det(At) */
|
||||
r0 = _mm_load_ps(mat[0]); /* d c b a */
|
||||
r1 = _mm_load_ps(mat[1]); /* h g f e */
|
||||
r2 = _mm_load_ps(mat[2]); /* l k j i */
|
||||
r3 = _mm_load_ps(mat[3]); /* p o n m */
|
||||
r0 = glmm_load(mat[0]); /* d c b a */
|
||||
r1 = glmm_load(mat[1]); /* h g f e */
|
||||
r2 = glmm_load(mat[2]); /* l k j i */
|
||||
r3 = glmm_load(mat[3]); /* p o n m */
|
||||
|
||||
/*
|
||||
t[1] = j * p - n * l;
|
||||
@@ -119,20 +115,20 @@ glm_mat4_det_sse2(mat4 mat) {
|
||||
t[3] = i * p - m * l;
|
||||
t[4] = i * o - m * k;
|
||||
*/
|
||||
x0 = _mm_sub_ps(_mm_mul_ps(_mm_shuffle1_ps(r2, 0, 0, 1, 1),
|
||||
_mm_shuffle1_ps(r3, 2, 3, 2, 3)),
|
||||
_mm_mul_ps(_mm_shuffle1_ps(r3, 0, 0, 1, 1),
|
||||
_mm_shuffle1_ps(r2, 2, 3, 2, 3)));
|
||||
x0 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r2, 0, 0, 1, 1),
|
||||
glmm_shuff1(r3, 2, 3, 2, 3)),
|
||||
_mm_mul_ps(glmm_shuff1(r3, 0, 0, 1, 1),
|
||||
glmm_shuff1(r2, 2, 3, 2, 3)));
|
||||
/*
|
||||
t[0] = k * p - o * l;
|
||||
t[0] = k * p - o * l;
|
||||
t[5] = i * n - m * j;
|
||||
t[5] = i * n - m * j;
|
||||
*/
|
||||
x1 = _mm_sub_ps(_mm_mul_ps(_mm_shuffle1_ps(r2, 0, 0, 2, 2),
|
||||
_mm_shuffle1_ps(r3, 1, 1, 3, 3)),
|
||||
_mm_mul_ps(_mm_shuffle1_ps(r3, 0, 0, 2, 2),
|
||||
_mm_shuffle1_ps(r2, 1, 1, 3, 3)));
|
||||
x1 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r2, 0, 0, 2, 2),
|
||||
glmm_shuff1(r3, 1, 1, 3, 3)),
|
||||
_mm_mul_ps(glmm_shuff1(r3, 0, 0, 2, 2),
|
||||
glmm_shuff1(r2, 1, 1, 3, 3)));
|
||||
|
||||
/*
|
||||
a * (f * t[0] - g * t[1] + h * t[2])
|
||||
@@ -140,19 +136,19 @@ glm_mat4_det_sse2(mat4 mat) {
|
||||
+ c * (e * t[1] - f * t[3] + h * t[5])
|
||||
- d * (e * t[2] - f * t[4] + g * t[5])
|
||||
*/
|
||||
x2 = _mm_sub_ps(_mm_mul_ps(_mm_shuffle1_ps(r1, 0, 0, 0, 1),
|
||||
x2 = _mm_sub_ps(_mm_mul_ps(glmm_shuff1(r1, 0, 0, 0, 1),
|
||||
_mm_shuffle_ps(x1, x0, _MM_SHUFFLE(1, 0, 0, 0))),
|
||||
_mm_mul_ps(_mm_shuffle1_ps(r1, 1, 1, 2, 2),
|
||||
_mm_shuffle1_ps(x0, 3, 2, 2, 0)));
|
||||
_mm_mul_ps(glmm_shuff1(r1, 1, 1, 2, 2),
|
||||
glmm_shuff1(x0, 3, 2, 2, 0)));
|
||||
|
||||
x2 = _mm_add_ps(x2,
|
||||
_mm_mul_ps(_mm_shuffle1_ps(r1, 2, 3, 3, 3),
|
||||
_mm_mul_ps(glmm_shuff1(r1, 2, 3, 3, 3),
|
||||
_mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 2, 3, 1))));
|
||||
x2 = _mm_xor_ps(x2, _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
|
||||
|
||||
x0 = _mm_mul_ps(r0, x2);
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3));
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 3, 3, 1));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 3, 3, 1));
|
||||
|
||||
return _mm_cvtss_f32(x0);
|
||||
}
|
||||
@@ -166,14 +162,14 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
|
||||
x0, x1, x2, x3, x4, x5, x6, x7;
|
||||
|
||||
/* 127 <- 0 */
|
||||
r0 = _mm_load_ps(mat[0]); /* d c b a */
|
||||
r1 = _mm_load_ps(mat[1]); /* h g f e */
|
||||
r2 = _mm_load_ps(mat[2]); /* l k j i */
|
||||
r3 = _mm_load_ps(mat[3]); /* p o n m */
|
||||
r0 = glmm_load(mat[0]); /* d c b a */
|
||||
r1 = glmm_load(mat[1]); /* h g f e */
|
||||
r2 = glmm_load(mat[2]); /* l k j i */
|
||||
r3 = glmm_load(mat[3]); /* p o n m */
|
||||
|
||||
x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */
|
||||
x1 = _mm_shuffle1_ps(x0, 1, 3, 3, 3); /* l p p p */
|
||||
x2 = _mm_shuffle1_ps(x0, 0, 2, 2, 2); /* k o o o */
|
||||
x1 = glmm_shuff1(x0, 1, 3, 3, 3); /* l p p p */
|
||||
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
|
||||
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
|
||||
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
|
||||
|
||||
@@ -184,7 +180,7 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
|
||||
t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0));
|
||||
|
||||
x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */
|
||||
x4 = _mm_shuffle1_ps(x4, 0, 2, 2, 2); /* j n n n */
|
||||
x4 = glmm_shuff1(x4, 0, 2, 2, 2); /* j n n n */
|
||||
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
|
||||
|
||||
/* t1[1] = j * p - n * l;
|
||||
@@ -200,7 +196,7 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
|
||||
t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3));
|
||||
|
||||
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
|
||||
x7 = _mm_shuffle2_ps(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
|
||||
x7 = glmm_shuff2(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
|
||||
|
||||
/* t1[3] = i * p - m * l;
|
||||
t1[3] = i * p - m * l;
|
||||
@@ -220,10 +216,10 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
|
||||
t3[5] = e * j - i * f; */
|
||||
t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5));
|
||||
|
||||
x0 = _mm_shuffle2_ps(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
|
||||
x1 = _mm_shuffle2_ps(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
|
||||
x2 = _mm_shuffle2_ps(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
|
||||
x3 = _mm_shuffle2_ps(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
|
||||
x0 = glmm_shuff2(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
|
||||
x1 = glmm_shuff2(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
|
||||
x2 = glmm_shuff2(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
|
||||
x3 = glmm_shuff2(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
|
||||
|
||||
/*
|
||||
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
|
||||
@@ -271,14 +267,14 @@ glm_mat4_inv_fast_sse2(mat4 mat, mat4 dest) {
|
||||
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
|
||||
|
||||
x0 = _mm_mul_ps(x0, r0);
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3));
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 0, 0, 1));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
|
||||
x0 = _mm_rcp_ps(x0);
|
||||
|
||||
_mm_store_ps(dest[0], _mm_mul_ps(v0, x0));
|
||||
_mm_store_ps(dest[1], _mm_mul_ps(v1, x0));
|
||||
_mm_store_ps(dest[2], _mm_mul_ps(v2, x0));
|
||||
_mm_store_ps(dest[3], _mm_mul_ps(v3, x0));
|
||||
glmm_store(dest[0], _mm_mul_ps(v0, x0));
|
||||
glmm_store(dest[1], _mm_mul_ps(v1, x0));
|
||||
glmm_store(dest[2], _mm_mul_ps(v2, x0));
|
||||
glmm_store(dest[3], _mm_mul_ps(v3, x0));
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
@@ -290,14 +286,14 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
|
||||
x0, x1, x2, x3, x4, x5, x6, x7;
|
||||
|
||||
/* 127 <- 0 */
|
||||
r0 = _mm_load_ps(mat[0]); /* d c b a */
|
||||
r1 = _mm_load_ps(mat[1]); /* h g f e */
|
||||
r2 = _mm_load_ps(mat[2]); /* l k j i */
|
||||
r3 = _mm_load_ps(mat[3]); /* p o n m */
|
||||
r0 = glmm_load(mat[0]); /* d c b a */
|
||||
r1 = glmm_load(mat[1]); /* h g f e */
|
||||
r2 = glmm_load(mat[2]); /* l k j i */
|
||||
r3 = glmm_load(mat[3]); /* p o n m */
|
||||
|
||||
x0 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(3, 2, 3, 2)); /* p o l k */
|
||||
x1 = _mm_shuffle1_ps(x0, 1, 3, 3, 3); /* l p p p */
|
||||
x2 = _mm_shuffle1_ps(x0, 0, 2, 2, 2); /* k o o o */
|
||||
x1 = glmm_shuff1(x0, 1, 3, 3, 3); /* l p p p */
|
||||
x2 = glmm_shuff1(x0, 0, 2, 2, 2); /* k o o o */
|
||||
x0 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(3, 3, 3, 3)); /* h h l l */
|
||||
x3 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(2, 2, 2, 2)); /* g g k k */
|
||||
|
||||
@@ -308,7 +304,7 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
|
||||
t0 = _mm_sub_ps(_mm_mul_ps(x3, x1), _mm_mul_ps(x2, x0));
|
||||
|
||||
x4 = _mm_shuffle_ps(r2, r3, _MM_SHUFFLE(2, 1, 2, 1)); /* o n k j */
|
||||
x4 = _mm_shuffle1_ps(x4, 0, 2, 2, 2); /* j n n n */
|
||||
x4 = glmm_shuff1(x4, 0, 2, 2, 2); /* j n n n */
|
||||
x5 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(1, 1, 1, 1)); /* f f j j */
|
||||
|
||||
/* t1[1] = j * p - n * l;
|
||||
@@ -324,7 +320,7 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
|
||||
t2 = _mm_sub_ps(_mm_mul_ps(x5, x2), _mm_mul_ps(x4, x3));
|
||||
|
||||
x6 = _mm_shuffle_ps(r2, r1, _MM_SHUFFLE(0, 0, 0, 0)); /* e e i i */
|
||||
x7 = _mm_shuffle2_ps(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
|
||||
x7 = glmm_shuff2(r3, r2, 0, 0, 0, 0, 2, 0, 0, 0); /* i m m m */
|
||||
|
||||
/* t1[3] = i * p - m * l;
|
||||
t1[3] = i * p - m * l;
|
||||
@@ -344,10 +340,10 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
|
||||
t3[5] = e * j - i * f; */
|
||||
t5 = _mm_sub_ps(_mm_mul_ps(x6, x4), _mm_mul_ps(x7, x5));
|
||||
|
||||
x0 = _mm_shuffle2_ps(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
|
||||
x1 = _mm_shuffle2_ps(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
|
||||
x2 = _mm_shuffle2_ps(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
|
||||
x3 = _mm_shuffle2_ps(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
|
||||
x0 = glmm_shuff2(r1, r0, 0, 0, 0, 0, 2, 2, 2, 0); /* a a a e */
|
||||
x1 = glmm_shuff2(r1, r0, 1, 1, 1, 1, 2, 2, 2, 0); /* b b b f */
|
||||
x2 = glmm_shuff2(r1, r0, 2, 2, 2, 2, 2, 2, 2, 0); /* c c c g */
|
||||
x3 = glmm_shuff2(r1, r0, 3, 3, 3, 3, 2, 2, 2, 0); /* d d d h */
|
||||
|
||||
/*
|
||||
dest[0][0] = f * t1[0] - g * t1[1] + h * t1[2];
|
||||
@@ -395,14 +391,14 @@ glm_mat4_inv_sse2(mat4 mat, mat4 dest) {
|
||||
x0 = _mm_shuffle_ps(x0, x1, _MM_SHUFFLE(2, 0, 2, 0));
|
||||
|
||||
x0 = _mm_mul_ps(x0, r0);
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 0, 1, 2, 3));
|
||||
x0 = _mm_add_ps(x0, _mm_shuffle1_ps(x0, 1, 0, 0, 1));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 2, 3));
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 0, 1));
|
||||
x0 = _mm_div_ps(_mm_set1_ps(1.0f), x0);
|
||||
|
||||
_mm_store_ps(dest[0], _mm_mul_ps(v0, x0));
|
||||
_mm_store_ps(dest[1], _mm_mul_ps(v1, x0));
|
||||
_mm_store_ps(dest[2], _mm_mul_ps(v2, x0));
|
||||
_mm_store_ps(dest[3], _mm_mul_ps(v3, x0));
|
||||
glmm_store(dest[0], _mm_mul_ps(v0, x0));
|
||||
glmm_store(dest[1], _mm_mul_ps(v1, x0));
|
||||
glmm_store(dest[2], _mm_mul_ps(v2, x0));
|
||||
glmm_store(dest[3], _mm_mul_ps(v3, x0));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
@@ -14,56 +14,33 @@
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quat_slerp_sse2(versor q,
|
||||
versor r,
|
||||
float t,
|
||||
versor dest) {
|
||||
/* https://en.wikipedia.org/wiki/Slerp */
|
||||
float cosTheta, sinTheta, angle, a, b, c;
|
||||
glm_quat_mul_sse2(versor p, versor q, versor dest) {
|
||||
/*
|
||||
+ (a1 b2 + b1 a2 + c1 d2 − d1 c2)i
|
||||
+ (a1 c2 − b1 d2 + c1 a2 + d1 b2)j
|
||||
+ (a1 d2 + b1 c2 − c1 b2 + d1 a2)k
|
||||
a1 a2 − b1 b2 − c1 c2 − d1 d2
|
||||
*/
|
||||
|
||||
__m128 xmm_q;
|
||||
__m128 xp, xq, x0, r;
|
||||
|
||||
xmm_q = _mm_load_ps(q);
|
||||
xp = glmm_load(p); /* 3 2 1 0 */
|
||||
xq = glmm_load(q);
|
||||
|
||||
cosTheta = glm_vec4_dot(q, r);
|
||||
if (cosTheta < 0.0f) {
|
||||
_mm_store_ps(q,
|
||||
_mm_xor_ps(xmm_q,
|
||||
_mm_set1_ps(-0.f))) ;
|
||||
r = _mm_mul_ps(glmm_shuff1x(xp, 3), xq);
|
||||
|
||||
cosTheta = -cosTheta;
|
||||
}
|
||||
x0 = _mm_xor_ps(glmm_shuff1x(xp, 0), _mm_set_ps(-0.f, 0.f, -0.f, 0.f));
|
||||
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 0, 1, 2, 3)));
|
||||
|
||||
if (cosTheta >= 1.0f) {
|
||||
_mm_store_ps(dest, xmm_q);
|
||||
return;
|
||||
}
|
||||
x0 = _mm_xor_ps(glmm_shuff1x(xp, 1), _mm_set_ps(-0.f, -0.f, 0.f, 0.f));
|
||||
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 1, 0, 3, 2)));
|
||||
|
||||
sinTheta = sqrtf(1.0f - cosTheta * cosTheta);
|
||||
x0 = _mm_xor_ps(glmm_shuff1x(xp, 2), _mm_set_ps(-0.f, 0.f, 0.f, -0.f));
|
||||
r = _mm_add_ps(r, _mm_mul_ps(x0, glmm_shuff1(xq, 2, 3, 0, 1)));
|
||||
|
||||
c = 1.0f - t;
|
||||
|
||||
/* LERP */
|
||||
if (sinTheta < 0.001f) {
|
||||
_mm_store_ps(dest, _mm_add_ps(_mm_mul_ps(_mm_set1_ps(c),
|
||||
xmm_q),
|
||||
_mm_mul_ps(_mm_set1_ps(t),
|
||||
_mm_load_ps(r))));
|
||||
return;
|
||||
}
|
||||
|
||||
/* SLERP */
|
||||
angle = acosf(cosTheta);
|
||||
a = sinf(c * angle);
|
||||
b = sinf(t * angle);
|
||||
|
||||
_mm_store_ps(dest,
|
||||
_mm_div_ps(_mm_add_ps(_mm_mul_ps(_mm_set1_ps(a),
|
||||
xmm_q),
|
||||
_mm_mul_ps(_mm_set1_ps(b),
|
||||
_mm_load_ps(r))),
|
||||
_mm_set1_ps(sinTheta)));
|
||||
glmm_store(dest, r);
|
||||
}
|
||||
|
||||
|
||||
#endif
|
||||
#endif /* cglm_quat_simd_h */
|
||||
|
||||
136
include/cglm/simd/x86.h
Normal file
136
include/cglm/simd/x86.h
Normal file
@@ -0,0 +1,136 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_simd_x86_h
|
||||
#define cglm_simd_x86_h
|
||||
#include "intrin.h"
|
||||
#ifdef CGLM_SIMD_x86
|
||||
|
||||
#ifdef CGLM_ALL_UNALIGNED
|
||||
# define glmm_load(p) _mm_loadu_ps(p)
|
||||
# define glmm_store(p, a) _mm_storeu_ps(p, a)
|
||||
#else
|
||||
# define glmm_load(p) _mm_load_ps(p)
|
||||
# define glmm_store(p, a) _mm_store_ps(p, a)
|
||||
#endif
|
||||
|
||||
#ifdef CGLM_USE_INT_DOMAIN
|
||||
# define glmm_shuff1(xmm, z, y, x, w) \
|
||||
_mm_castsi128_ps(_mm_shuffle_epi32(_mm_castps_si128(xmm), \
|
||||
_MM_SHUFFLE(z, y, x, w)))
|
||||
#else
|
||||
# define glmm_shuff1(xmm, z, y, x, w) \
|
||||
_mm_shuffle_ps(xmm, xmm, _MM_SHUFFLE(z, y, x, w))
|
||||
#endif
|
||||
|
||||
#define glmm_shuff1x(xmm, x) glmm_shuff1(xmm, x, x, x, x)
|
||||
#define glmm_shuff2(a, b, z0, y0, x0, w0, z1, y1, x1, w1) \
|
||||
glmm_shuff1(_mm_shuffle_ps(a, b, _MM_SHUFFLE(z0, y0, x0, w0)), \
|
||||
z1, y1, x1, w1)
|
||||
|
||||
#ifdef __AVX__
|
||||
# ifdef CGLM_ALL_UNALIGNED
|
||||
# define glmm_load256(p) _mm256_loadu_ps(p)
|
||||
# define glmm_store256(p, a) _mm256_storeu_ps(p, a)
|
||||
# else
|
||||
# define glmm_load256(p) _mm256_load_ps(p)
|
||||
# define glmm_store256(p, a) _mm256_store_ps(p, a)
|
||||
# endif
|
||||
#endif
|
||||
|
||||
static inline
|
||||
__m128
|
||||
glmm_vhadds(__m128 v) {
|
||||
#if defined(__SSE3__)
|
||||
__m128 shuf, sums;
|
||||
shuf = _mm_movehdup_ps(v);
|
||||
sums = _mm_add_ps(v, shuf);
|
||||
shuf = _mm_movehl_ps(shuf, sums);
|
||||
sums = _mm_add_ss(sums, shuf);
|
||||
return sums;
|
||||
#else
|
||||
__m128 shuf, sums;
|
||||
shuf = glmm_shuff1(v, 2, 3, 0, 1);
|
||||
sums = _mm_add_ps(v, shuf);
|
||||
shuf = _mm_movehl_ps(shuf, sums);
|
||||
sums = _mm_add_ss(sums, shuf);
|
||||
return sums;
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline
|
||||
float
|
||||
glmm_hadd(__m128 v) {
|
||||
return _mm_cvtss_f32(glmm_vhadds(v));
|
||||
}
|
||||
|
||||
static inline
|
||||
__m128
|
||||
glmm_vdots(__m128 a, __m128 b) {
|
||||
#if (defined(__SSE4_1__) || defined(__SSE4_2__)) && defined(CGLM_SSE4_DOT)
|
||||
return _mm_dp_ps(a, b, 0xFF);
|
||||
#elif defined(__SSE3__) && defined(CGLM_SSE3_DOT)
|
||||
__m128 x0, x1;
|
||||
x0 = _mm_mul_ps(a, b);
|
||||
x1 = _mm_hadd_ps(x0, x0);
|
||||
return _mm_hadd_ps(x1, x1);
|
||||
#else
|
||||
return glmm_vhadds(_mm_mul_ps(a, b));
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline
|
||||
__m128
|
||||
glmm_vdot(__m128 a, __m128 b) {
|
||||
#if (defined(__SSE4_1__) || defined(__SSE4_2__)) && defined(CGLM_SSE4_DOT)
|
||||
return _mm_dp_ps(a, b, 0xFF);
|
||||
#elif defined(__SSE3__) && defined(CGLM_SSE3_DOT)
|
||||
__m128 x0, x1;
|
||||
x0 = _mm_mul_ps(a, b);
|
||||
x1 = _mm_hadd_ps(x0, x0);
|
||||
return _mm_hadd_ps(x1, x1);
|
||||
#else
|
||||
__m128 x0;
|
||||
x0 = _mm_mul_ps(a, b);
|
||||
x0 = _mm_add_ps(x0, glmm_shuff1(x0, 1, 0, 3, 2));
|
||||
return _mm_add_ps(x0, glmm_shuff1(x0, 0, 1, 0, 1));
|
||||
#endif
|
||||
}
|
||||
|
||||
static inline
|
||||
float
|
||||
glmm_dot(__m128 a, __m128 b) {
|
||||
return _mm_cvtss_f32(glmm_vdots(a, b));
|
||||
}
|
||||
|
||||
static inline
|
||||
float
|
||||
glmm_norm(__m128 a) {
|
||||
return _mm_cvtss_f32(_mm_sqrt_ss(glmm_vhadds(_mm_mul_ps(a, a))));
|
||||
}
|
||||
|
||||
static inline
|
||||
__m128
|
||||
glmm_load3(float v[3]) {
|
||||
__m128i xy;
|
||||
__m128 z;
|
||||
|
||||
xy = _mm_loadl_epi64((const __m128i *)v);
|
||||
z = _mm_load_ss(&v[2]);
|
||||
|
||||
return _mm_movelh_ps(_mm_castsi128_ps(xy), z);
|
||||
}
|
||||
|
||||
static inline
|
||||
void
|
||||
glmm_store3(__m128 vx, float v[3]) {
|
||||
_mm_storel_pi((__m64 *)&v[0], vx);
|
||||
_mm_store_ss(&v[2], glmm_shuff1(vx, 2, 2, 2, 2));
|
||||
}
|
||||
|
||||
#endif
|
||||
#endif /* cglm_simd_x86_h */
|
||||
99
include/cglm/sphere.h
Normal file
99
include/cglm/sphere.h
Normal file
@@ -0,0 +1,99 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_sphere_h
|
||||
#define cglm_sphere_h
|
||||
|
||||
#include "common.h"
|
||||
#include "mat4.h"
|
||||
|
||||
/*
|
||||
Sphere Representation in cglm: [center.x, center.y, center.z, radii]
|
||||
|
||||
You could use this representation or you can convert it to vec4 before call
|
||||
any function
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @brief helper for getting sphere radius
|
||||
*
|
||||
* @param[in] s sphere
|
||||
*
|
||||
* @return returns radii
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_sphere_radii(vec4 s) {
|
||||
return s[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief apply transform to sphere, it is just wrapper for glm_mat4_mulv3
|
||||
*
|
||||
* @param[in] s sphere
|
||||
* @param[in] m transform matrix
|
||||
* @param[out] dest transformed sphere
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_sphere_transform(vec4 s, mat4 m, vec4 dest) {
|
||||
glm_mat4_mulv3(m, s, 1.0f, dest);
|
||||
dest[3] = s[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief merges two spheres and creates a new one
|
||||
*
|
||||
* two sphere must be in same space, for instance if one in world space then
|
||||
* the other must be in world space too, not in local space.
|
||||
*
|
||||
* @param[in] s1 sphere 1
|
||||
* @param[in] s2 sphere 2
|
||||
* @param[out] dest merged/extended sphere
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_sphere_merge(vec4 s1, vec4 s2, vec4 dest) {
|
||||
float dist, radii;
|
||||
|
||||
dist = glm_vec3_distance(s1, s2);
|
||||
radii = dist + s1[3] + s2[3];
|
||||
|
||||
radii = glm_max(radii, s1[3]);
|
||||
radii = glm_max(radii, s2[3]);
|
||||
|
||||
glm_vec3_center(s1, s2, dest);
|
||||
dest[3] = radii;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if two sphere intersects
|
||||
*
|
||||
* @param[in] s1 sphere
|
||||
* @param[in] s2 other sphere
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_sphere_sphere(vec4 s1, vec4 s2) {
|
||||
return glm_vec3_distance2(s1, s2) <= glm_pow2(s1[3] + s2[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if sphere intersects with point
|
||||
*
|
||||
* @param[in] s sphere
|
||||
* @param[in] point point
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_sphere_point(vec4 s, vec3 point) {
|
||||
float rr;
|
||||
rr = s[3] * s[3];
|
||||
return glm_vec3_distance2(point, s) <= rr;
|
||||
}
|
||||
|
||||
#endif /* cglm_sphere_h */
|
||||
36
include/cglm/struct.h
Normal file
36
include/cglm/struct.h
Normal file
@@ -0,0 +1,36 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_structs_h
|
||||
#define cglm_structs_h
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
||||
#include "cglm.h"
|
||||
#include "types-struct.h"
|
||||
#include "struct/vec3.h"
|
||||
#include "struct/vec4.h"
|
||||
#include "struct/mat3.h"
|
||||
#include "struct/mat4.h"
|
||||
#include "struct/affine.h"
|
||||
#include "struct/frustum.h"
|
||||
#include "struct/plane.h"
|
||||
#include "struct/box.h"
|
||||
#include "struct/color.h"
|
||||
#include "struct/io.h"
|
||||
#include "struct/cam.h"
|
||||
#include "struct/quat.h"
|
||||
#include "struct/euler.h"
|
||||
#include "struct/project.h"
|
||||
#include "struct/sphere.h"
|
||||
#include "struct/curve.h"
|
||||
|
||||
#ifdef __cplusplus
|
||||
}
|
||||
#endif
|
||||
#endif /* cglm_structs_h */
|
||||
337
include/cglm/struct/affine.h
Normal file
337
include/cglm/struct/affine.h
Normal file
@@ -0,0 +1,337 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE mat4s glms_translate(mat4s m, vec3s v);
|
||||
CGLM_INLINE mat4s glms_translate_x(mat4s m, float x);
|
||||
CGLM_INLINE mat4s glms_translate_y(mat4s m, float y);
|
||||
CGLM_INLINE mat4s glms_translate_z(mat4s m, float z);
|
||||
CGLM_INLINE mat4s glms_translate_make(vec3s v);
|
||||
CGLM_INLINE mat4s glms_scale_to(mat4s m, vec3s v);
|
||||
CGLM_INLINE mat4s glms_scale_make(vec3s v);
|
||||
CGLM_INLINE mat4s glms_scale(mat4s m, vec3s v);
|
||||
CGLM_INLINE mat4s glms_scale_uni(mat4s m, float s);
|
||||
CGLM_INLINE mat4s glmx_rotate_x(mat4s m, float angle);
|
||||
CGLM_INLINE mat4s glms_rotate_y(mat4s m, float angle);
|
||||
CGLM_INLINE mat4s glms_rotate_z(mat4s m, float angle);
|
||||
CGLM_INLINE mat4s glms_rotate_make(float angle, vec3s axis);
|
||||
CGLM_INLINE mat4s glms_rotate(mat4s m, float angle, vec3s axis);
|
||||
CGLM_INLINE mat4s glms_rotate_at(mat4s m, vec3s pivot, float angle, vec3s axis);
|
||||
CGLM_INLINE mat4s glms_rotate_atm(mat4s m, vec3s pivot, float angle, vec3s axis);
|
||||
CGLM_INLINE vec3s glms_decompose_scalev(mat4s m);
|
||||
CGLM_INLINE bool glms_uniscaled(mat4s m);
|
||||
CGLM_INLINE void glms_decompose_rs(mat4s m, mat4s * r, vec3s * s);
|
||||
CGLM_INLINE void glms_decompose(mat4s m, vec4s t, mat4s * r, vec3s * s);
|
||||
*/
|
||||
|
||||
#ifndef cglms_affines_h
|
||||
#define cglms_affines_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../affine.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_mul(mat4s m1, mat4s m2);
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by v vector
|
||||
* and stores result in same matrix
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] v translate vector [x, y, z]
|
||||
* @returns affine transfrom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_translate(mat4s m, vec3s v) {
|
||||
glm_translate(m.raw, v.raw);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by x factor
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] x x factor
|
||||
* @returns affine transfrom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_translate_x(mat4s m, float x) {
|
||||
glm_translate_x(m.raw, x);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by y factor
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] y y factor
|
||||
* @returns affine transfrom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_translate_y(mat4s m, float y) {
|
||||
glm_translate_y(m.raw, y);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief translate existing transform matrix by z factor
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] z z factor
|
||||
* @returns affine transfrom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_translate_z(mat4s m, float z) {
|
||||
glm_translate_z(m.raw, z);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW translate transform matrix by v vector
|
||||
*
|
||||
* @param[in] v translate vector [x, y, z]
|
||||
* @returns affine transfrom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_translate_make(vec3s v) {
|
||||
mat4s m;
|
||||
glm_translate_make(m.raw, v.raw);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW scale matrix by v vector
|
||||
*
|
||||
* @param[in] v scale vector [x, y, z]
|
||||
* @returns affine transfrom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_scale_make(vec3s v) {
|
||||
mat4s m;
|
||||
glm_scale_make(m.raw, v.raw);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief scales existing transform matrix by v vector
|
||||
* and stores result in same matrix
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] v scale vector [x, y, z]
|
||||
* @returns affine transfrom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_scale(mat4s m, vec3s v) {
|
||||
mat4s r;
|
||||
glm_scale_to(m.raw, v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief applies uniform scale to existing transform matrix v = [s, s, s]
|
||||
* and stores result in same matrix
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] s scale factor
|
||||
* @returns affine transfrom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_scale_uni(mat4s m, float s) {
|
||||
glm_scale_uni(m.raw, s);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around X axis by angle
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @returns rotated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glmx_rotate_x(mat4s m, float angle) {
|
||||
mat4s r;
|
||||
glm_rotate_x(m.raw, angle, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around Y axis by angle
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @returns rotated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_rotate_y(mat4s m, float angle) {
|
||||
mat4s r;
|
||||
glm_rotate_y(m.raw, angle, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around Z axis by angle
|
||||
* and store result in dest
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @returns rotated matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_rotate_z(mat4s m, float angle) {
|
||||
mat4s r;
|
||||
glm_rotate_z(m.raw, angle, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW rotation matrix by angle and axis
|
||||
*
|
||||
* axis will be normalized so you don't need to normalize it
|
||||
*
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
* @returns affine transfrom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_rotate_make(float angle, vec3s axis) {
|
||||
mat4s m;
|
||||
glm_rotate_make(m.raw, angle, axis.raw);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix around given axis by angle
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
* @returns affine transfrom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_rotate(mat4s m, float angle, vec3s axis) {
|
||||
glm_rotate(m.raw, angle, axis.raw);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform
|
||||
* around given axis by angle at given pivot point (rotation center)
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] pivot rotation center
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
* @returns affine transfrom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_rotate_at(mat4s m, vec3s pivot, float angle, vec3s axis) {
|
||||
glm_rotate_at(m.raw, pivot.raw, angle, axis.raw);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW rotation matrix by angle and axis at given point
|
||||
*
|
||||
* this creates rotation matrix, it assumes you don't have a matrix
|
||||
*
|
||||
* this should work faster than glm_rotate_at because it reduces
|
||||
* one glm_translate.
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[in] pivot rotation center
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
* @returns affine transfrom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_rotate_atm(mat4s m, vec3s pivot, float angle, vec3s axis) {
|
||||
glm_rotate_atm(m.raw, pivot.raw, angle, axis.raw);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decompose scale vector
|
||||
*
|
||||
* @param[in] m affine transform
|
||||
* @returns scale vector (Sx, Sy, Sz)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_decompose_scalev(mat4s m) {
|
||||
vec3s r;
|
||||
glm_decompose_scalev(m.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns true if matrix is uniform scaled. This is helpful for
|
||||
* creating normal matrix.
|
||||
*
|
||||
* @param[in] m m
|
||||
*
|
||||
* @return boolean
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_uniscaled(mat4s m) {
|
||||
return glm_uniscaled(m.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decompose rotation matrix (mat4) and scale vector [Sx, Sy, Sz]
|
||||
* DON'T pass projected matrix here
|
||||
*
|
||||
* @param[in] m affine transform
|
||||
* @param[out] r rotation matrix
|
||||
* @param[out] s scale matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_decompose_rs(mat4s m, mat4s * __restrict r, vec3s * __restrict s) {
|
||||
glm_decompose_rs(m.raw, r->raw, s->raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decompose affine transform, TODO: extract shear factors.
|
||||
* DON'T pass projected matrix here
|
||||
*
|
||||
* @param[in] m affine transfrom
|
||||
* @param[out] t translation vector
|
||||
* @param[out] r rotation matrix (mat4)
|
||||
* @param[out] s scaling vector [X, Y, Z]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_decompose(mat4s m, vec4s * __restrict t, mat4s * __restrict r, vec3s * __restrict s) {
|
||||
glm_decompose(m.raw, t->raw, r->raw, s->raw);
|
||||
}
|
||||
|
||||
#endif /* cglms_affines_h */
|
||||
256
include/cglm/struct/box.h
Normal file
256
include/cglm/struct/box.h
Normal file
@@ -0,0 +1,256 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglms_boxs_h
|
||||
#define cglms_boxs_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../box.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
|
||||
/*!
|
||||
* @brief apply transform to Axis-Aligned Bounding Box
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] m transform matrix
|
||||
* @param[out] dest transformed bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_aabb_transform(vec3s box[2], mat4s m, vec3s dest[2]) {
|
||||
vec3 rawBox[2];
|
||||
vec3 rawDest[2];
|
||||
|
||||
glms_vec3_unpack(rawBox, box, 2);
|
||||
glm_aabb_transform(rawBox, m.raw, rawDest);
|
||||
glms_vec3_pack(dest, rawDest, 2);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief merges two AABB bounding box and creates new one
|
||||
*
|
||||
* two box must be in same space, if one of box is in different space then
|
||||
* you should consider to convert it's space by glm_box_space
|
||||
*
|
||||
* @param[in] box1 bounding box 1
|
||||
* @param[in] box2 bounding box 2
|
||||
* @param[out] dest merged bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_aabb_merge(vec3s box1[2], vec3s box2[2], vec3s dest[2]) {
|
||||
vec3 rawBox1[2];
|
||||
vec3 rawBox2[2];
|
||||
vec3 rawDest[2];
|
||||
|
||||
glms_vec3_unpack(rawBox1, box1, 2);
|
||||
glms_vec3_unpack(rawBox2, box2, 2);
|
||||
glm_aabb_merge(rawBox1, rawBox2, rawDest);
|
||||
glms_vec3_pack(dest, rawDest, 2);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief crops a bounding box with another one.
|
||||
*
|
||||
* this could be useful for gettng a bbox which fits with view frustum and
|
||||
* object bounding boxes. In this case you crop view frustum box with objects
|
||||
* box
|
||||
*
|
||||
* @param[in] box bounding box 1
|
||||
* @param[in] cropBox crop box
|
||||
* @param[out] dest cropped bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_aabb_crop(vec3s box[2], vec3s cropBox[2], vec3s dest[2]) {
|
||||
vec3 rawBox[2];
|
||||
vec3 rawCropBox[2];
|
||||
vec3 rawDest[2];
|
||||
|
||||
glms_vec3_unpack(rawBox, box, 2);
|
||||
glms_vec3_unpack(rawCropBox, cropBox, 2);
|
||||
glm_aabb_crop(rawBox, rawCropBox, rawDest);
|
||||
glms_vec3_pack(dest, rawDest, 2);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief crops a bounding box with another one.
|
||||
*
|
||||
* this could be useful for gettng a bbox which fits with view frustum and
|
||||
* object bounding boxes. In this case you crop view frustum box with objects
|
||||
* box
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] cropBox crop box
|
||||
* @param[in] clampBox miniumum box
|
||||
* @param[out] dest cropped bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_aabb_crop_until(vec3s box[2],
|
||||
vec3s cropBox[2],
|
||||
vec3s clampBox[2],
|
||||
vec3s dest[2]) {
|
||||
glms_aabb_crop(box, cropBox, dest);
|
||||
glms_aabb_merge(clampBox, dest, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB intersects with frustum planes
|
||||
*
|
||||
* this could be useful for frustum culling using AABB.
|
||||
*
|
||||
* OPTIMIZATION HINT:
|
||||
* if planes order is similar to LEFT, RIGHT, BOTTOM, TOP, NEAR, FAR
|
||||
* then this method should run even faster because it would only use two
|
||||
* planes if object is not inside the two planes
|
||||
* fortunately cglm extracts planes as this order! just pass what you got!
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] planes frustum planes
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_aabb_frustum(vec3s box[2], vec4s planes[6]) {
|
||||
vec3 rawBox[2];
|
||||
vec4 rawPlanes[6];
|
||||
|
||||
glms_vec3_unpack(rawBox, box, 2);
|
||||
glms_vec4_unpack(rawPlanes, planes, 6);
|
||||
return glm_aabb_frustum(rawBox, rawPlanes);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief invalidate AABB min and max values
|
||||
*
|
||||
* @param[in, out] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_aabb_invalidate(vec3s box[2]) {
|
||||
box[0] = glms_vec3_broadcast(FLT_MAX);
|
||||
box[1] = glms_vec3_broadcast(-FLT_MAX);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB is valid or not
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_aabb_isvalid(vec3s box[2]) {
|
||||
vec3 rawBox[2];
|
||||
glms_vec3_unpack(rawBox, box, 2);
|
||||
return glm_aabb_isvalid(rawBox);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief distance between of min and max
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_aabb_size(vec3s box[2]) {
|
||||
return glm_vec3_distance(box[0].raw, box[1].raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief radius of sphere which surrounds AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_aabb_radius(vec3s box[2]) {
|
||||
return glms_aabb_size(box) * 0.5f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief computes center point of AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @returns center of bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_aabb_center(vec3s box[2]) {
|
||||
return glms_vec3_center(box[0], box[1]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if two AABB intersects
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] other other bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_aabb_aabb(vec3s box[2], vec3s other[2]) {
|
||||
vec3 rawBox[2];
|
||||
vec3 rawOther[2];
|
||||
|
||||
glms_vec3_unpack(rawBox, box, 2);
|
||||
glms_vec3_unpack(rawOther, other, 2);
|
||||
return glm_aabb_aabb(rawBox, rawOther);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB intersects with sphere
|
||||
*
|
||||
* https://github.com/erich666/GraphicsGems/blob/master/gems/BoxSphere.c
|
||||
* Solid Box - Solid Sphere test.
|
||||
*
|
||||
* @param[in] box solid bounding box
|
||||
* @param[in] s solid sphere
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_aabb_sphere(vec3s box[2], vec4s s) {
|
||||
vec3 rawBox[2];
|
||||
|
||||
glms_vec3_unpack(rawBox, box, 2);
|
||||
return glm_aabb_sphere(rawBox, s.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if point is inside of AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] point point
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_aabb_point(vec3s box[2], vec3s point) {
|
||||
vec3 rawBox[2];
|
||||
|
||||
glms_vec3_unpack(rawBox, box, 2);
|
||||
return glm_aabb_point(rawBox, point.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if AABB contains other AABB
|
||||
*
|
||||
* @param[in] box bounding box
|
||||
* @param[in] other other bounding box
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_aabb_contains(vec3s box[2], vec3s other[2]) {
|
||||
vec3 rawBox[2];
|
||||
vec3 rawOther[2];
|
||||
|
||||
glms_vec3_unpack(rawBox, box, 2);
|
||||
glms_vec3_unpack(rawOther, other, 2);
|
||||
return glm_aabb_contains(rawBox, rawOther);
|
||||
}
|
||||
|
||||
#endif /* cglms_boxs_h */
|
||||
451
include/cglm/struct/cam.h
Normal file
451
include/cglm/struct/cam.h
Normal file
@@ -0,0 +1,451 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE mat4s glms_frustum(float left, float right,
|
||||
float bottom, float top,
|
||||
float nearVal, float farVal)
|
||||
CGLM_INLINE mat4s glms_ortho(float left, float right,
|
||||
float bottom, float top,
|
||||
float nearVal, float farVal)
|
||||
CGLM_INLINE mat4s glms_ortho_aabb(vec3s box[2]);
|
||||
CGLM_INLINE mat4s glms_ortho_aabb_p(vec3s box[2], float padding);
|
||||
CGLM_INLINE mat4s glms_ortho_aabb_pz(vec3s box[2], float padding);
|
||||
CGLM_INLINE mat4s glms_ortho_default(float aspect)
|
||||
CGLM_INLINE mat4s glms_ortho_default_s(float aspect, float size)
|
||||
CGLM_INLINE mat4s glms_perspective(float fovy,
|
||||
float aspect,
|
||||
float nearVal,
|
||||
float farVal)
|
||||
CGLM_INLINE void glms_persp_move_far(mat4s proj, float deltaFar)
|
||||
CGLM_INLINE mat4s glms_perspective_default(float aspect)
|
||||
CGLM_INLINE void glms_perspective_resize(mat4s proj, float aspect)
|
||||
CGLM_INLINE mat4s glms_lookat(vec3s eye, vec3s center, vec3s up)
|
||||
CGLM_INLINE mat4s glms_look(vec3s eye, vec3s dir, vec3s up)
|
||||
CGLM_INLINE mat4s glms_look_anyup(vec3s eye, vec3s dir)
|
||||
CGLM_INLINE void glms_persp_decomp(mat4s proj,
|
||||
float *nearv, float *farv,
|
||||
float *top, float *bottom,
|
||||
float *left, float *right)
|
||||
CGLM_INLINE void glms_persp_decompv(mat4s proj, float dest[6])
|
||||
CGLM_INLINE void glms_persp_decomp_x(mat4s proj, float *left, float *right)
|
||||
CGLM_INLINE void glms_persp_decomp_y(mat4s proj, float *top, float *bottom)
|
||||
CGLM_INLINE void glms_persp_decomp_z(mat4s proj, float *nearv, float *farv)
|
||||
CGLM_INLINE void glms_persp_decomp_far(mat4s proj, float *farVal)
|
||||
CGLM_INLINE void glms_persp_decomp_near(mat4s proj, float *nearVal)
|
||||
CGLM_INLINE float glms_persp_fovy(mat4s proj)
|
||||
CGLM_INLINE float glms_persp_aspect(mat4s proj)
|
||||
CGLM_INLINE vec4s glms_persp_sizes(mat4s proj, float fovy)
|
||||
*/
|
||||
|
||||
#ifndef cglms_cam_h
|
||||
#define cglms_cam_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../plane.h"
|
||||
#include "../cam.h"
|
||||
|
||||
/*!
|
||||
* @brief set up perspective peprojection matrix
|
||||
*
|
||||
* @param[in] left viewport.left
|
||||
* @param[in] right viewport.right
|
||||
* @param[in] bottom viewport.bottom
|
||||
* @param[in] top viewport.top
|
||||
* @param[in] nearVal near clipping plane
|
||||
* @param[in] farVal far clipping plane
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_frustum(float left, float right,
|
||||
float bottom, float top,
|
||||
float nearVal, float farVal) {
|
||||
mat4s dest;
|
||||
glm_frustum(left, right, bottom, top, nearVal, farVal, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up orthographic projection matrix
|
||||
*
|
||||
* @param[in] left viewport.left
|
||||
* @param[in] right viewport.right
|
||||
* @param[in] bottom viewport.bottom
|
||||
* @param[in] top viewport.top
|
||||
* @param[in] nearVal near clipping plane
|
||||
* @param[in] farVal far clipping plane
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_ortho(float left, float right,
|
||||
float bottom, float top,
|
||||
float nearVal, float farVal) {
|
||||
mat4s dest;
|
||||
glm_ortho(left, right, bottom, top, nearVal, farVal, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up orthographic projection matrix using bounding box
|
||||
*
|
||||
* bounding box (AABB) must be in view space
|
||||
*
|
||||
* @param[in] box AABB
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_ortho_aabb(vec3s box[2]) {
|
||||
mat4s dest;
|
||||
vec3 rawBox[2];
|
||||
|
||||
glms_vec3_unpack(rawBox, box, 2);
|
||||
glm_ortho_aabb(rawBox, dest.raw);
|
||||
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up orthographic projection matrix using bounding box
|
||||
*
|
||||
* bounding box (AABB) must be in view space
|
||||
*
|
||||
* @param[in] box AABB
|
||||
* @param[in] padding padding
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_ortho_aabb_p(vec3s box[2], float padding) {
|
||||
mat4s dest;
|
||||
vec3 rawBox[2];
|
||||
|
||||
glms_vec3_unpack(rawBox, box, 2);
|
||||
glm_ortho_aabb_p(rawBox, padding, dest.raw);
|
||||
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up orthographic projection matrix using bounding box
|
||||
*
|
||||
* bounding box (AABB) must be in view space
|
||||
*
|
||||
* @param[in] box AABB
|
||||
* @param[in] padding padding for near and far
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_ortho_aabb_pz(vec3s box[2], float padding) {
|
||||
mat4s dest;
|
||||
vec3 rawBox[2];
|
||||
|
||||
glms_vec3_unpack(rawBox, box, 2);
|
||||
glm_ortho_aabb_pz(rawBox, padding, dest.raw);
|
||||
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up unit orthographic projection matrix
|
||||
*
|
||||
* @param[in] aspect aspect ration ( width / height )
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_ortho_default(float aspect) {
|
||||
mat4s dest;
|
||||
glm_ortho_default(aspect, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up orthographic projection matrix with given CUBE size
|
||||
*
|
||||
* @param[in] aspect aspect ratio ( width / height )
|
||||
* @param[in] size cube size
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_ortho_default_s(float aspect, float size) {
|
||||
mat4s dest;
|
||||
glm_ortho_default_s(aspect, size, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up perspective projection matrix
|
||||
*
|
||||
* @param[in] fovy field of view angle
|
||||
* @param[in] aspect aspect ratio ( width / height )
|
||||
* @param[in] nearVal near clipping plane
|
||||
* @param[in] farVal far clipping planes
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_perspective(float fovy, float aspect, float nearVal, float farVal) {
|
||||
mat4s dest;
|
||||
glm_perspective(fovy, aspect, nearVal, farVal, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief extend perspective projection matrix's far distance
|
||||
*
|
||||
* this function does not guarantee far >= near, be aware of that!
|
||||
*
|
||||
* @param[in, out] proj projection matrix to extend
|
||||
* @param[in] deltaFar distance from existing far (negative to shink)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_persp_move_far(mat4s proj, float deltaFar) {
|
||||
glm_persp_move_far(proj.raw, deltaFar);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up perspective projection matrix with default near/far
|
||||
* and angle values
|
||||
*
|
||||
* @param[in] aspect aspect ratio ( width / height )
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_perspective_default(float aspect) {
|
||||
mat4s dest;
|
||||
glm_perspective_default(aspect, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief resize perspective matrix by aspect ratio ( width / height )
|
||||
* this makes very easy to resize proj matrix when window /viewport
|
||||
* reized
|
||||
*
|
||||
* @param[in, out] proj perspective projection matrix
|
||||
* @param[in] aspect aspect ratio ( width / height )
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_perspective_resize(mat4s proj, float aspect) {
|
||||
glm_perspective_resize(aspect, proj.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up view matrix
|
||||
*
|
||||
* NOTE: The UP vector must not be parallel to the line of sight from
|
||||
* the eye point to the reference point
|
||||
*
|
||||
* @param[in] eye eye vector
|
||||
* @param[in] center center vector
|
||||
* @param[in] up up vector
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_lookat(vec3s eye, vec3s center, vec3s up) {
|
||||
mat4s dest;
|
||||
glm_lookat(eye.raw, center.raw, up.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up view matrix
|
||||
*
|
||||
* convenient wrapper for lookat: if you only have direction not target self
|
||||
* then this might be useful. Because you need to get target from direction.
|
||||
*
|
||||
* NOTE: The UP vector must not be parallel to the line of sight from
|
||||
* the eye point to the reference point
|
||||
*
|
||||
* @param[in] eye eye vector
|
||||
* @param[in] dir direction vector
|
||||
* @param[in] up up vector
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_look(vec3s eye, vec3s dir, vec3s up) {
|
||||
mat4s dest;
|
||||
glm_look(eye.raw, dir.raw, up.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief set up view matrix
|
||||
*
|
||||
* convenient wrapper for look: if you only have direction and if you don't
|
||||
* care what UP vector is then this might be useful to create view matrix
|
||||
*
|
||||
* @param[in] eye eye vector
|
||||
* @param[in] dir direction vector
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_look_anyup(vec3s eye, vec3s dir) {
|
||||
mat4s dest;
|
||||
glm_look_anyup(eye.raw, dir.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decomposes frustum values of perspective projection.
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[out] nearVal near
|
||||
* @param[out] farVal far
|
||||
* @param[out] top top
|
||||
* @param[out] bottom bottom
|
||||
* @param[out] left left
|
||||
* @param[out] right right
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_persp_decomp(mat4s proj,
|
||||
float * __restrict nearVal, float * __restrict farVal,
|
||||
float * __restrict top, float * __restrict bottom,
|
||||
float * __restrict left, float * __restrict right) {
|
||||
glm_persp_decomp(proj.raw, nearVal, farVal, top, bottom, left, right);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decomposes frustum values of perspective projection.
|
||||
* this makes easy to get all values at once
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[out] dest array
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_persp_decompv(mat4s proj, float dest[6]) {
|
||||
glm_persp_decompv(proj.raw, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decomposes left and right values of perspective projection.
|
||||
* x stands for x axis (left / right axis)
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[out] left left
|
||||
* @param[out] right right
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_persp_decomp_x(mat4s proj,
|
||||
float * __restrict left,
|
||||
float * __restrict right) {
|
||||
glm_persp_decomp_x(proj.raw, left, right);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decomposes top and bottom values of perspective projection.
|
||||
* y stands for y axis (top / botom axis)
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[out] top top
|
||||
* @param[out] bottom bottom
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_persp_decomp_y(mat4s proj,
|
||||
float * __restrict top,
|
||||
float * __restrict bottom) {
|
||||
glm_persp_decomp_y(proj.raw, top, bottom);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decomposes near and far values of perspective projection.
|
||||
* z stands for z axis (near / far axis)
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[out] nearVal near
|
||||
* @param[out] farVal far
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_persp_decomp_z(mat4s proj,
|
||||
float * __restrict nearVal,
|
||||
float * __restrict farVal) {
|
||||
glm_persp_decomp_z(proj.raw, nearVal, farVal);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decomposes far value of perspective projection.
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[out] farVal far
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_persp_decomp_far(mat4s proj, float * __restrict farVal) {
|
||||
glm_persp_decomp_far(proj.raw, farVal);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief decomposes near value of perspective projection.
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[out] nearVal near
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_persp_decomp_near(mat4s proj, float * __restrict nearVal) {
|
||||
glm_persp_decomp_near(proj.raw, nearVal);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns field of view angle along the Y-axis (in radians)
|
||||
*
|
||||
* if you need to degrees, use glm_deg to convert it or use this:
|
||||
* fovy_deg = glm_deg(glm_persp_fovy(projMatrix))
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_persp_fovy(mat4s proj) {
|
||||
return glm_persp_fovy(proj.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns aspect ratio of perspective projection
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_persp_aspect(mat4s proj) {
|
||||
return glm_persp_aspect(proj.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns sizes of near and far planes of perspective projection
|
||||
*
|
||||
* @param[in] proj perspective projection matrix
|
||||
* @param[in] fovy fovy (see brief)
|
||||
* @returns sizes as vector, sizes order: [Wnear, Hnear, Wfar, Hfar]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_persp_sizes(mat4s proj, float fovy) {
|
||||
vec4s dest;
|
||||
glm_persp_sizes(proj.raw, fovy, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
#endif /* cglms_cam_h */
|
||||
27
include/cglm/struct/color.h
Normal file
27
include/cglm/struct/color.h
Normal file
@@ -0,0 +1,27 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglms_colors_h
|
||||
#define cglms_colors_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../color.h"
|
||||
#include "vec3.h"
|
||||
|
||||
/*!
|
||||
* @brief averages the color channels into one value
|
||||
*
|
||||
* @param[in] rgb RGB color
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_luminance(vec3s rgb) {
|
||||
return glm_luminance(rgb.raw);
|
||||
}
|
||||
|
||||
#endif /* cglms_colors_h */
|
||||
40
include/cglm/struct/curve.h
Normal file
40
include/cglm/struct/curve.h
Normal file
@@ -0,0 +1,40 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglms_curves_h
|
||||
#define cglms_curves_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../curve.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
|
||||
/*!
|
||||
* @brief helper function to calculate S*M*C multiplication for curves
|
||||
*
|
||||
* This function does not encourage you to use SMC,
|
||||
* instead it is a helper if you use SMC.
|
||||
*
|
||||
* if you want to specify S as vector then use more generic glm_mat4_rmc() func.
|
||||
*
|
||||
* Example usage:
|
||||
* B(s) = glm_smc(s, GLM_BEZIER_MAT, (vec4){p0, c0, c1, p1})
|
||||
*
|
||||
* @param[in] s parameter between 0 and 1 (this will be [s3, s2, s, 1])
|
||||
* @param[in] m basis matrix
|
||||
* @param[in] c position/control vector
|
||||
*
|
||||
* @return B(s)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_smc(float s, mat4s m, vec4s c) {
|
||||
return glm_smc(s, m.raw, c.raw);
|
||||
}
|
||||
|
||||
#endif /* cglms_curves_h */
|
||||
152
include/cglm/struct/euler.h
Normal file
152
include/cglm/struct/euler.h
Normal file
@@ -0,0 +1,152 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*
|
||||
NOTE:
|
||||
angles must be passed as [X-Angle, Y-Angle, Z-angle] order
|
||||
For instance you don't pass angles as [Z-Angle, X-Angle, Y-angle] to
|
||||
glm_euler_zxy funciton, All RELATED functions accept angles same order
|
||||
which is [X, Y, Z].
|
||||
*/
|
||||
|
||||
/*
|
||||
Types:
|
||||
enum glm_euler_sq
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE vec3s glms_euler_angles(mat4s m)
|
||||
CGLM_INLINE mat4s glms_euler_xyz(vec3s angles)
|
||||
CGLM_INLINE mat4s glms_euler_xzy(vec3s angles)
|
||||
CGLM_INLINE mat4s glms_euler_yxz(vec3s angles)
|
||||
CGLM_INLINE mat4s glms_euler_yzx(vec3s angles)
|
||||
CGLM_INLINE mat4s glms_euler_zxy(vec3s angles)
|
||||
CGLM_INLINE mat4s glms_euler_zyx(vec3s angles)
|
||||
CGLM_INLINE mat4s glms_euler_by_order(vec3s angles, glm_euler_sq ord)
|
||||
*/
|
||||
|
||||
#ifndef cglms_euler_h
|
||||
#define cglms_euler_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../euler.h"
|
||||
|
||||
/*!
|
||||
* @brief extract euler angles (in radians) using xyz order
|
||||
*
|
||||
* @param[in] m affine transform
|
||||
* @returns angles vector [x, y, z]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_euler_angles(mat4s m) {
|
||||
vec3s dest;
|
||||
glm_euler_angles(m.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @returns rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_euler_xyz(vec3s angles) {
|
||||
mat4s dest;
|
||||
glm_euler_xyz(angles.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @returns rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_euler_xzy(vec3s angles) {
|
||||
mat4s dest;
|
||||
glm_euler_xzy(angles.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @returns rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_euler_yxz(vec3s angles) {
|
||||
mat4s dest;
|
||||
glm_euler_yxz(angles.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @returns rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_euler_yzx(vec3s angles) {
|
||||
mat4s dest;
|
||||
glm_euler_yzx(angles.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @returns rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_euler_zxy(vec3s angles) {
|
||||
mat4s dest;
|
||||
glm_euler_zxy(angles.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @returns rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_euler_zyx(vec3s angles) {
|
||||
mat4s dest;
|
||||
glm_euler_zyx(angles.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief build rotation matrix from euler angles
|
||||
*
|
||||
* @param[in] angles angles as vector [Xangle, Yangle, Zangle]
|
||||
* @param[in] ord euler order
|
||||
* @returns rotation matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_euler_by_order(vec3s angles, glm_euler_sq ord) {
|
||||
mat4s dest;
|
||||
glm_euler_by_order(angles.raw, ord, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
#endif /* cglms_euler_h */
|
||||
155
include/cglm/struct/frustum.h
Normal file
155
include/cglm/struct/frustum.h
Normal file
@@ -0,0 +1,155 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglms_frustums_h
|
||||
#define cglms_frustums_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../frustum.h"
|
||||
#include "plane.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
|
||||
/* you can override clip space coords
|
||||
but you have to provide all with same name
|
||||
e.g.: define GLM_CSCOORD_LBN {0.0f, 0.0f, 1.0f, 1.0f} */
|
||||
#ifndef GLM_CUSTOM_CLIPSPACE
|
||||
|
||||
/* near */
|
||||
#define GLMS_CSCOORD_LBN {-1.0f, -1.0f, -1.0f, 1.0f}
|
||||
#define GLMS_CSCOORD_LTN {-1.0f, 1.0f, -1.0f, 1.0f}
|
||||
#define GLMS_CSCOORD_RTN { 1.0f, 1.0f, -1.0f, 1.0f}
|
||||
#define GLMS_CSCOORD_RBN { 1.0f, -1.0f, -1.0f, 1.0f}
|
||||
|
||||
/* far */
|
||||
#define GLMS_CSCOORD_LBF {-1.0f, -1.0f, 1.0f, 1.0f}
|
||||
#define GLMS_CSCOORD_LTF {-1.0f, 1.0f, 1.0f, 1.0f}
|
||||
#define GLMS_CSCOORD_RTF { 1.0f, 1.0f, 1.0f, 1.0f}
|
||||
#define GLMS_CSCOORD_RBF { 1.0f, -1.0f, 1.0f, 1.0f}
|
||||
|
||||
#endif
|
||||
|
||||
/*!
|
||||
* @brief extracts view frustum planes
|
||||
*
|
||||
* planes' space:
|
||||
* 1- if m = proj: View Space
|
||||
* 2- if m = viewProj: World Space
|
||||
* 3- if m = MVP: Object Space
|
||||
*
|
||||
* You probably want to extract planes in world space so use viewProj as m
|
||||
* Computing viewProj:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
*
|
||||
* Exracted planes order: [left, right, bottom, top, near, far]
|
||||
*
|
||||
* @param[in] m matrix (see brief)
|
||||
* @param[out] dest extracted view frustum planes (see brief)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_frustum_planes(mat4s m, vec4s dest[6]) {
|
||||
vec4 rawDest[6];
|
||||
glm_frustum_planes(m.raw, rawDest);
|
||||
glms_vec4_pack(dest, rawDest, 6);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief extracts view frustum corners using clip-space coordinates
|
||||
*
|
||||
* corners' space:
|
||||
* 1- if m = invViewProj: World Space
|
||||
* 2- if m = invMVP: Object Space
|
||||
*
|
||||
* You probably want to extract corners in world space so use invViewProj
|
||||
* Computing invViewProj:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* ...
|
||||
* glm_mat4_inv(viewProj, invViewProj);
|
||||
*
|
||||
* if you have a near coord at i index, you can get it's far coord by i + 4
|
||||
*
|
||||
* Find center coordinates:
|
||||
* for (j = 0; j < 4; j++) {
|
||||
* glm_vec3_center(corners[i], corners[i + 4], centerCorners[i]);
|
||||
* }
|
||||
*
|
||||
* @param[in] invMat matrix (see brief)
|
||||
* @param[out] dest exracted view frustum corners (see brief)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_frustum_corners(mat4s invMat, vec4s dest[8]) {
|
||||
vec4 rawDest[8];
|
||||
glm_frustum_corners(invMat.raw, rawDest);
|
||||
glms_vec4_pack(dest, rawDest, 8);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief finds center of view frustum
|
||||
*
|
||||
* @param[in] corners view frustum corners
|
||||
* @returns view frustum center
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_frustum_center(vec4s corners[8]) {
|
||||
vec4 rawCorners[8];
|
||||
vec4s r;
|
||||
|
||||
glms_vec4_unpack(rawCorners, corners, 8);
|
||||
glm_frustum_center(rawCorners, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief finds bounding box of frustum relative to given matrix e.g. view mat
|
||||
*
|
||||
* @param[in] corners view frustum corners
|
||||
* @param[in] m matrix to convert existing conners
|
||||
* @param[out] box bounding box as array [min, max]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_frustum_box(vec4s corners[8], mat4s m, vec3s box[2]) {
|
||||
vec4 rawCorners[8];
|
||||
vec3 rawBox[2];
|
||||
|
||||
glms_vec4_unpack(rawCorners, corners, 8);
|
||||
glm_frustum_box(rawCorners, m.raw, rawBox);
|
||||
glms_vec3_pack(box, rawBox, 2);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief finds planes corners which is between near and far planes (parallel)
|
||||
*
|
||||
* this will be helpful if you want to split a frustum e.g. CSM/PSSM. This will
|
||||
* find planes' corners but you will need to one more plane.
|
||||
* Actually you have it, it is near, far or created previously with this func ;)
|
||||
*
|
||||
* @param[in] corners view frustum corners
|
||||
* @param[in] splitDist split distance
|
||||
* @param[in] farDist far distance (zFar)
|
||||
* @param[out] planeCorners plane corners [LB, LT, RT, RB]
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_frustum_corners_at(vec4s corners[8],
|
||||
float splitDist,
|
||||
float farDist,
|
||||
vec4s planeCorners[4]) {
|
||||
vec4 rawCorners[8];
|
||||
vec4 rawPlaneCorners[4];
|
||||
|
||||
glms_vec4_unpack(rawCorners, corners, 8);
|
||||
glm_frustum_corners_at(rawCorners, splitDist, farDist, rawPlaneCorners);
|
||||
glms_vec4_pack(planeCorners, rawPlaneCorners, 8);
|
||||
}
|
||||
|
||||
#endif /* cglms_frustums_h */
|
||||
82
include/cglm/struct/io.h
Normal file
82
include/cglm/struct/io.h
Normal file
@@ -0,0 +1,82 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE void glm_mat4_print(mat4 matrix, FILE *ostream);
|
||||
CGLM_INLINE void glm_mat3_print(mat3 matrix, FILE *ostream);
|
||||
CGLM_INLINE void glm_vec4_print(vec4 vec, FILE *ostream);
|
||||
CGLM_INLINE void glm_vec3_print(vec3 vec, FILE *ostream);
|
||||
CGLM_INLINE void glm_ivec3_print(ivec3 vec, FILE *ostream);
|
||||
CGLM_INLINE void glm_versor_print(versor vec, FILE *ostream);
|
||||
*/
|
||||
|
||||
#ifndef cglms_ios_h
|
||||
#define cglms_ios_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../io.h"
|
||||
#include "mat4.h"
|
||||
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_mat4_print(mat4s matrix,
|
||||
FILE * __restrict ostream) {
|
||||
|
||||
glm_mat4_print(matrix.raw, ostream);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_mat3_print(mat3s matrix,
|
||||
FILE * __restrict ostream) {
|
||||
glm_mat3_print(matrix.raw, ostream);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_vec4_print(vec4s vec,
|
||||
FILE * __restrict ostream) {
|
||||
glm_vec4_print(vec.raw, ostream);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_vec3_print(vec3s vec,
|
||||
FILE * __restrict ostream) {
|
||||
glm_vec3_print(vec.raw, ostream);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_ivec3_print(ivec3s vec,
|
||||
FILE * __restrict ostream) {
|
||||
glm_ivec3_print(vec.raw, ostream);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_versor_print(versors vec,
|
||||
FILE * __restrict ostream) {
|
||||
glm_versor_print(vec.raw, ostream);
|
||||
}
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_aabb_print(vec3s bbox[2],
|
||||
const char * __restrict tag,
|
||||
FILE * __restrict ostream) {
|
||||
vec3 rawBbox[2];
|
||||
|
||||
glms_vec3_unpack(rawBbox, bbox, 2);
|
||||
glm_aabb_print(rawBbox, tag, ostream);
|
||||
}
|
||||
|
||||
#endif /* cglms_ios_h */
|
||||
289
include/cglm/struct/mat3.h
Normal file
289
include/cglm/struct/mat3.h
Normal file
@@ -0,0 +1,289 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*
|
||||
Macros:
|
||||
GLMS_MAT3_IDENTITY_INIT
|
||||
GLMS_MAT3_ZERO_INIT
|
||||
GLMS_MAT3_IDENTITY
|
||||
GLMS_MAT3_ZERO
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE mat3s glms_mat3_copy(mat3s mat);
|
||||
CGLM_INLINE mat3s glms_mat3_identity();
|
||||
CGLM_INLINE void glms_mat3_identity_array(mat3s * __restrict mat, size_t count);
|
||||
CGLM_INLINE mat3s glms_mat3_zero();
|
||||
CGLM_INLINE mat3s glms_mat3_mul(mat3s m1, mat3s m2);
|
||||
CGLM_INLINE ma3s glms_mat3_transpose(mat3s m);
|
||||
CGLM_INLINE vec3s glms_mat3_mulv(mat3s m, vec3s v);
|
||||
CGLM_INLINE float glms_mat3_trace(mat3s m);
|
||||
CGLM_INLINE versor glms_mat3_quat(mat3s m);
|
||||
CGLM_INLINE mat3s glms_mat3_scale(mat3s m, float s);
|
||||
CGLM_INLINE float glms_mat3_det(mat3s mat);
|
||||
CGLM_INLINE mat3s glms_mat3_inv(mat3s mat);
|
||||
CGLM_INLINE mat3s glms_mat3_swap_col(mat3s mat, int col1, int col2);
|
||||
CGLM_INLINE mat3s glms_mat3_swap_row(mat3s mat, int row1, int row2);
|
||||
CGLM_INLINE float glms_mat3_rmc(vec3s r, mat3s m, vec3s c);
|
||||
*/
|
||||
|
||||
#ifndef cglms_mat3s_h
|
||||
#define cglms_mat3s_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../mat3.h"
|
||||
#include "vec3.h"
|
||||
|
||||
#define GLMS_MAT3_IDENTITY_INIT {1.0f, 0.0f, 0.0f, \
|
||||
0.0f, 1.0f, 0.0f, \
|
||||
0.0f, 0.0f, 1.0f}
|
||||
#define GLMS_MAT3_ZERO_INIT {0.0f, 0.0f, 0.0f, \
|
||||
0.0f, 0.0f, 0.0f, \
|
||||
0.0f, 0.0f, 0.0f}
|
||||
|
||||
/* for C only */
|
||||
#define GLMS_MAT3_IDENTITY ((mat3s)GLMS_MAT3_IDENTITY_INIT)
|
||||
#define GLMS_MAT3_ZERO ((mat3s)GLMS_MAT3_ZERO_INIT)
|
||||
|
||||
/*!
|
||||
* @brief copy all members of [mat] to [dest]
|
||||
*
|
||||
* @param[in] mat source
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_mat3_copy(mat3s mat) {
|
||||
mat3s r;
|
||||
glm_mat3_copy(mat.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given matrix identity. It is identical with below,
|
||||
* but it is more easy to do that with this func especially for members
|
||||
* e.g. glm_mat3_identity(aStruct->aMatrix);
|
||||
*
|
||||
* @code
|
||||
* glm_mat3_copy(GLM_MAT3_IDENTITY, mat); // C only
|
||||
*
|
||||
* // or
|
||||
* mat3 mat = GLM_MAT3_IDENTITY_INIT;
|
||||
* @endcode
|
||||
*
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_mat3_identity() {
|
||||
mat3s r;
|
||||
glm_mat3_identity(r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given matrix array's each element identity matrix
|
||||
*
|
||||
* @param[in, out] mat matrix array (must be aligned (16/32)
|
||||
* if alignment is not disabled)
|
||||
*
|
||||
* @param[in] count count of matrices
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_mat3_identity_array(mat3s * __restrict mat, size_t count) {
|
||||
CGLM_ALIGN_MAT mat3s t = GLMS_MAT3_IDENTITY_INIT;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
glm_mat3_copy(t.raw, mat[i].raw);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given matrix zero.
|
||||
*
|
||||
* @returns matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_mat3_zero() {
|
||||
mat3s r;
|
||||
glm_mat3_zero(r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply m1 and m2 to dest
|
||||
*
|
||||
* m1, m2 and dest matrices can be same matrix, it is possible to write this:
|
||||
*
|
||||
* @code
|
||||
* mat3 m = GLM_MAT3_IDENTITY_INIT;
|
||||
* glm_mat3_mul(m, m, m);
|
||||
* @endcode
|
||||
*
|
||||
* @param[in] m1 left matrix
|
||||
* @param[in] m2 right matrix
|
||||
* @returns destination matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_mat3_mul(mat3s m1, mat3s m2) {
|
||||
mat3s r;
|
||||
glm_mat3_mul(m1.raw, m2.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief tranpose mat3 and store result in same matrix
|
||||
*
|
||||
* @param[in, out] m source and dest
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_mat3_transpose(mat3s m) {
|
||||
glm_mat3_transpose(m.raw);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply mat3 with vec3 (column vector) and store in dest vector
|
||||
*
|
||||
* @param[in] m mat3 (left)
|
||||
* @param[in] v vec3 (right, column vector)
|
||||
* @returns vec3 (result, column vector)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_mat3_mulv(mat3s m, vec3s v) {
|
||||
vec3s r;
|
||||
glm_mat3_mulv(m.raw, v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief trace of matrix
|
||||
*
|
||||
* sum of the elements on the main diagonal from upper left to the lower right
|
||||
*
|
||||
* @param[in] m matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_mat3_trace(mat3s m) {
|
||||
return glm_mat3_trace(m.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert mat3 to quaternion
|
||||
*
|
||||
* @param[in] m rotation matrix
|
||||
* @returns destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_mat3_quat(mat3s m) {
|
||||
versors r;
|
||||
glm_mat3_quat(m.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief scale (multiply with scalar) matrix
|
||||
*
|
||||
* multiply matrix with scalar
|
||||
*
|
||||
* @param[in] m matrix
|
||||
* @param[in] s scalar
|
||||
* @returns scaled matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_mat3_scale(mat3s m, float s) {
|
||||
glm_mat3_scale(m.raw, s);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mat3 determinant
|
||||
*
|
||||
* @param[in] mat matrix
|
||||
*
|
||||
* @return determinant
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_mat3_det(mat3s mat) {
|
||||
return glm_mat3_det(mat.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inverse mat3 and store in dest
|
||||
*
|
||||
* @param[in] mat matrix
|
||||
* @returns inverse matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_mat3_inv(mat3s mat) {
|
||||
mat3s r;
|
||||
glm_mat3_inv(mat.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief swap two matrix columns
|
||||
*
|
||||
* @param[in] mat matrix
|
||||
* @param[in] col1 col1
|
||||
* @param[in] col2 col2
|
||||
* @returns matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_mat3_swap_col(mat3s mat, int col1, int col2) {
|
||||
glm_mat3_swap_col(mat.raw, col1, col2);
|
||||
return mat;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief swap two matrix rows
|
||||
*
|
||||
* @param[in] mat matrix
|
||||
* @param[in] row1 row1
|
||||
* @param[in] row2 row2
|
||||
* @returns matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_mat3_swap_row(mat3s mat, int row1, int row2) {
|
||||
glm_mat3_swap_row(mat.raw, row1, row2);
|
||||
return mat;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief helper for R (row vector) * M (matrix) * C (column vector)
|
||||
*
|
||||
* rmc stands for Row * Matrix * Column
|
||||
*
|
||||
* the result is scalar because R * M = Matrix1x3 (row vector),
|
||||
* then Matrix1x3 * Vec3 (column vector) = Matrix1x1 (Scalar)
|
||||
*
|
||||
* @param[in] r row vector or matrix1x3
|
||||
* @param[in] m matrix3x3
|
||||
* @param[in] c column vector or matrix3x1
|
||||
*
|
||||
* @return scalar value e.g. Matrix1x1
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_mat3_rmc(vec3s r, mat3s m, vec3s c) {
|
||||
return glm_mat3_rmc(r.raw, m.raw, c.raw);
|
||||
}
|
||||
|
||||
#endif /* cglms_mat3s_h */
|
||||
466
include/cglm/struct/mat4.h
Normal file
466
include/cglm/struct/mat4.h
Normal file
@@ -0,0 +1,466 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*!
|
||||
* Most of functions in this header are optimized manually with SIMD
|
||||
* if available. You dont need to call/incude SIMD headers manually
|
||||
*/
|
||||
|
||||
/*
|
||||
Macros:
|
||||
GLMS_MAT4_IDENTITY_INIT
|
||||
GLMS_MAT4_ZERO_INIT
|
||||
GLMS_MAT4_IDENTITY
|
||||
GLMS_MAT4_ZERO
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE mat4s glms_mat4_ucopy(mat4s mat);
|
||||
CGLM_INLINE mat4s glms_mat4_copy(mat4s mat);
|
||||
CGLM_INLINE mat4s glms_mat4_identity();
|
||||
CGLM_INLINE void glms_mat4_identity_array(mat4s * __restrict mat, size_t count);
|
||||
CGLM_INLINE mat4s glms_mat4_zero();
|
||||
CGLM_INLINE mat3s glms_mat4_pick3(mat4s mat);
|
||||
CGLM_INLINE mat3s glms_mat4_pick3t(mat4s mat);
|
||||
CGLM_INLINE mat4s glms_mat4_ins3(mat3s mat);
|
||||
CGLM_INLINE mat4s glms_mat4_mul(mat4s m1, mat4s m2);
|
||||
CGLM_INLINE mat4s glms_mat4_mulN(mat4s * __restrict matrices[], uint32_t len);
|
||||
CGLM_INLINE vec4s glms_mat4_mulv(mat4s m, vec4s v);
|
||||
CGLM_INLINE float glms_mat4_trace(mat4s m);
|
||||
CGLM_INLINE float glms_mat4_trace3(mat4s m);
|
||||
CGLM_INLINE versors glms_mat4_quat(mat4s m);
|
||||
CGLM_INLINE vec3s glms_mat4_mulv3(mat4s m, vec3s v, float last);
|
||||
CGLM_INLINE mat4s glms_mat4_transpose(mat4s m);
|
||||
CGLM_INLINE mat4s glms_mat4_scale_p(mat4s m, float s);
|
||||
CGLM_INLINE mat4s glms_mat4_scale(mat4s m, float s);
|
||||
CGLM_INLINE float glms_mat4_det(mat4s mat);
|
||||
CGLM_INLINE mat4s glms_mat4_inv(mat4s mat);
|
||||
CGLM_INLINE mat4s glms_mat4_inv_fast(mat4s mat);
|
||||
CGLM_INLINE mat4s glms_mat4_swap_col(mat4s mat, int col1, int col2);
|
||||
CGLM_INLINE mat4s glms_mat4_swap_row(mat4s mat, int row1, int row2);
|
||||
CGLM_INLINE float glms_mat4_rmc(vec4s r, mat4s m, vec4s c);
|
||||
*/
|
||||
|
||||
#ifndef cglms_mat4s_h
|
||||
#define cglms_mat4s_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../mat4.h"
|
||||
#include "vec4.h"
|
||||
#include "vec3.h"
|
||||
|
||||
#define GLMS_MAT4_IDENTITY_INIT {1.0f, 0.0f, 0.0f, 0.0f, \
|
||||
0.0f, 1.0f, 0.0f, 0.0f, \
|
||||
0.0f, 0.0f, 1.0f, 0.0f, \
|
||||
0.0f, 0.0f, 0.0f, 1.0f}
|
||||
|
||||
#define GLMS_MAT4_ZERO_INIT {0.0f, 0.0f, 0.0f, 0.0f, \
|
||||
0.0f, 0.0f, 0.0f, 0.0f, \
|
||||
0.0f, 0.0f, 0.0f, 0.0f, \
|
||||
0.0f, 0.0f, 0.0f, 0.0f}
|
||||
|
||||
/* for C only */
|
||||
#define GLMS_MAT4_IDENTITY ((mat4s)GLMS_MAT4_IDENTITY_INIT)
|
||||
#define GLMS_MAT4_ZERO ((mat4s)GLMS_MAT4_ZERO_INIT)
|
||||
|
||||
/*!
|
||||
* @brief copy all members of [mat] to [dest]
|
||||
*
|
||||
* matrix may not be aligned, u stands for unaligned, this may be useful when
|
||||
* copying a matrix from external source e.g. asset importer...
|
||||
*
|
||||
* @param[in] mat source
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_ucopy(mat4s mat) {
|
||||
mat4s r;
|
||||
glm_mat4_ucopy(mat.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy all members of [mat] to [dest]
|
||||
*
|
||||
* @param[in] mat source
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_copy(mat4s mat) {
|
||||
mat4s r;
|
||||
glm_mat4_copy(mat.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given matrix identity. It is identical with below,
|
||||
* but it is more easy to do that with this func especially for members
|
||||
* e.g. glm_mat4_identity(aStruct->aMatrix);
|
||||
*
|
||||
* @code
|
||||
* glm_mat4_copy(GLM_MAT4_IDENTITY, mat); // C only
|
||||
*
|
||||
* // or
|
||||
* mat4 mat = GLM_MAT4_IDENTITY_INIT;
|
||||
* @endcode
|
||||
*
|
||||
* @retuns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_identity() {
|
||||
mat4s r;
|
||||
glm_mat4_identity(r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given matrix array's each element identity matrix
|
||||
*
|
||||
* @param[in, out] mat matrix array (must be aligned (16/32)
|
||||
* if alignment is not disabled)
|
||||
*
|
||||
* @param[in] count count of matrices
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_mat4_identity_array(mat4s * __restrict mat, size_t count) {
|
||||
CGLM_ALIGN_MAT mat4s t = GLMS_MAT4_IDENTITY_INIT;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
glm_mat4_copy(t.raw, mat[i].raw);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given matrix zero.
|
||||
*
|
||||
* @returns matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_zero() {
|
||||
mat4s r;
|
||||
glm_mat4_zero(r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy upper-left of mat4 to mat3
|
||||
*
|
||||
* @param[in] mat source
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_mat4_pick3(mat4s mat) {
|
||||
mat3s r;
|
||||
glm_mat4_pick3(mat.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy upper-left of mat4 to mat3 (transposed)
|
||||
*
|
||||
* the postfix t stands for transpose
|
||||
*
|
||||
* @param[in] mat source
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_mat4_pick3t(mat4s mat) {
|
||||
mat3s r;
|
||||
glm_mat4_pick3t(mat.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy mat3 to mat4's upper-left
|
||||
*
|
||||
* @param[in] mat source
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_ins3(mat3s mat) {
|
||||
mat4s r;
|
||||
glm_mat4_ins3(mat.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply m1 and m2 to dest
|
||||
*
|
||||
* m1, m2 and dest matrices can be same matrix, it is possible to write this:
|
||||
*
|
||||
* @code
|
||||
* mat4 m = GLM_MAT4_IDENTITY_INIT;
|
||||
* glm_mat4_mul(m, m, m);
|
||||
* @endcode
|
||||
*
|
||||
* @param[in] m1 left matrix
|
||||
* @param[in] m2 right matrix
|
||||
* @returns destination matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_mul(mat4s m1, mat4s m2) {
|
||||
mat4s r;
|
||||
glm_mat4_mul(m1.raw, m2.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mupliply N mat4 matrices and store result in dest
|
||||
*
|
||||
* this function lets you multiply multiple (more than two or more...) matrices
|
||||
* <br><br>multiplication will be done in loop, this may reduce instructions
|
||||
* size but if <b>len</b> is too small then compiler may unroll whole loop,
|
||||
* usage:
|
||||
* @code
|
||||
* mat m1, m2, m3, m4, res;
|
||||
*
|
||||
* res = glm_mat4_mulN((mat4 *[]){&m1, &m2, &m3, &m4}, 4);
|
||||
* @endcode
|
||||
*
|
||||
* @warning matrices parameter is pointer array not mat4 array!
|
||||
*
|
||||
* @param[in] matrices mat4 * array
|
||||
* @param[in] len matrices count
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_mulN(mat4s * __restrict matrices[], uint32_t len) {
|
||||
CGLM_ALIGN_MAT mat4s r = GLMS_MAT4_IDENTITY_INIT;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < len; i++) {
|
||||
r = glms_mat4_mul(r, *matrices[i]);
|
||||
}
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply mat4 with vec4 (column vector) and store in dest vector
|
||||
*
|
||||
* @param[in] m mat4 (left)
|
||||
* @param[in] v vec4 (right, column vector)
|
||||
* @returns vec4 (result, column vector)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_mat4_mulv(mat4s m, vec4s v) {
|
||||
vec4s r;
|
||||
glm_mat4_mulv(m.raw, v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief trace of matrix
|
||||
*
|
||||
* sum of the elements on the main diagonal from upper left to the lower right
|
||||
*
|
||||
* @param[in] m matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_mat4_trace(mat4s m) {
|
||||
return glm_mat4_trace(m.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief trace of matrix (rotation part)
|
||||
*
|
||||
* sum of the elements on the main diagonal from upper left to the lower right
|
||||
*
|
||||
* @param[in] m matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_mat4_trace3(mat4s m) {
|
||||
return glm_mat4_trace3(m.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert mat4's rotation part to quaternion
|
||||
*
|
||||
* @param[in] m affine matrix
|
||||
* @returns destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_mat4_quat(mat4s m) {
|
||||
versors r;
|
||||
glm_mat4_quat(m.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply vector with mat4
|
||||
*
|
||||
* @param[in] m mat4(affine transform)
|
||||
* @param[in] v vec3
|
||||
* @param[in] last 4th item to make it vec4
|
||||
* @returns result vector (vec3)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_mat4_mulv3(mat4s m, vec3s v, float last) {
|
||||
vec3s r;
|
||||
glm_mat4_mulv3(m.raw, v.raw, last, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief tranpose mat4 and store result in same matrix
|
||||
*
|
||||
* @param[in] m source
|
||||
* @returns result
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_transpose(mat4s m) {
|
||||
glm_mat4_transpose(m.raw);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief scale (multiply with scalar) matrix without simd optimization
|
||||
*
|
||||
* multiply matrix with scalar
|
||||
*
|
||||
* @param[in] m matrix
|
||||
* @param[in] s scalar
|
||||
* @returns matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_scale_p(mat4s m, float s) {
|
||||
glm_mat4_scale_p(m.raw, s);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief scale (multiply with scalar) matrix
|
||||
*
|
||||
* multiply matrix with scalar
|
||||
*
|
||||
* @param[in] m matrix
|
||||
* @param[in] s scalar
|
||||
* @returns matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_scale(mat4s m, float s) {
|
||||
glm_mat4_scale(m.raw, s);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mat4 determinant
|
||||
*
|
||||
* @param[in] mat matrix
|
||||
*
|
||||
* @return determinant
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_mat4_det(mat4s mat) {
|
||||
return glm_mat4_det(mat.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inverse mat4 and store in dest
|
||||
*
|
||||
* @param[in] mat matrix
|
||||
* @returns inverse matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_inv(mat4s mat) {
|
||||
mat4s r;
|
||||
glm_mat4_inv(mat.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inverse mat4 and store in dest
|
||||
*
|
||||
* this func uses reciprocal approximation without extra corrections
|
||||
* e.g Newton-Raphson. this should work faster than normal,
|
||||
* to get more precise use glm_mat4_inv version.
|
||||
*
|
||||
* NOTE: You will lose precision, glm_mat4_inv is more accurate
|
||||
*
|
||||
* @param[in] mat matrix
|
||||
* @returns inverse matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_inv_fast(mat4s mat) {
|
||||
mat4s r;
|
||||
glm_mat4_inv_fast(mat.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief swap two matrix columns
|
||||
*
|
||||
* @param[in] mat matrix
|
||||
* @param[in] col1 col1
|
||||
* @param[in] col2 col2
|
||||
* @returns matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_swap_col(mat4s mat, int col1, int col2) {
|
||||
glm_mat4_swap_col(mat.raw, col1, col2);
|
||||
return mat;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief swap two matrix rows
|
||||
*
|
||||
* @param[in] mat matrix
|
||||
* @param[in] row1 row1
|
||||
* @param[in] row2 row2
|
||||
* @returns matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_mat4_swap_row(mat4s mat, int row1, int row2) {
|
||||
glm_mat4_swap_row(mat.raw, row1, row2);
|
||||
return mat;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief helper for R (row vector) * M (matrix) * C (column vector)
|
||||
*
|
||||
* rmc stands for Row * Matrix * Column
|
||||
*
|
||||
* the result is scalar because R * M = Matrix1x4 (row vector),
|
||||
* then Matrix1x4 * Vec4 (column vector) = Matrix1x1 (Scalar)
|
||||
*
|
||||
* @param[in] r row vector or matrix1x4
|
||||
* @param[in] m matrix4x4
|
||||
* @param[in] c column vector or matrix4x1
|
||||
*
|
||||
* @return scalar value e.g. B(s)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_mat4_rmc(vec4s r, mat4s m, vec4s c) {
|
||||
return glm_mat4_rmc(r.raw, m.raw, c.raw);
|
||||
}
|
||||
|
||||
#endif /* cglms_mat4s_h */
|
||||
40
include/cglm/struct/plane.h
Normal file
40
include/cglm/struct/plane.h
Normal file
@@ -0,0 +1,40 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglms_planes_h
|
||||
#define cglms_planes_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../plane.h"
|
||||
#include "vec4.h"
|
||||
|
||||
/*
|
||||
Plane equation: Ax + By + Cz + D = 0;
|
||||
|
||||
It stored in vec4 as [A, B, C, D]. (A, B, C) is normal and D is distance
|
||||
*/
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE vec4s glms_plane_normalize(vec4s plane);
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @brief normalizes a plane
|
||||
*
|
||||
* @param[in] plane plane to normalize
|
||||
* @returns normalized plane
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_plane_normalize(vec4s plane) {
|
||||
glm_plane_normalize(plane.raw);
|
||||
return plane;
|
||||
}
|
||||
|
||||
#endif /* cglms_planes_h */
|
||||
104
include/cglm/struct/project.h
Normal file
104
include/cglm/struct/project.h
Normal file
@@ -0,0 +1,104 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglms_projects_h
|
||||
#define cglms_projects_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../project.h"
|
||||
#include "vec3.h"
|
||||
#include "vec4.h"
|
||||
#include "mat4.h"
|
||||
|
||||
/*!
|
||||
* @brief maps the specified viewport coordinates into specified space [1]
|
||||
* the matrix should contain projection matrix.
|
||||
*
|
||||
* if you don't have ( and don't want to have ) an inverse matrix then use
|
||||
* glm_unproject version. You may use existing inverse of matrix in somewhere
|
||||
* else, this is why glm_unprojecti exists to save save inversion cost
|
||||
*
|
||||
* [1] space:
|
||||
* 1- if m = invProj: View Space
|
||||
* 2- if m = invViewProj: World Space
|
||||
* 3- if m = invMVP: Object Space
|
||||
*
|
||||
* You probably want to map the coordinates into object space
|
||||
* so use invMVP as m
|
||||
*
|
||||
* Computing viewProj:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* glm_mat4_mul(viewProj, model, MVP);
|
||||
* glm_mat4_inv(viewProj, invMVP);
|
||||
*
|
||||
* @param[in] pos point/position in viewport coordinates
|
||||
* @param[in] invMat matrix (see brief)
|
||||
* @param[in] vp viewport as [x, y, width, height]
|
||||
* @returns unprojected coordinates
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_unprojecti(vec3s pos, mat4s invMat, vec4s vp) {
|
||||
vec3s r;
|
||||
glm_unprojecti(pos.raw, invMat.raw, vp.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief maps the specified viewport coordinates into specified space [1]
|
||||
* the matrix should contain projection matrix.
|
||||
*
|
||||
* this is same as glm_unprojecti except this function get inverse matrix for
|
||||
* you.
|
||||
*
|
||||
* [1] space:
|
||||
* 1- if m = proj: View Space
|
||||
* 2- if m = viewProj: World Space
|
||||
* 3- if m = MVP: Object Space
|
||||
*
|
||||
* You probably want to map the coordinates into object space
|
||||
* so use MVP as m
|
||||
*
|
||||
* Computing viewProj and MVP:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* glm_mat4_mul(viewProj, model, MVP);
|
||||
*
|
||||
* @param[in] pos point/position in viewport coordinates
|
||||
* @param[in] m matrix (see brief)
|
||||
* @param[in] vp viewport as [x, y, width, height]
|
||||
* @returns unprojected coordinates
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_unproject(vec3s pos, mat4s m, vec4s vp) {
|
||||
vec3s r;
|
||||
glm_unproject(pos.raw, m.raw, vp.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief map object coordinates to window coordinates
|
||||
*
|
||||
* Computing MVP:
|
||||
* glm_mat4_mul(proj, view, viewProj);
|
||||
* glm_mat4_mul(viewProj, model, MVP);
|
||||
*
|
||||
* @param[in] pos object coordinates
|
||||
* @param[in] m MVP matrix
|
||||
* @param[in] vp viewport as [x, y, width, height]
|
||||
* @returns projected coordinates
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_project(vec3s pos, mat4s m, vec4s vp) {
|
||||
vec3s r;
|
||||
glm_project(pos.raw, m.raw, vp.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
#endif /* cglms_projects_h */
|
||||
514
include/cglm/struct/quat.h
Normal file
514
include/cglm/struct/quat.h
Normal file
@@ -0,0 +1,514 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*
|
||||
Macros:
|
||||
GLMS_QUAT_IDENTITY_INIT
|
||||
GLMS_QUAT_IDENTITY
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE versors glms_quat_identity()
|
||||
CGLM_INLINE void glms_quat_identity_array(versor *q, size_t count)
|
||||
CGLM_INLINE versors glms_quat_init(float x, float y, float z, float w)
|
||||
CGLM_INLINE versors glms_quatv(float angle, vec3s axis)
|
||||
CGLM_INLINE versors glms_quat(float angle, float x, float y, float z)
|
||||
CGLM_INLINE float glms_quat_norm(versors q)
|
||||
CGLM_INLINE versors glms_quat_normalize(versors q)
|
||||
CGLM_INLINE float glms_quat_dot(versors p, versors q)
|
||||
CGLM_INLINE versors glms_quat_conjugate(versors q)
|
||||
CGLM_INLINE versors glms_quat_inv(versors q)
|
||||
CGLM_INLINE versors glms_quat_add(versors p, versors q)
|
||||
CGLM_INLINE versors glms_quat_sub(versors p, versors q)
|
||||
CGLM_INLINE vec3s glms_quat_imagn(versors q)
|
||||
CGLM_INLINE float glms_quat_imaglen(versors q)
|
||||
CGLM_INLINE float glms_quat_angle(versors q)
|
||||
CGLM_INLINE vec3s glms_quat_axis(versors q)
|
||||
CGLM_INLINE versors glms_quat_mul(versors p, versors q)
|
||||
CGLM_INLINE mat4s glms_quat_mat4(versors q)
|
||||
CGLM_INLINE mat4s glms_quat_mat4t(versors q)
|
||||
CGLM_INLINE mat3s glms_quat_mat3(versors q)
|
||||
CGLM_INLINE mat3s glms_quat_mat3t(versors q)
|
||||
CGLM_INLINE versors glms_quat_lerp(versors from, versors to, float t)
|
||||
CGLM_INLINE versors glms_quat_slerp(versors from, versors to, float t)
|
||||
CGLM_INLINE mat4s. glms_quat_look(vec3s eye, versors ori)
|
||||
CGLM_INLINE versors glms_quat_for(vec3s dir, vec3s fwd, vec3s up)
|
||||
CGLM_INLINE versors glms_quat_forp(vec3s from, vec3s to, vec3s fwd, vec3s up)
|
||||
CGLM_INLINE vec3s glms_quat_rotatev(versors q, vec3s v)
|
||||
CGLM_INLINE mat4s glms_quat_rotate(mat4s m, versors q)
|
||||
CGLM_INLINE mat4s glms_quat_rotate_at(mat4s m, versors q, vec3s pivot)
|
||||
CGLM_INLINE mat4s glms_quat_rotate_atm(versors q, vec3s pivot)
|
||||
*/
|
||||
|
||||
#ifndef cglms_quat_h
|
||||
#define cglms_quat_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../plane.h"
|
||||
#include "../quat.h"
|
||||
|
||||
/*
|
||||
* IMPORTANT:
|
||||
* ----------------------------------------------------------------------------
|
||||
* cglm stores quat as [x, y, z, w] since v0.3.6
|
||||
*
|
||||
* it was [w, x, y, z] before v0.3.6 it has been changed to [x, y, z, w]
|
||||
* with v0.3.6 version.
|
||||
* ----------------------------------------------------------------------------
|
||||
*/
|
||||
|
||||
#define GLMS_QUAT_IDENTITY_INIT GLM_QUAT_IDENTITY_INIT
|
||||
#define GLMS_QUAT_IDENTITY ((versors)GLMS_QUAT_IDENTITY_INIT)
|
||||
|
||||
/*!
|
||||
* @brief makes given quat to identity
|
||||
*
|
||||
* @returns identity quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat_identity() {
|
||||
versors dest;
|
||||
glm_quat_identity(dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make given quaternion array's each element identity quaternion
|
||||
*
|
||||
* @param[in, out] q quat array (must be aligned (16)
|
||||
* if alignment is not disabled)
|
||||
*
|
||||
* @param[in] count count of quaternions
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_quat_identity_array(versors * __restrict q, size_t count) {
|
||||
CGLM_ALIGN(16) versor v = GLM_QUAT_IDENTITY_INIT;
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < count; i++) {
|
||||
glm_vec4_copy(v, q[i].raw);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inits quaterion with raw values
|
||||
*
|
||||
* @param[in] x x
|
||||
* @param[in] y y
|
||||
* @param[in] z z
|
||||
* @param[in] w w (real part)
|
||||
* @returns quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat_init(float x, float y, float z, float w) {
|
||||
versors dest;
|
||||
glm_quat_init(dest.raw, x, y, z, w);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion with axis vector
|
||||
*
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] axis axis
|
||||
* @returns quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quatv(float angle, vec3s axis) {
|
||||
versors dest;
|
||||
glm_quatv(dest.raw, angle, axis.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates NEW quaternion with individual axis components
|
||||
*
|
||||
* @param[in] angle angle (radians)
|
||||
* @param[in] x axis.x
|
||||
* @param[in] y axis.y
|
||||
* @param[in] z axis.z
|
||||
* @returns quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat(float angle, float x, float y, float z) {
|
||||
versors dest;
|
||||
glm_quat(dest.raw, angle, x, y, z);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns norm (magnitude) of quaternion
|
||||
*
|
||||
* @param[out] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_quat_norm(versors q) {
|
||||
return glm_quat_norm(q.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @returns quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat_normalize(versors q) {
|
||||
versors dest;
|
||||
glm_quat_normalize_to(q.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief dot product of two quaternion
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @returns dot product
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_quat_dot(versors p, versors q) {
|
||||
return glm_quat_dot(p.raw, q.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief conjugate of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @returns conjugate
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat_conjugate(versors q) {
|
||||
versors dest;
|
||||
glm_quat_conjugate(q.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inverse of non-zero quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @returns inverse quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat_inv(versors q) {
|
||||
versors dest;
|
||||
glm_quat_inv(q.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add (componentwise) two quaternions and store result in dest
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @returns result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat_add(versors p, versors q) {
|
||||
versors dest;
|
||||
glm_quat_add(p.raw, q.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract (componentwise) two quaternions and store result in dest
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @returns result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat_sub(versors p, versors q) {
|
||||
versors dest;
|
||||
glm_quat_sub(p.raw, q.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns normalized imaginary part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_quat_imagn(versors q) {
|
||||
vec3s dest;
|
||||
glm_normalize_to(q.imag.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns length of imaginary part of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_quat_imaglen(versors q) {
|
||||
return glm_quat_imaglen(q.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief returns angle of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_quat_angle(versors q) {
|
||||
return glm_quat_angle(q.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief axis of quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @returns axis of quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_quat_axis(versors q) {
|
||||
vec3s dest;
|
||||
glm_quat_axis(q.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiplies two quaternion and stores result in dest
|
||||
* this is also called Hamilton Product
|
||||
*
|
||||
* According to WikiPedia:
|
||||
* The product of two rotation quaternions [clarification needed] will be
|
||||
* equivalent to the rotation q followed by the rotation p
|
||||
*
|
||||
* @param[in] p quaternion 1
|
||||
* @param[in] q quaternion 2
|
||||
* @returns result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat_mul(versors p, versors q) {
|
||||
versors dest;
|
||||
glm_quat_mul(p.raw, q.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat4
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_quat_mat4(versors q) {
|
||||
mat4s dest;
|
||||
glm_quat_mat4(q.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat4 (transposed)
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @returns result matrix as transposed
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_quat_mat4t(versors q) {
|
||||
mat4s dest;
|
||||
glm_quat_mat4t(q.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat3
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_quat_mat3(versors q) {
|
||||
mat3s dest;
|
||||
glm_quat_mat3(q.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert quaternion to mat3 (transposed)
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @returns result matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat3s
|
||||
glms_quat_mat3t(versors q) {
|
||||
mat3s dest;
|
||||
glm_quat_mat3t(q.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief interpolates between two quaternions
|
||||
* using linear interpolation (LERP)
|
||||
*
|
||||
* @param[in] from from
|
||||
* @param[in] to to
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
* @returns result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat_lerp(versors from, versors to, float t) {
|
||||
versors dest;
|
||||
glm_quat_lerp(from.raw, to.raw, t, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief interpolates between two quaternions
|
||||
* using spherical linear interpolation (SLERP)
|
||||
*
|
||||
* @param[in] from from
|
||||
* @param[in] to to
|
||||
* @param[in] t amout
|
||||
* @returns result quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat_slerp(versors from, versors to, float t) {
|
||||
versors dest;
|
||||
glm_quat_slerp(from.raw, to.raw, t, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates view matrix using quaternion as camera orientation
|
||||
*
|
||||
* @param[in] eye eye
|
||||
* @param[in] ori orientation in world space as quaternion
|
||||
* @returns view matrix
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_quat_look(vec3s eye, versors ori) {
|
||||
mat4s dest;
|
||||
glm_quat_look(eye.raw, ori.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates look rotation quaternion
|
||||
*
|
||||
* @param[in] dir direction to look
|
||||
* @param[in] fwd forward vector
|
||||
* @param[in] up up vector
|
||||
* @returns destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat_for(vec3s dir, vec3s fwd, vec3s up) {
|
||||
versors dest;
|
||||
glm_quat_for(dir.raw, fwd.raw, up.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief creates look rotation quaternion using source and
|
||||
* destination positions p suffix stands for position
|
||||
*
|
||||
* @param[in] from source point
|
||||
* @param[in] to destination point
|
||||
* @param[in] fwd forward vector
|
||||
* @param[in] up up vector
|
||||
* @returns destination quaternion
|
||||
*/
|
||||
CGLM_INLINE
|
||||
versors
|
||||
glms_quat_forp(vec3s from, vec3s to, vec3s fwd, vec3s up) {
|
||||
versors dest;
|
||||
glm_quat_forp(from.raw, to.raw, fwd.raw, up.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate vector using using quaternion
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @param[in] v vector to rotate
|
||||
* @returns rotated vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_quat_rotatev(versors q, vec3s v) {
|
||||
vec3s dest;
|
||||
glm_quat_rotatev(q.raw, v.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix using quaternion
|
||||
*
|
||||
* @param[in] m existing transform matrix
|
||||
* @param[in] q quaternion
|
||||
* @returns rotated matrix/transform
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_quat_rotate(mat4s m, versors q) {
|
||||
glm_quat_rotate(m.raw, q.raw, m.raw);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate existing transform matrix using quaternion at pivot point
|
||||
*
|
||||
* @param[in, out] m existing transform matrix
|
||||
* @param[in] q quaternion
|
||||
* @returns pivot
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_quat_rotate_at(mat4s m, versors q, vec3s pivot) {
|
||||
glm_quat_rotate_at(m.raw, q.raw, pivot.raw);
|
||||
return m;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate NEW transform matrix using quaternion at pivot point
|
||||
*
|
||||
* this creates rotation matrix, it assumes you don't have a matrix
|
||||
*
|
||||
* this should work faster than glm_quat_rotate_at because it reduces
|
||||
* one glm_translate.
|
||||
*
|
||||
* @param[in] q quaternion
|
||||
* @returns pivot
|
||||
*/
|
||||
CGLM_INLINE
|
||||
mat4s
|
||||
glms_quat_rotate_atm(versors q, vec3s pivot) {
|
||||
mat4s dest;
|
||||
glm_quat_rotate_atm(dest.raw, q.raw, pivot.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
#endif /* cglms_quat_h */
|
||||
93
include/cglm/struct/sphere.h
Normal file
93
include/cglm/struct/sphere.h
Normal file
@@ -0,0 +1,93 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglms_spheres_h
|
||||
#define cglms_spheres_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../sphere.h"
|
||||
#include "mat4.h"
|
||||
|
||||
/*
|
||||
Sphere Representation in cglm: [center.x, center.y, center.z, radii]
|
||||
|
||||
You could use this representation or you can convert it to vec4 before call
|
||||
any function
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @brief helper for getting sphere radius
|
||||
*
|
||||
* @param[in] s sphere
|
||||
*
|
||||
* @return returns radii
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_sphere_radii(vec4s s) {
|
||||
return glm_sphere_radii(s.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief apply transform to sphere, it is just wrapper for glm_mat4_mulv3
|
||||
*
|
||||
* @param[in] s sphere
|
||||
* @param[in] m transform matrix
|
||||
* @returns transformed sphere
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_sphere_transform(vec4s s, mat4 m) {
|
||||
vec4s r;
|
||||
glm_sphere_transform(s.raw, m, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief merges two spheres and creates a new one
|
||||
*
|
||||
* two sphere must be in same space, for instance if one in world space then
|
||||
* the other must be in world space too, not in local space.
|
||||
*
|
||||
* @param[in] s1 sphere 1
|
||||
* @param[in] s2 sphere 2
|
||||
* returns merged/extended sphere
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_sphere_merge(vec4s s1, vec4s s2) {
|
||||
vec4s r;
|
||||
glm_sphere_merge(s1.raw, s2.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if two sphere intersects
|
||||
*
|
||||
* @param[in] s1 sphere
|
||||
* @param[in] s2 other sphere
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_sphere_sphere(vec4s s1, vec4s s2) {
|
||||
return glm_sphere_sphere(s1.raw, s2.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if sphere intersects with point
|
||||
*
|
||||
* @param[in] s sphere
|
||||
* @param[in] point point
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_sphere_point(vec4s s, vec3s point) {
|
||||
return glm_sphere_point(s.raw, point.raw);
|
||||
}
|
||||
|
||||
#endif /* cglms_spheres_h */
|
||||
198
include/cglm/struct/vec3-ext.h
Normal file
198
include/cglm/struct/vec3-ext.h
Normal file
@@ -0,0 +1,198 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @brief SIMD like functions
|
||||
*/
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE vec3s glms_vec3_broadcast(float val);
|
||||
CGLM_INLINE bool glms_vec3_eq(vec3s v, float val);
|
||||
CGLM_INLINE bool glms_vec3_eq_eps(vec3s v, float val);
|
||||
CGLM_INLINE bool glms_vec3_eq_all(vec3s v);
|
||||
CGLM_INLINE bool glms_vec3_eqv(vec3s a, vec3s b);
|
||||
CGLM_INLINE bool glms_vec3_eqv_eps(vec3s a, vec3s b);
|
||||
CGLM_INLINE float glms_vec3_max(vec3s v);
|
||||
CGLM_INLINE float glms_vec3_min(vec3s v);
|
||||
CGLM_INLINE bool glms_vec3_isnan(vec3s v);
|
||||
CGLM_INLINE bool glms_vec3_isinf(vec3s v);
|
||||
CGLM_INLINE bool glms_vec3_isvalid(vec3s v);
|
||||
CGLM_INLINE vec3s glms_vec3_sign(vec3s v);
|
||||
CGLM_INLINE vec3s glms_vec3_sqrt(vec3s v);
|
||||
*/
|
||||
|
||||
#ifndef cglms_vec3s_ext_h
|
||||
#define cglms_vec3s_ext_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../util.h"
|
||||
#include "../vec3-ext.h"
|
||||
|
||||
/*!
|
||||
* @brief fill a vector with specified value
|
||||
*
|
||||
* @param[in] val value
|
||||
* @returns dest
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_broadcast(float val) {
|
||||
vec3s r;
|
||||
glm_vec3_broadcast(val, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to value (without epsilon)
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] val value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec3_eq(vec3s v, float val) {
|
||||
return glm_vec3_eq(v.raw, val);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to value (with epsilon)
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] val value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec3_eq_eps(vec3s v, float val) {
|
||||
return glm_vec3_eq_eps(v.raw, val);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vectors members are equal (without epsilon)
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec3_eq_all(vec3s v) {
|
||||
return glm_vec3_eq_all(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to another (without epsilon)
|
||||
*
|
||||
* @param[in] a vector
|
||||
* @param[in] b vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec3_eqv(vec3s a, vec3s b) {
|
||||
return glm_vec3_eqv(a.raw, b.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to another (with epsilon)
|
||||
*
|
||||
* @param[in] a vector
|
||||
* @param[in] b vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec3_eqv_eps(vec3s a, vec3s b) {
|
||||
return glm_vec3_eqv_eps(a.raw, b.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief max value of vector
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec3_max(vec3s v) {
|
||||
return glm_vec3_max(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief min value of vector
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec3_min(vec3s v) {
|
||||
return glm_vec3_min(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are NaN (not a number)
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec3_isnan(vec3s v) {
|
||||
return glm_vec3_isnan(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are INFINITY
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec3_isinf(vec3s v) {
|
||||
return glm_vec3_isinf(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are valid number
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec3_isvalid(vec3s v) {
|
||||
return glm_vec3_isvalid(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit float as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero/NaN input
|
||||
*
|
||||
* @param v vector
|
||||
* @returns sign vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_sign(vec3s v) {
|
||||
vec3s r;
|
||||
glm_vec3_sign(v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief square root of each vector item
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_sqrt(vec3s v) {
|
||||
vec3s r;
|
||||
glm_vec3_sqrt(v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
#endif /* cglms_vec3s_ext_h */
|
||||
750
include/cglm/struct/vec3.h
Normal file
750
include/cglm/struct/vec3.h
Normal file
@@ -0,0 +1,750 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*
|
||||
Macros:
|
||||
GLMS_VEC3_ONE_INIT
|
||||
GLMS_VEC3_ZERO_INIT
|
||||
GLMS_VEC3_ONE
|
||||
GLMS_VEC3_ZERO
|
||||
GLMS_YUP
|
||||
GLMS_ZUP
|
||||
GLMS_XUP
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE vec3s glms_vec3(vec4s v4);
|
||||
CGLM_INLINE void glms_vec3_pack(vec3s dst[], vec3 src[], size_t len);
|
||||
CGLM_INLINE void glms_vec3_unpack(vec3 dst[], vec3s src[], size_t len);
|
||||
CGLM_INLINE vec3s glms_vec3_zero();
|
||||
CGLM_INLINE vec3s glms_vec3_one();
|
||||
CGLM_INLINE float glms_vec3_dot(vec3s a, vec3s b);
|
||||
CGLM_INLINE float glms_vec3_norm2(vec3s v);
|
||||
CGLM_INLINE float glms_vec3_norm(vec3s v);
|
||||
CGLM_INLINE vec3s glms_vec3_add(vec3s a, vec3s b);
|
||||
CGLM_INLINE vec3s glms_vec3_adds(vec3s a, float s);
|
||||
CGLM_INLINE vec3s glms_vec3_sub(vec3s a, vec3s b);
|
||||
CGLM_INLINE vec3s glms_vec3_subs(vec3s a, float s);
|
||||
CGLM_INLINE vec3s glms_vec3_mul(vec3s a, vec3s b);
|
||||
CGLM_INLINE vec3s glms_vec3_scale(vec3s v, float s);
|
||||
CGLM_INLINE vec3s glms_vec3_scale_as(vec3s v, float s);
|
||||
CGLM_INLINE vec3s glms_vec3_div(vec3s a, vec3s b);
|
||||
CGLM_INLINE vec3s glms_vec3_divs(vec3s a, float s);
|
||||
CGLM_INLINE vec3s glms_vec3_addadd(vec3s a, vec3s b, vec3s dest);
|
||||
CGLM_INLINE vec3s glms_vec3_subadd(vec3s a, vec3s b, vec3s dest);
|
||||
CGLM_INLINE vec3s glms_vec3_muladd(vec3s a, vec3s b, vec3s dest);
|
||||
CGLM_INLINE vec3s glms_vec3_muladds(vec3s a, float s, vec3s dest);
|
||||
CGLM_INLINE vec3s glms_vec3_maxadd(vec3s a, vec3s b, vec3s dest);
|
||||
CGLM_INLINE vec3s glms_vec3_minadd(vec3s a, vec3s b, vec3s dest);
|
||||
CGLM_INLINE vec3s glms_vec3_flipsign(vec3s v);
|
||||
CGLM_INLINE vec3s glms_vec3_negate(vec3s v);
|
||||
CGLM_INLINE vec3s glms_vec3_inv(vec3s v);
|
||||
CGLM_INLINE vec3s glms_vec3_normalize(vec3s v);
|
||||
CGLM_INLINE vec3s glms_vec3_cross(vec3s a, vec3s b);
|
||||
CGLM_INLINE vec3s glms_vec3_crossn(vec3s a, vec3s b);
|
||||
CGLM_INLINE float glms_vec3_distance(vec3s a, vec3s b);
|
||||
CGLM_INLINE float glms_vec3_angle(vec3s a, vec3s b);
|
||||
CGLM_INLINE vec3s glms_vec3_rotate(vec3s v, float angle, vec3s axis);
|
||||
CGLM_INLINE vec3s glms_vec3_rotate_m4(mat4s m, vec3s v);
|
||||
CGLM_INLINE vec3s glms_vec3_rotate_m3(mat3s m, vec3s v);
|
||||
CGLM_INLINE vec3s glms_vec3_proj(vec3s a, vec3s b);
|
||||
CGLM_INLINE vec3s glms_vec3_center(vec3s a, vec3s b);
|
||||
CGLM_INLINE float glms_vec3_distance2(vec3s a, vec3s b);
|
||||
CGLM_INLINE vec3s glms_vec3_maxv(vec3s a, vec3s b);
|
||||
CGLM_INLINE vec3s glms_vec3_minv(vec3s a, vec3s b);
|
||||
CGLM_INLINE vec3s glms_vec3_ortho(vec3s v);
|
||||
CGLM_INLINE vec3s glms_vec3_clamp(vec3s v, float minVal, float maxVal);
|
||||
CGLM_INLINE vec3s glms_vec3_lerp(vec3s from, vec3s to, float t);
|
||||
|
||||
Convenient:
|
||||
CGLM_INLINE vec3s glms_cross(vec3s a, vec3s b);
|
||||
CGLM_INLINE float glms_dot(vec3s a, vec3s b);
|
||||
CGLM_INLINE vec3s glms_normalize(vec3s v);
|
||||
*/
|
||||
|
||||
#ifndef cglms_vec3s_h
|
||||
#define cglms_vec3s_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../util.h"
|
||||
#include "../vec3.h"
|
||||
#include "vec3-ext.h"
|
||||
|
||||
#define GLMS_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
|
||||
#define GLMS_VEC3_ZERO_INIT {0.0f, 0.0f, 0.0f}
|
||||
|
||||
#define GLMS_VEC3_ONE ((vec3s)GLMS_VEC3_ONE_INIT)
|
||||
#define GLMS_VEC3_ZERO ((vec3s)GLMS_VEC3_ZERO_INIT)
|
||||
|
||||
#define GLMS_YUP ((vec3s){0.0f, 1.0f, 0.0f})
|
||||
#define GLMS_ZUP ((vec3s){0.0f, 0.0f, 1.0f})
|
||||
#define GLMS_XUP ((vec3s){1.0f, 0.0f, 0.0f})
|
||||
|
||||
/*!
|
||||
* @brief init vec3 using vec4
|
||||
*
|
||||
* @param[in] v4 vector4
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3(vec4s v4) {
|
||||
vec3s r;
|
||||
glm_vec3(v4.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief pack an array of vec3 into an array of vec3s
|
||||
*
|
||||
* @param[out] dst array of vec3
|
||||
* @param[in] src array of vec3s
|
||||
* @param[in] len number of elements
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_vec3_pack(vec3s dst[], vec3 src[], size_t len) {
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < len; i++) {
|
||||
glm_vec3_copy(src[i], dst[i].raw);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief unpack an array of vec3s into an array of vec3
|
||||
*
|
||||
* @param[out] dst array of vec3s
|
||||
* @param[in] src array of vec3
|
||||
* @param[in] len number of elements
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_vec3_unpack(vec3 dst[], vec3s src[], size_t len) {
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < len; i++) {
|
||||
glm_vec3_copy(src[i].raw, dst[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector zero
|
||||
*
|
||||
* @returns zero vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_zero() {
|
||||
vec3s r;
|
||||
glm_vec3_zero(r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector one
|
||||
*
|
||||
* @returns one vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_one() {
|
||||
vec3s r;
|
||||
glm_vec3_one(r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief vec3 dot product
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
*
|
||||
* @return dot product
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec3_dot(vec3s a, vec3s b) {
|
||||
return glm_vec3_dot(a.raw, b.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief norm * norm (magnitude) of vec
|
||||
*
|
||||
* we can use this func instead of calling norm * norm, because it would call
|
||||
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
|
||||
* not good name for this func
|
||||
*
|
||||
* @param[in] v vector
|
||||
*
|
||||
* @return norm * norm
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec3_norm2(vec3s v) {
|
||||
return glm_vec3_norm2(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief norm (magnitude) of vec3
|
||||
*
|
||||
* @param[in] v vector
|
||||
*
|
||||
* @return norm
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec3_norm(vec3s v) {
|
||||
return glm_vec3_norm(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add a vector to b vector store result in dest
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_add(vec3s a, vec3s b) {
|
||||
vec3s r;
|
||||
glm_vec3_add(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add scalar to v vector store result in dest (d = v + s)
|
||||
*
|
||||
* @param[in] a vector
|
||||
* @param[in] s scalar
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_adds(vec3s a, float s) {
|
||||
vec3s r;
|
||||
glm_vec3_adds(a.raw, s, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract b vector from a vector store result in dest
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_sub(vec3s a, vec3s b) {
|
||||
vec3s r;
|
||||
glm_vec3_sub(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract scalar from v vector store result in dest (d = v - s)
|
||||
*
|
||||
* @param[in] a vector
|
||||
* @param[in] s scalar
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_subs(vec3s a, float s) {
|
||||
vec3s r;
|
||||
glm_vec3_subs(a.raw, s, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply two vector (component-wise multiplication)
|
||||
*
|
||||
* @param a vector1
|
||||
* @param b vector2
|
||||
* @returns v3 = (a[0] * b[0], a[1] * b[1], a[2] * b[2])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_mul(vec3s a, vec3s b) {
|
||||
vec3s r;
|
||||
glm_vec3_mul(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply/scale vec3 vector with scalar: result = v * s
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_scale(vec3s v, float s) {
|
||||
vec3s r;
|
||||
glm_vec3_scale(v.raw, s, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vec3 vector scale as specified: result = unit(v) * s
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_scale_as(vec3s v, float s) {
|
||||
vec3s r;
|
||||
glm_vec3_scale_as(v.raw, s, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief div vector with another component-wise division: d = a / b
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns result = (a[0]/b[0], a[1]/b[1], a[2]/b[2])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_div(vec3s a, vec3s b) {
|
||||
vec3s r;
|
||||
glm_vec3_div(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief div vector with scalar: d = v / s
|
||||
*
|
||||
* @param[in] a vector
|
||||
* @param[in] s scalar
|
||||
* @returns result = (a[0]/s, a[1]/s, a[2]/s)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_divs(vec3s a, float s) {
|
||||
vec3s r;
|
||||
glm_vec3_divs(a.raw, s, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add two vectors and add result to sum
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns dest += (a + b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_addadd(vec3s a, vec3s b, vec3s dest) {
|
||||
glm_vec3_addadd(a.raw, b.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief sub two vectors and add result to dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns dest += (a + b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_subadd(vec3s a, vec3s b, vec3s dest) {
|
||||
glm_vec3_subadd(a.raw, b.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mul two vectors and add result to dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns dest += (a * b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_muladd(vec3s a, vec3s b, vec3s dest) {
|
||||
glm_vec3_muladd(a.raw, b.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mul vector with scalar and add result to sum
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector
|
||||
* @param[in] s scalar
|
||||
* @returns dest += (a * b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_muladds(vec3s a, float s, vec3s dest) {
|
||||
glm_vec3_muladds(a.raw, s, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add max of two vector to result/dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns dest += max(a, b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_maxadd(vec3s a, vec3s b, vec3s dest) {
|
||||
glm_vec3_maxadd(a.raw, b.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add min of two vector to result/dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns dest += min(a, b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_minadd(vec3s a, vec3s b, vec3s dest) {
|
||||
glm_vec3_minadd(a.raw, b.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief negate vector components and store result in dest
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @returns result vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_flipsign(vec3s v) {
|
||||
glm_vec3_flipsign(v.raw);
|
||||
return v;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief negate vector components
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @returns negated vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_negate(vec3s v) {
|
||||
glm_vec3_negate(v.raw);
|
||||
return v;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize vec3 and store result in same vec
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @returns normalized vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_normalize(vec3s v) {
|
||||
glm_vec3_normalize(v.raw);
|
||||
return v;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief cross product of two vector (RH)
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_cross(vec3s a, vec3s b) {
|
||||
vec3s r;
|
||||
glm_vec3_cross(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief cross product of two vector (RH) and normalize the result
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_crossn(vec3s a, vec3s b) {
|
||||
vec3s r;
|
||||
glm_vec3_crossn(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief angle betwen two vector
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
*
|
||||
* @return angle as radians
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec3_angle(vec3s a, vec3s b) {
|
||||
return glm_vec3_angle(a.raw, b.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate vec3 around axis by angle using Rodrigues' rotation formula
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] axis axis vector (must be unit vector)
|
||||
* @param[in] angle angle by radians
|
||||
* @returns rotated vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_rotate(vec3s v, float angle, vec3s axis) {
|
||||
glm_vec3_rotate(v.raw, angle, axis.raw);
|
||||
return v;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief apply rotation matrix to vector
|
||||
*
|
||||
* matrix format should be (no perspective):
|
||||
* a b c x
|
||||
* e f g y
|
||||
* i j k z
|
||||
* 0 0 0 w
|
||||
*
|
||||
* @param[in] m affine matrix or rot matrix
|
||||
* @param[in] v vector
|
||||
* @returns rotated vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_rotate_m4(mat4s m, vec3s v) {
|
||||
vec3s r;
|
||||
glm_vec3_rotate_m4(m.raw, v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief apply rotation matrix to vector
|
||||
*
|
||||
* @param[in] m affine matrix or rot matrix
|
||||
* @param[in] v vector
|
||||
* @returns rotated vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_rotate_m3(mat3s m, vec3s v) {
|
||||
vec3s r;
|
||||
glm_vec3_rotate_m3(m.raw, v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief project a vector onto b vector
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @returns projected vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_proj(vec3s a, vec3s b) {
|
||||
vec3s r;
|
||||
glm_vec3_proj(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief find center point of two vector
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @returns center point
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_center(vec3s a, vec3s b) {
|
||||
vec3s r;
|
||||
glm_vec3_center(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief squared distance between two vectors
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @return squared distance (distance * distance)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec3_distance2(vec3s a, vec3s b) {
|
||||
return glm_vec3_distance2(a.raw, b.raw);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief distance between two vectors
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @return distance
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec3_distance(vec3s a, vec3s b) {
|
||||
return glm_vec3_distance(a.raw, b.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief max values of vectors
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_maxv(vec3s a, vec3s b) {
|
||||
vec3s r;
|
||||
glm_vec3_maxv(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief min values of vectors
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_minv(vec3s a, vec3s b) {
|
||||
vec3s r;
|
||||
glm_vec3_minv(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief possible orthogonal/perpendicular vector
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @returns orthogonal/perpendicular vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_ortho(vec3s v) {
|
||||
vec3s r;
|
||||
glm_vec3_ortho(v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief clamp vector's individual members between min and max values
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] minVal minimum value
|
||||
* @param[in] maxVal maximum value
|
||||
* @returns clamped vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_clamp(vec3s v, float minVal, float maxVal) {
|
||||
glm_vec3_clamp(v.raw, minVal, maxVal);
|
||||
return v;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief linear interpolation between two vector
|
||||
*
|
||||
* formula: from + s * (to - from)
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec3_lerp(vec3s from, vec3s to, float t) {
|
||||
vec3s r;
|
||||
glm_vec3_lerp(from.raw, to.raw, t, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief vec3 cross product
|
||||
*
|
||||
* this is just convenient wrapper
|
||||
*
|
||||
* @param[in] a source 1
|
||||
* @param[in] b source 2
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_cross(vec3s a, vec3s b) {
|
||||
vec3s r;
|
||||
glm_cross(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief vec3 dot product
|
||||
*
|
||||
* this is just convenient wrapper
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @return dot product
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_dot(vec3s a, vec3s b) {
|
||||
return glm_dot(a.raw, b.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize vec3 and store result in same vec
|
||||
*
|
||||
* this is just convenient wrapper
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @returns normalized vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_normalize(vec3s v) {
|
||||
glm_normalize(v.raw);
|
||||
return v;
|
||||
}
|
||||
|
||||
#endif /* cglms_vec3s_h */
|
||||
198
include/cglm/struct/vec4-ext.h
Normal file
198
include/cglm/struct/vec4-ext.h
Normal file
@@ -0,0 +1,198 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*!
|
||||
* @brief SIMD like functions
|
||||
*/
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE vec4s glms_vec4_broadcast(float val);
|
||||
CGLM_INLINE bool glms_vec4_eq(vec4s v, float val);
|
||||
CGLM_INLINE bool glms_vec4_eq_eps(vec4s v, float val);
|
||||
CGLM_INLINE bool glms_vec4_eq_all(vec4s v);
|
||||
CGLM_INLINE bool glms_vec4_eqv(vec4s a, vec4s b);
|
||||
CGLM_INLINE bool glms_vec4_eqv_eps(vec4s a, vec4s b);
|
||||
CGLM_INLINE float glms_vec4_max(vec4s v);
|
||||
CGLM_INLINE float glms_vec4_min(vec4s v);
|
||||
CGLM_INLINE bool glms_vec4_isnan(vec4s v);
|
||||
CGLM_INLINE bool glms_vec4_isinf(vec4s v);
|
||||
CGLM_INLINE bool glms_vec4_isvalid(vec4s v);
|
||||
CGLM_INLINE vec4s glms_vec4_sign(vec4s v);
|
||||
CGLM_INLINE vec4s glms_vec4_sqrt(vec4s v);
|
||||
*/
|
||||
|
||||
#ifndef cglms_vec4s_ext_h
|
||||
#define cglms_vec4s_ext_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../util.h"
|
||||
#include "../vec4-ext.h"
|
||||
|
||||
/*!
|
||||
* @brief fill a vector with specified value
|
||||
*
|
||||
* @param val value
|
||||
* @returns dest
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_broadcast(float val) {
|
||||
vec4s r;
|
||||
glm_vec4_broadcast(val, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to value (without epsilon)
|
||||
*
|
||||
* @param v vector
|
||||
* @param val value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec4_eq(vec4s v, float val) {
|
||||
return glm_vec4_eq(v.raw, val);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to value (with epsilon)
|
||||
*
|
||||
* @param v vector
|
||||
* @param val value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec4_eq_eps(vec4s v, float val) {
|
||||
return glm_vec4_eq_eps(v.raw, val);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vectors members are equal (without epsilon)
|
||||
*
|
||||
* @param v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec4_eq_all(vec4s v) {
|
||||
return glm_vec4_eq_all(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to another (without epsilon)
|
||||
*
|
||||
* @param a vector
|
||||
* @param b vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec4_eqv(vec4s a, vec4s b) {
|
||||
return glm_vec4_eqv(a.raw, b.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to another (with epsilon)
|
||||
*
|
||||
* @param a vector
|
||||
* @param b vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec4_eqv_eps(vec4s a, vec4s b) {
|
||||
return glm_vec4_eqv_eps(a.raw, b.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief max value of vector
|
||||
*
|
||||
* @param v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec4_max(vec4s v) {
|
||||
return glm_vec4_max(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief min value of vector
|
||||
*
|
||||
* @param v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec4_min(vec4s v) {
|
||||
return glm_vec4_min(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if one of items is NaN (not a number)
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec4_isnan(vec4s v) {
|
||||
return glm_vec4_isnan(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if one of items is INFINITY
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec4_isinf(vec4s v) {
|
||||
return glm_vec4_isinf(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are valid number
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glms_vec4_isvalid(vec4s v) {
|
||||
return glm_vec4_isvalid(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit float as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero/NaN input
|
||||
*
|
||||
* @param v vector
|
||||
* @returns sign vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_sign(vec4s v) {
|
||||
vec4s r;
|
||||
glm_vec4_sign(v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief square root of each vector item
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_sqrt(vec4s v) {
|
||||
vec4s r;
|
||||
glm_vec4_sqrt(v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
#endif /* cglms_vec4s_ext_h */
|
||||
580
include/cglm/struct/vec4.h
Normal file
580
include/cglm/struct/vec4.h
Normal file
@@ -0,0 +1,580 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*
|
||||
Macros:
|
||||
GLM_VEC4_ONE_INIT
|
||||
GLM_VEC4_BLACK_INIT
|
||||
GLM_VEC4_ZERO_INIT
|
||||
GLM_VEC4_ONE
|
||||
GLM_VEC4_BLACK
|
||||
GLM_VEC4_ZERO
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE vec4s glms_vec4(vec3s v3, float last);
|
||||
CGLM_INLINE vec3s glms_vec4_copy3(vec4s v);
|
||||
CGLM_INLINE vec4s glms_vec4_copy(vec4s v);
|
||||
CGLM_INLINE vec4s glms_vec4_ucopy(vec4s v);
|
||||
CGLM_INLINE void glms_vec4_pack(vec4s dst[], vec4 src[], size_t len);
|
||||
CGLM_INLINE void glms_vec4_unpack(vec4 dst[], vec4s src[], size_t len);
|
||||
CGLM_INLINE float glms_vec4_dot(vec4s a, vec4s b);
|
||||
CGLM_INLINE float glms_vec4_norm2(vec4s v);
|
||||
CGLM_INLINE float glms_vec4_norm(vec4s v);
|
||||
CGLM_INLINE vec4s glms_vec4_add(vec4s a, vec4s b);
|
||||
CGLM_INLINE vec4s glms_vec4_adds(vec4s v, float s);
|
||||
CGLM_INLINE vec4s glms_vec4_sub(vec4s a, vec4s b);
|
||||
CGLM_INLINE vec4s glms_vec4_subs(vec4s v, float s);
|
||||
CGLM_INLINE vec4s glms_vec4_mul(vec4s a, vec4s b);
|
||||
CGLM_INLINE vec4s glms_vec4_scale(vec4s v, float s);
|
||||
CGLM_INLINE vec4s glms_vec4_scale_as(vec4s v, float s);
|
||||
CGLM_INLINE vec4s glms_vec4_div(vec4s a, vec4s b);
|
||||
CGLM_INLINE vec4s glms_vec4_divs(vec4s v, float s);
|
||||
CGLM_INLINE vec4s glms_vec4_addadd(vec4s a, vec4s b, vec4s dest);
|
||||
CGLM_INLINE vec4s glms_vec4_subadd(vec4s a, vec4s b, vec4s dest);
|
||||
CGLM_INLINE vec4s glms_vec4_muladd(vec4s a, vec4s b, vec4s dest);
|
||||
CGLM_INLINE vec4s glms_vec4_muladds(vec4s a, float s, vec4s dest);
|
||||
CGLM_INLINE vec4s glms_vec4_maxadd(vec4s a, vec4s b, vec4s dest);
|
||||
CGLM_INLINE vec4s glms_vec4_minadd(vec4s a, vec4s b, vec4s dest);
|
||||
CGLM_INLINE vec4s glms_vec4_negate(vec4s v);
|
||||
CGLM_INLINE vec4s glms_vec4_inv(vec4s v);
|
||||
CGLM_INLINE vec4s glms_vec4_normalize(vec4s v);
|
||||
CGLM_INLINE float glms_vec4_distance(vec4s a, vec4s b);
|
||||
CGLM_INLINE vec4s glms_vec4_maxv(vec4s a, vec4s b);
|
||||
CGLM_INLINE vec4s glms_vec4_minv(vec4s a, vec4s b);
|
||||
CGLM_INLINE vec4s glms_vec4_clamp(vec4s v, float minVal, float maxVal);
|
||||
CGLM_INLINE vec4s glms_vec4_lerp(vec4s from, vec4s to, float t);
|
||||
CGLM_INLINE vec4s glms_vec4_cubic(float s);
|
||||
*/
|
||||
|
||||
#ifndef cglms_vec4s_h
|
||||
#define cglms_vec4s_h
|
||||
|
||||
#include "../common.h"
|
||||
#include "../types-struct.h"
|
||||
#include "../util.h"
|
||||
#include "../vec4.h"
|
||||
#include "vec4-ext.h"
|
||||
|
||||
#define GLMS_VEC4_ONE_INIT {1.0f, 1.0f, 1.0f, 1.0f}
|
||||
#define GLMS_VEC4_BLACK_INIT {0.0f, 0.0f, 0.0f, 1.0f}
|
||||
#define GLMS_VEC4_ZERO_INIT {0.0f, 0.0f, 0.0f, 0.0f}
|
||||
|
||||
#define GLMS_VEC4_ONE ((vec4s)GLM_VEC4_ONE_INIT)
|
||||
#define GLMS_VEC4_BLACK ((vec4s)GLM_VEC4_BLACK_INIT)
|
||||
#define GLMS_VEC4_ZERO ((vec4s)GLM_VEC4_ZERO_INIT)
|
||||
|
||||
/*!
|
||||
* @brief init vec4 using vec3
|
||||
*
|
||||
* @param[in] v3 vector3
|
||||
* @param[in] last last item
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4(vec3s v3, float last) {
|
||||
vec4s r;
|
||||
glm_vec4(v3.raw, last, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy first 3 members of [a] to [dest]
|
||||
*
|
||||
* @param[in] v source
|
||||
* @returns vec3
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec3s
|
||||
glms_vec4_copy3(vec4s v) {
|
||||
vec3s r;
|
||||
glm_vec4_copy3(v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy all members of [a] to [dest]
|
||||
*
|
||||
* @param[in] v source
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_copy(vec4s v) {
|
||||
vec4s r;
|
||||
glm_vec4_copy(v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy all members of [a] to [dest]
|
||||
*
|
||||
* alignment is not required
|
||||
*
|
||||
* @param[in] v source
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_ucopy(vec4s v) {
|
||||
vec4s r;
|
||||
glm_vec4_ucopy(v.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief pack an array of vec4 into an array of vec4s
|
||||
*
|
||||
* @param[out] dst array of vec4
|
||||
* @param[in] src array of vec4s
|
||||
* @param[in] len number of elements
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_vec4_pack(vec4s dst[], vec4 src[], size_t len) {
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < len; i++) {
|
||||
glm_vec4_copy(src[i], dst[i].raw);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief unpack an array of vec4s into an array of vec4
|
||||
*
|
||||
* @param[out] dst array of vec4s
|
||||
* @param[in] src array of vec4
|
||||
* @param[in] len number of elements
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glms_vec4_unpack(vec4 dst[], vec4s src[], size_t len) {
|
||||
size_t i;
|
||||
|
||||
for (i = 0; i < len; i++) {
|
||||
glm_vec4_copy(src[i].raw, dst[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector zero
|
||||
*
|
||||
* @returns zero vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_zero() {
|
||||
vec4s r;
|
||||
glm_vec4_zero(r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector one
|
||||
*
|
||||
* @returns one vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_one() {
|
||||
vec4s r;
|
||||
glm_vec4_one(r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief vec4 dot product
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
*
|
||||
* @return dot product
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec4_dot(vec4s a, vec4s b) {
|
||||
return glm_vec4_dot(a.raw, b.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief norm * norm (magnitude) of vec
|
||||
*
|
||||
* we can use this func instead of calling norm * norm, because it would call
|
||||
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
|
||||
* not good name for this func
|
||||
*
|
||||
* @param[in] v vec4
|
||||
*
|
||||
* @return norm * norm
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec4_norm2(vec4s v) {
|
||||
return glm_vec4_norm2(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief norm (magnitude) of vec4
|
||||
*
|
||||
* @param[in] v vector
|
||||
*
|
||||
* @return norm
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec4_norm(vec4s v) {
|
||||
return glm_vec4_norm(v.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add b vector to a vector store result in dest
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_add(vec4s a, vec4s b) {
|
||||
vec4s r;
|
||||
glm_vec4_add(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add scalar to v vector store result in dest (d = v + vec(s))
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_adds(vec4s v, float s) {
|
||||
vec4s r;
|
||||
glm_vec4_adds(v.raw, s, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract b vector from a vector store result in dest (d = a - b)
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_sub(vec4s a, vec4s b) {
|
||||
vec4s r;
|
||||
glm_vec4_sub(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract scalar from v vector store result in dest (d = v - vec(s))
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_subs(vec4s v, float s) {
|
||||
vec4s r;
|
||||
glm_vec4_subs(v.raw, s, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply two vector (component-wise multiplication)
|
||||
*
|
||||
* @param a vector1
|
||||
* @param b vector2
|
||||
* @returns dest = (a[0] * b[0], a[1] * b[1], a[2] * b[2], a[3] * b[3])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_mul(vec4s a, vec4s b) {
|
||||
vec4s r;
|
||||
glm_vec4_mul(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply/scale vec4 vector with scalar: result = v * s
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_scale(vec4s v, float s) {
|
||||
vec4s r;
|
||||
glm_vec4_scale(v.raw, s, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vec4 vector scale as specified: result = unit(v) * s
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_scale_as(vec4s v, float s) {
|
||||
vec4s r;
|
||||
glm_vec4_scale_as(v.raw, s, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief div vector with another component-wise division: d = a / b
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns result = (a[0]/b[0], a[1]/b[1], a[2]/b[2], a[3]/b[3])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_div(vec4s a, vec4s b) {
|
||||
vec4s r;
|
||||
glm_vec4_div(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief div vec4 vector with scalar: d = v / s
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @returns destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_divs(vec4s v, float s) {
|
||||
vec4s r;
|
||||
glm_vec4_divs(v.raw, s, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add two vectors and add result to sum
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns dest += (a + b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_addadd(vec4s a, vec4s b, vec4s dest) {
|
||||
glm_vec4_addadd(a.raw, b.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief sub two vectors and add result to dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns dest += (a - b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_subadd(vec4s a, vec4s b, vec4s dest) {
|
||||
glm_vec4_subadd(a.raw, b.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mul two vectors and add result to dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns dest += (a * b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_muladd(vec4s a, vec4s b, vec4s dest) {
|
||||
glm_vec4_muladd(a.raw, b.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mul vector with scalar and add result to sum
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector
|
||||
* @param[in] s scalar
|
||||
* @returns dest += (a * b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_muladds(vec4s a, float s, vec4s dest) {
|
||||
glm_vec4_muladds(a.raw, s, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add max of two vector to result/dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns dest += max(a, b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_maxadd(vec4s a, vec4s b, vec4s dest) {
|
||||
glm_vec4_maxadd(a.raw, b.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add min of two vector to result/dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @returns dest += min(a, b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_minadd(vec4s a, vec4s b, vec4s dest) {
|
||||
glm_vec4_minadd(a.raw, b.raw, dest.raw);
|
||||
return dest;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief negate vector components and store result in dest
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @returns result vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_negate(vec4s v) {
|
||||
glm_vec4_negate(v.raw);
|
||||
return v;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize vec4 and store result in same vec
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @returns normalized vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_normalize(vec4s v) {
|
||||
glm_vec4_normalize(v.raw);
|
||||
return v;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief distance between two vectors
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @return returns distance
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glms_vec4_distance(vec4s a, vec4s b) {
|
||||
return glm_vec4_distance(a.raw, b.raw);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief max values of vectors
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_maxv(vec4s a, vec4s b) {
|
||||
vec4s r;
|
||||
glm_vec4_maxv(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief min values of vectors
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_minv(vec4s a, vec4s b) {
|
||||
vec4s r;
|
||||
glm_vec4_minv(a.raw, b.raw, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief clamp vector's individual members between min and max values
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] minVal minimum value
|
||||
* @param[in] maxVal maximum value
|
||||
* @returns clamped vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_clamp(vec4s v, float minVal, float maxVal) {
|
||||
glm_vec4_clamp(v.raw, minVal, maxVal);
|
||||
return v;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief linear interpolation between two vector
|
||||
*
|
||||
* formula: from + s * (to - from)
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_lerp(vec4s from, vec4s to, float t) {
|
||||
vec4s r;
|
||||
glm_vec4_lerp(from.raw, to.raw, t, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief helper to fill vec4 as [S^3, S^2, S, 1]
|
||||
*
|
||||
* @param[in] s parameter
|
||||
* @returns destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
vec4s
|
||||
glms_vec4_cubic(float s) {
|
||||
vec4s r;
|
||||
glm_vec4_cubic(s, r.raw);
|
||||
return r;
|
||||
}
|
||||
|
||||
#endif /* cglms_vec4s_h */
|
||||
89
include/cglm/types-struct.h
Normal file
89
include/cglm/types-struct.h
Normal file
@@ -0,0 +1,89 @@
|
||||
/*
|
||||
* Copyright (c), Recep Aslantas.
|
||||
*
|
||||
* MIT License (MIT), http://opensource.org/licenses/MIT
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
#ifndef cglm_types_struct_h
|
||||
#define cglm_types_struct_h
|
||||
|
||||
#include "types.h"
|
||||
|
||||
typedef union vec3s {
|
||||
#ifndef CGLM_NO_ANONYMOUS_STRUCT
|
||||
struct {
|
||||
float x;
|
||||
float y;
|
||||
float z;
|
||||
};
|
||||
#endif
|
||||
vec3 raw;
|
||||
} vec3s;
|
||||
|
||||
typedef union ivec3s {
|
||||
#ifndef CGLM_NO_ANONYMOUS_STRUCT
|
||||
struct {
|
||||
int x;
|
||||
int y;
|
||||
int z;
|
||||
};
|
||||
#endif
|
||||
ivec3 raw;
|
||||
} ivec3s;
|
||||
|
||||
typedef union CGLM_ALIGN_IF(16) vec4s {
|
||||
#ifndef CGLM_NO_ANONYMOUS_STRUCT
|
||||
struct {
|
||||
float x;
|
||||
float y;
|
||||
float z;
|
||||
float w;
|
||||
};
|
||||
#endif
|
||||
vec4 raw;
|
||||
} vec4s;
|
||||
|
||||
typedef union CGLM_ALIGN_IF(16) versors {
|
||||
#ifndef CGLM_NO_ANONYMOUS_STRUCT
|
||||
struct {
|
||||
float x;
|
||||
float y;
|
||||
float z;
|
||||
float w;
|
||||
};
|
||||
|
||||
struct {
|
||||
vec3s imag;
|
||||
float real;
|
||||
};
|
||||
#endif
|
||||
vec4 raw;
|
||||
} versors;
|
||||
|
||||
typedef union mat3s {
|
||||
#ifndef CGLM_NO_ANONYMOUS_STRUCT
|
||||
struct {
|
||||
float m00, m01, m02;
|
||||
float m10, m11, m12;
|
||||
float m20, m21, m22;
|
||||
};
|
||||
#endif
|
||||
vec3s col[3];
|
||||
mat3 raw;
|
||||
} mat3s;
|
||||
|
||||
typedef union CGLM_ALIGN_MAT mat4s {
|
||||
#ifndef CGLM_NO_ANONYMOUS_STRUCT
|
||||
struct {
|
||||
float m00, m01, m02, m03;
|
||||
float m10, m11, m12, m13;
|
||||
float m20, m21, m22, m23;
|
||||
float m30, m31, m32, m33;
|
||||
};
|
||||
#endif
|
||||
vec4s col[4];
|
||||
mat4 raw;
|
||||
} mat4s;
|
||||
|
||||
#endif /* cglm_types_struct_h */
|
||||
@@ -9,22 +9,68 @@
|
||||
#define cglm_types_h
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
# define CGLM_ALIGN(X) /* __declspec(align(X)) */
|
||||
/* do not use alignment for older visual studio versions */
|
||||
# if _MSC_VER < 1913 /* Visual Studio 2017 version 15.6 */
|
||||
# define CGLM_ALL_UNALIGNED
|
||||
# define CGLM_ALIGN(X) /* no alignment */
|
||||
# else
|
||||
# define CGLM_ALIGN(X) __declspec(align(X))
|
||||
# endif
|
||||
#else
|
||||
# define CGLM_ALIGN(X) __attribute((aligned(X)))
|
||||
#endif
|
||||
|
||||
typedef float vec3[3];
|
||||
typedef int ivec3[3];
|
||||
typedef CGLM_ALIGN(16) float vec4[4];
|
||||
#ifndef CGLM_ALL_UNALIGNED
|
||||
# define CGLM_ALIGN_IF(X) CGLM_ALIGN(X)
|
||||
#else
|
||||
# define CGLM_ALIGN_IF(X) /* no alignment */
|
||||
#endif
|
||||
|
||||
typedef vec3 mat3[3];
|
||||
typedef vec4 mat4[4];
|
||||
#ifdef __AVX__
|
||||
# define CGLM_ALIGN_MAT CGLM_ALIGN(32)
|
||||
#else
|
||||
# define CGLM_ALIGN_MAT CGLM_ALIGN(16)
|
||||
#endif
|
||||
|
||||
typedef vec4 versor;
|
||||
typedef float vec2[2];
|
||||
typedef float vec3[3];
|
||||
typedef int ivec3[3];
|
||||
typedef CGLM_ALIGN_IF(16) float vec4[4];
|
||||
typedef vec4 versor;
|
||||
typedef vec3 mat3[3];
|
||||
typedef CGLM_ALIGN_MAT vec4 mat4[4];
|
||||
|
||||
#define CGLM_PI (float)M_PI
|
||||
#define CGLM_PI_2 (float)M_PI_2
|
||||
#define CGLM_PI_4 (float)M_PI_4
|
||||
#define GLM_E 2.71828182845904523536028747135266250 /* e */
|
||||
#define GLM_LOG2E 1.44269504088896340735992468100189214 /* log2(e) */
|
||||
#define GLM_LOG10E 0.434294481903251827651128918916605082 /* log10(e) */
|
||||
#define GLM_LN2 0.693147180559945309417232121458176568 /* loge(2) */
|
||||
#define GLM_LN10 2.30258509299404568401799145468436421 /* loge(10) */
|
||||
#define GLM_PI 3.14159265358979323846264338327950288 /* pi */
|
||||
#define GLM_PI_2 1.57079632679489661923132169163975144 /* pi/2 */
|
||||
#define GLM_PI_4 0.785398163397448309615660845819875721 /* pi/4 */
|
||||
#define GLM_1_PI 0.318309886183790671537767526745028724 /* 1/pi */
|
||||
#define GLM_2_PI 0.636619772367581343075535053490057448 /* 2/pi */
|
||||
#define GLM_2_SQRTPI 1.12837916709551257389615890312154517 /* 2/sqrt(pi) */
|
||||
#define GLM_SQRT2 1.41421356237309504880168872420969808 /* sqrt(2) */
|
||||
#define GLM_SQRT1_2 0.707106781186547524400844362104849039 /* 1/sqrt(2) */
|
||||
|
||||
#define GLM_Ef ((float)GLM_E)
|
||||
#define GLM_LOG2Ef ((float)GLM_LOG2E)
|
||||
#define GLM_LOG10Ef ((float)GLM_LOG10E)
|
||||
#define GLM_LN2f ((float)GLM_LN2)
|
||||
#define GLM_LN10f ((float)GLM_LN10)
|
||||
#define GLM_PIf ((float)GLM_PI)
|
||||
#define GLM_PI_2f ((float)GLM_PI_2)
|
||||
#define GLM_PI_4f ((float)GLM_PI_4)
|
||||
#define GLM_1_PIf ((float)GLM_1_PI)
|
||||
#define GLM_2_PIf ((float)GLM_2_PI)
|
||||
#define GLM_2_SQRTPIf ((float)GLM_2_SQRTPI)
|
||||
#define GLM_SQRT2f ((float)GLM_SQRT2)
|
||||
#define GLM_SQRT1_2f ((float)GLM_SQRT1_2)
|
||||
|
||||
/* DEPRECATED! use GLM_PI and friends */
|
||||
#define CGLM_PI GLM_PIf
|
||||
#define CGLM_PI_2 GLM_PI_2f
|
||||
#define CGLM_PI_4 GLM_PI_4f
|
||||
|
||||
#endif /* cglm_types_h */
|
||||
|
||||
@@ -20,8 +20,13 @@
|
||||
|
||||
#include "common.h"
|
||||
|
||||
#define GLM_MIN(X, Y) (((X) < (Y)) ? (X) : (Y))
|
||||
#define GLM_MAX(X, Y) (((X) > (Y)) ? (X) : (Y))
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit integer as +1 or -1
|
||||
* @brief get sign of 32 bit integer as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero input
|
||||
*
|
||||
* @param val integer value
|
||||
*/
|
||||
@@ -31,6 +36,19 @@ glm_sign(int val) {
|
||||
return ((val >> 31) - (-val >> 31));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit float as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero/NaN input
|
||||
*
|
||||
* @param val float value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_signf(float val) {
|
||||
return (float)((val > 0.0f) - (val < 0.0f));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief convert degree to radians
|
||||
*
|
||||
@@ -39,7 +57,7 @@ glm_sign(int val) {
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_rad(float deg) {
|
||||
return deg * CGLM_PI / 180.0f;
|
||||
return deg * GLM_PIf / 180.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -50,7 +68,7 @@ glm_rad(float deg) {
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_deg(float rad) {
|
||||
return rad * 180.0f / CGLM_PI;
|
||||
return rad * 180.0f / GLM_PIf;
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -61,7 +79,7 @@ glm_deg(float rad) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_make_rad(float *deg) {
|
||||
*deg = *deg * CGLM_PI / 180.0f;
|
||||
*deg = *deg * GLM_PIf / 180.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -72,7 +90,7 @@ glm_make_rad(float *deg) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_make_deg(float *rad) {
|
||||
*rad = *rad * 180.0f / CGLM_PI;
|
||||
*rad = *rad * 180.0f / GLM_PIf;
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -83,7 +101,6 @@ glm_make_deg(float *rad) {
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_pow2(float x) {
|
||||
|
||||
return x * x;
|
||||
}
|
||||
|
||||
@@ -115,4 +132,88 @@ glm_max(float a, float b) {
|
||||
return b;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief clamp a number between min and max
|
||||
*
|
||||
* @param[in] val value to clamp
|
||||
* @param[in] minVal minimum value
|
||||
* @param[in] maxVal maximum value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_clamp(float val, float minVal, float maxVal) {
|
||||
return glm_min(glm_max(val, minVal), maxVal);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief clamp a number to zero and one
|
||||
*
|
||||
* @param[in] val value to clamp
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_clamp_zo(float val) {
|
||||
return glm_clamp(val, 0.0f, 1.0f);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief linear interpolation between two number
|
||||
*
|
||||
* formula: from + s * (to - from)
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_lerp(float from, float to, float t) {
|
||||
return from + glm_clamp_zo(t) * (to - from);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if two float equal with using EPSILON
|
||||
*
|
||||
* @param[in] a a
|
||||
* @param[in] b b
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_eq(float a, float b) {
|
||||
return fabsf(a - b) <= FLT_EPSILON;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief percentage of current value between start and end value
|
||||
*
|
||||
* maybe fraction could be alternative name.
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] current current value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_percent(float from, float to, float current) {
|
||||
float t;
|
||||
|
||||
if ((t = to - from) == 0.0f)
|
||||
return 1.0f;
|
||||
|
||||
return (current - from) / t;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief clamped percentage of current value between start and end value
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] current current value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_percentc(float from, float to, float current) {
|
||||
return glm_clamp(glm_percent(from, to, current), 0.0f, 1.0f);
|
||||
}
|
||||
|
||||
#endif /* cglm_util_h */
|
||||
|
||||
@@ -11,73 +11,60 @@
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE void glm_vec_mulv(vec3 a, vec3 b, vec3 d);
|
||||
CGLM_INLINE void glm_vec_broadcast(float val, vec3 d);
|
||||
CGLM_INLINE bool glm_vec_eq(vec3 v, float val);
|
||||
CGLM_INLINE bool glm_vec_eq_eps(vec4 v, float val);
|
||||
CGLM_INLINE bool glm_vec_eq_all(vec3 v);
|
||||
CGLM_INLINE bool glm_vec_eqv(vec3 v1, vec3 v2);
|
||||
CGLM_INLINE bool glm_vec_eqv_eps(vec3 v1, vec3 v2);
|
||||
CGLM_INLINE float glm_vec_max(vec3 v);
|
||||
CGLM_INLINE float glm_vec_min(vec3 v);
|
||||
CGLM_INLINE void glm_vec3_broadcast(float val, vec3 d);
|
||||
CGLM_INLINE bool glm_vec3_eq(vec3 v, float val);
|
||||
CGLM_INLINE bool glm_vec3_eq_eps(vec3 v, float val);
|
||||
CGLM_INLINE bool glm_vec3_eq_all(vec3 v);
|
||||
CGLM_INLINE bool glm_vec3_eqv(vec3 a, vec3 b);
|
||||
CGLM_INLINE bool glm_vec3_eqv_eps(vec3 a, vec3 b);
|
||||
CGLM_INLINE float glm_vec3_max(vec3 v);
|
||||
CGLM_INLINE float glm_vec3_min(vec3 v);
|
||||
CGLM_INLINE bool glm_vec3_isnan(vec3 v);
|
||||
CGLM_INLINE bool glm_vec3_isinf(vec3 v);
|
||||
CGLM_INLINE bool glm_vec3_isvalid(vec3 v);
|
||||
CGLM_INLINE void glm_vec3_sign(vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_sqrt(vec3 v, vec3 dest);
|
||||
*/
|
||||
|
||||
#ifndef cglm_vec3_ext_h
|
||||
#define cglm_vec3_ext_h
|
||||
|
||||
#include "common.h"
|
||||
#include <stdbool.h>
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
|
||||
/*!
|
||||
* @brief multiplies individual items, just for convenient like SIMD
|
||||
*
|
||||
* @param a vec1
|
||||
* @param b vec2
|
||||
* @param d vec3 = (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_mulv(vec3 a, vec3 b, vec3 d) {
|
||||
d[0] = a[0] * b[0];
|
||||
d[1] = a[1] * b[1];
|
||||
d[2] = a[2] * b[2];
|
||||
}
|
||||
#include "util.h"
|
||||
|
||||
/*!
|
||||
* @brief fill a vector with specified value
|
||||
*
|
||||
* @param val value
|
||||
* @param d dest
|
||||
* @param[in] val value
|
||||
* @param[out] d dest
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_broadcast(float val, vec3 d) {
|
||||
glm_vec3_broadcast(float val, vec3 d) {
|
||||
d[0] = d[1] = d[2] = val;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to value (without epsilon)
|
||||
*
|
||||
* @param v vector
|
||||
* @param val value
|
||||
* @param[in] v vector
|
||||
* @param[in] val value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_eq(vec3 v, float val) {
|
||||
glm_vec3_eq(vec3 v, float val) {
|
||||
return v[0] == val && v[0] == v[1] && v[0] == v[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to value (with epsilon)
|
||||
*
|
||||
* @param v vector
|
||||
* @param val value
|
||||
* @param[in] v vector
|
||||
* @param[in] val value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_eq_eps(vec4 v, float val) {
|
||||
glm_vec3_eq_eps(vec3 v, float val) {
|
||||
return fabsf(v[0] - val) <= FLT_EPSILON
|
||||
&& fabsf(v[1] - val) <= FLT_EPSILON
|
||||
&& fabsf(v[2] - val) <= FLT_EPSILON;
|
||||
@@ -86,50 +73,50 @@ glm_vec_eq_eps(vec4 v, float val) {
|
||||
/*!
|
||||
* @brief check if vectors members are equal (without epsilon)
|
||||
*
|
||||
* @param v vector
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_eq_all(vec3 v) {
|
||||
glm_vec3_eq_all(vec3 v) {
|
||||
return v[0] == v[1] && v[0] == v[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to another (without epsilon)
|
||||
*
|
||||
* @param v1 vector
|
||||
* @param v2 vector
|
||||
* @param[in] a vector
|
||||
* @param[in] b vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_eqv(vec3 v1, vec3 v2) {
|
||||
return v1[0] == v2[0]
|
||||
&& v1[1] == v2[1]
|
||||
&& v1[2] == v2[2];
|
||||
glm_vec3_eqv(vec3 a, vec3 b) {
|
||||
return a[0] == b[0]
|
||||
&& a[1] == b[1]
|
||||
&& a[2] == b[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to another (with epsilon)
|
||||
*
|
||||
* @param v1 vector
|
||||
* @param v2 vector
|
||||
* @param[in] a vector
|
||||
* @param[in] b vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec_eqv_eps(vec3 v1, vec3 v2) {
|
||||
return fabsf(v1[0] - v2[0]) <= FLT_EPSILON
|
||||
&& fabsf(v1[1] - v2[1]) <= FLT_EPSILON
|
||||
&& fabsf(v1[2] - v2[2]) <= FLT_EPSILON;
|
||||
glm_vec3_eqv_eps(vec3 a, vec3 b) {
|
||||
return fabsf(a[0] - b[0]) <= FLT_EPSILON
|
||||
&& fabsf(a[1] - b[1]) <= FLT_EPSILON
|
||||
&& fabsf(a[2] - b[2]) <= FLT_EPSILON;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief max value of vector
|
||||
*
|
||||
* @param v vector
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec_max(vec3 v) {
|
||||
glm_vec3_max(vec3 v) {
|
||||
float max;
|
||||
|
||||
max = v[0];
|
||||
@@ -144,11 +131,11 @@ glm_vec_max(vec3 v) {
|
||||
/*!
|
||||
* @brief min value of vector
|
||||
*
|
||||
* @param v vector
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec_min(vec3 v) {
|
||||
glm_vec3_min(vec3 v) {
|
||||
float min;
|
||||
|
||||
min = v[0];
|
||||
@@ -160,4 +147,69 @@ glm_vec_min(vec3 v) {
|
||||
return min;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are NaN (not a number)
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec3_isnan(vec3 v) {
|
||||
return isnan(v[0]) || isnan(v[1]) || isnan(v[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are INFINITY
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec3_isinf(vec3 v) {
|
||||
return isinf(v[0]) || isinf(v[1]) || isinf(v[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are valid number
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec3_isvalid(vec3 v) {
|
||||
return !glm_vec3_isnan(v) && !glm_vec3_isinf(v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit float as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero/NaN input
|
||||
*
|
||||
* @param v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_sign(vec3 v, vec3 dest) {
|
||||
dest[0] = glm_signf(v[0]);
|
||||
dest[1] = glm_signf(v[1]);
|
||||
dest[2] = glm_signf(v[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief square root of each vector item
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_sqrt(vec3 v, vec3 dest) {
|
||||
dest[0] = sqrtf(v[0]);
|
||||
dest[1] = sqrtf(v[1]);
|
||||
dest[2] = sqrtf(v[2]);
|
||||
}
|
||||
|
||||
#endif /* cglm_vec3_ext_h */
|
||||
|
||||
@@ -5,45 +5,62 @@
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*!
|
||||
* vec3 functions dont have suffix e.g glm_vec_dot (not glm_vec3_dot)
|
||||
* all functions without suffix are vec3 functions
|
||||
*/
|
||||
|
||||
/*
|
||||
Macros:
|
||||
glm_vec_dup(v, dest)
|
||||
GLM_VEC3_ONE_INIT
|
||||
GLM_VEC3_ZERO_INIT
|
||||
GLM_VEC3_ONE
|
||||
GLM_VEC3_ZERO
|
||||
GLM_YUP
|
||||
GLM_ZUP
|
||||
GLM_XUP
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE void glm_vec3(vec4 v4, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_copy(vec3 a, vec3 dest);
|
||||
CGLM_INLINE float glm_vec_dot(vec3 a, vec3 b);
|
||||
CGLM_INLINE void glm_vec_cross(vec3 a, vec3 b, vec3 d);
|
||||
CGLM_INLINE float glm_vec_norm2(vec3 v);
|
||||
CGLM_INLINE float glm_vec_norm(vec3 vec);
|
||||
CGLM_INLINE void glm_vec_add(vec3 v1, vec3 v2, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_sub(vec3 v1, vec3 v2, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_scale(vec3 v, float s, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_scale_as(vec3 v, float s, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_flipsign(vec3 v);
|
||||
CGLM_INLINE void glm_vec_inv(vec3 v);
|
||||
CGLM_INLINE void glm_vec_inv_to(vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_normalize(vec3 v);
|
||||
CGLM_INLINE void glm_vec_normalize_to(vec3 vec, vec3 dest);
|
||||
CGLM_INLINE float glm_vec_distance(vec3 v1, vec3 v2);
|
||||
CGLM_INLINE float glm_vec_angle(vec3 v1, vec3 v2);
|
||||
CGLM_INLINE void glm_vec_rotate(vec3 v, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_vec_rotate_m4(mat4 m, vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_proj(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_center(vec3 v1, vec3 v2, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_minv(vec3 v1, vec3 v2, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_ortho(vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_copy(vec3 a, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_zero(vec3 v);
|
||||
CGLM_INLINE void glm_vec3_one(vec3 v);
|
||||
CGLM_INLINE float glm_vec3_dot(vec3 a, vec3 b);
|
||||
CGLM_INLINE float glm_vec3_norm2(vec3 v);
|
||||
CGLM_INLINE float glm_vec3_norm(vec3 v);
|
||||
CGLM_INLINE void glm_vec3_add(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_adds(vec3 a, float s, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_sub(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_subs(vec3 a, float s, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_mul(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_scale(vec3 v, float s, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_scale_as(vec3 v, float s, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_div(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_divs(vec3 a, float s, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_addadd(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_subadd(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_muladd(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_muladds(vec3 a, float s, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_minadd(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_flipsign(vec3 v);
|
||||
CGLM_INLINE void glm_vec3_flipsign_to(vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_negate_to(vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_negate(vec3 v);
|
||||
CGLM_INLINE void glm_vec3_inv(vec3 v);
|
||||
CGLM_INLINE void glm_vec3_inv_to(vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_normalize(vec3 v);
|
||||
CGLM_INLINE void glm_vec3_normalize_to(vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_cross(vec3 a, vec3 b, vec3 d);
|
||||
CGLM_INLINE void glm_vec3_crossn(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE float glm_vec3_distance(vec3 a, vec3 b);
|
||||
CGLM_INLINE float glm_vec3_angle(vec3 a, vec3 b);
|
||||
CGLM_INLINE void glm_vec3_rotate(vec3 v, float angle, vec3 axis);
|
||||
CGLM_INLINE void glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_proj(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_center(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE float glm_vec3_distance2(vec3 a, vec3 b);
|
||||
CGLM_INLINE void glm_vec3_maxv(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_minv(vec3 a, vec3 b, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_ortho(vec3 v, vec3 dest);
|
||||
CGLM_INLINE void glm_vec3_clamp(vec3 v, float minVal, float maxVal);
|
||||
CGLM_INLINE void glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest);
|
||||
CGLM_INLINE void glm_vec_swizzle(vec3 v, int mask, vec3 dest);
|
||||
|
||||
Convenient:
|
||||
@@ -51,24 +68,41 @@
|
||||
CGLM_INLINE float glm_dot(vec3 a, vec3 b);
|
||||
CGLM_INLINE void glm_normalize(vec3 v);
|
||||
CGLM_INLINE void glm_normalize_to(vec3 v, vec3 dest);
|
||||
|
||||
DEPRECATED:
|
||||
glm_vec3_dup
|
||||
glm_vec3_flipsign
|
||||
glm_vec3_flipsign_to
|
||||
glm_vec3_inv
|
||||
glm_vec3_inv_to
|
||||
glm_vec3_mulv
|
||||
*/
|
||||
|
||||
#ifndef cglm_vec3_h
|
||||
#define cglm_vec3_h
|
||||
|
||||
#include "common.h"
|
||||
#include "vec4.h"
|
||||
#include "vec3-ext.h"
|
||||
#include "util.h"
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glm_vec_dup(v, dest) glm_vec_copy(v, dest)
|
||||
#define glm_vec3_dup(v, dest) glm_vec3_copy(v, dest)
|
||||
#define glm_vec3_flipsign(v) glm_vec3_negate(v)
|
||||
#define glm_vec3_flipsign_to(v, dest) glm_vec3_negate_to(v, dest)
|
||||
#define glm_vec3_inv(v) glm_vec3_negate(v)
|
||||
#define glm_vec3_inv_to(v, dest) glm_vec3_negate_to(v, dest)
|
||||
#define glm_vec3_mulv(a, b, d) glm_vec3_mul(a, b, d)
|
||||
|
||||
#define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
|
||||
#define GLM_VEC3_ONE (vec3)GLM_VEC3_ONE_INIT
|
||||
#define GLM_VEC3_ONE_INIT {1.0f, 1.0f, 1.0f}
|
||||
#define GLM_VEC3_ZERO_INIT {0.0f, 0.0f, 0.0f}
|
||||
|
||||
#define GLM_YUP (vec3){0.0f, 1.0f, 0.0f}
|
||||
#define GLM_ZUP (vec3){0.0f, 0.0f, 1.0f}
|
||||
#define GLM_XUP (vec3){1.0f, 0.0f, 0.0f}
|
||||
#define GLM_VEC3_ONE ((vec3)GLM_VEC3_ONE_INIT)
|
||||
#define GLM_VEC3_ZERO ((vec3)GLM_VEC3_ZERO_INIT)
|
||||
|
||||
#define GLM_YUP ((vec3){0.0f, 1.0f, 0.0f})
|
||||
#define GLM_ZUP ((vec3){0.0f, 0.0f, 1.0f})
|
||||
#define GLM_XUP ((vec3){1.0f, 0.0f, 0.0f})
|
||||
|
||||
#define GLM_XXX GLM_SHUFFLE3(0, 0, 0)
|
||||
#define GLM_YYY GLM_SHUFFLE3(1, 1, 1)
|
||||
@@ -97,12 +131,34 @@ glm_vec3(vec4 v4, vec3 dest) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_copy(vec3 a, vec3 dest) {
|
||||
glm_vec3_copy(vec3 a, vec3 dest) {
|
||||
dest[0] = a[0];
|
||||
dest[1] = a[1];
|
||||
dest[2] = a[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector zero
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_zero(vec3 v) {
|
||||
v[0] = v[1] = v[2] = 0.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector one
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_one(vec3 v) {
|
||||
v[0] = v[1] = v[2] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief vec3 dot product
|
||||
*
|
||||
@@ -113,31 +169,15 @@ glm_vec_copy(vec3 a, vec3 dest) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec_dot(vec3 a, vec3 b) {
|
||||
glm_vec3_dot(vec3 a, vec3 b) {
|
||||
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief vec3 cross product
|
||||
*
|
||||
* @param[in] a source 1
|
||||
* @param[in] b source 2
|
||||
* @param[out] d destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_cross(vec3 a, vec3 b, vec3 d) {
|
||||
/* (u2.v3 - u3.v2, u3.v1 - u1.v3, u1.v2 - u2.v1) */
|
||||
d[0] = a[1] * b[2] - a[2] * b[1];
|
||||
d[1] = a[2] * b[0] - a[0] * b[2];
|
||||
d[2] = a[0] * b[1] - a[1] * b[0];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief norm * norm (magnitude) of vec
|
||||
*
|
||||
* we can use this func instead of calling norm * norm, because it would call
|
||||
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
|
||||
* we can use this func instead of calling norm * norm, because it would call
|
||||
* sqrtf fuction twice but with this func we can avoid func call, maybe this is
|
||||
* not good name for this func
|
||||
*
|
||||
* @param[in] v vector
|
||||
@@ -146,51 +186,96 @@ glm_vec_cross(vec3 a, vec3 b, vec3 d) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec_norm2(vec3 v) {
|
||||
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2];
|
||||
glm_vec3_norm2(vec3 v) {
|
||||
return glm_vec3_dot(v, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief norm (magnitude) of vec3
|
||||
*
|
||||
* @param[in] vec vector
|
||||
* @param[in] v vector
|
||||
*
|
||||
* @return norm
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec_norm(vec3 vec) {
|
||||
return sqrtf(glm_vec_norm2(vec));
|
||||
glm_vec3_norm(vec3 v) {
|
||||
return sqrtf(glm_vec3_norm2(v));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add v2 vector to v1 vector store result in dest
|
||||
* @brief add a vector to b vector store result in dest
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_add(vec3 v1, vec3 v2, vec3 dest) {
|
||||
dest[0] = v1[0] + v2[0];
|
||||
dest[1] = v1[1] + v2[1];
|
||||
dest[2] = v1[2] + v2[2];
|
||||
glm_vec3_add(vec3 a, vec3 b, vec3 dest) {
|
||||
dest[0] = a[0] + b[0];
|
||||
dest[1] = a[1] + b[1];
|
||||
dest[2] = a[2] + b[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract v2 vector from v1 vector store result in dest
|
||||
* @brief add scalar to v vector store result in dest (d = v + s)
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_sub(vec3 v1, vec3 v2, vec3 dest) {
|
||||
dest[0] = v1[0] - v2[0];
|
||||
dest[1] = v1[1] - v2[1];
|
||||
dest[2] = v1[2] - v2[2];
|
||||
glm_vec3_adds(vec3 v, float s, vec3 dest) {
|
||||
dest[0] = v[0] + s;
|
||||
dest[1] = v[1] + s;
|
||||
dest[2] = v[2] + s;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract b vector from a vector store result in dest
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_sub(vec3 a, vec3 b, vec3 dest) {
|
||||
dest[0] = a[0] - b[0];
|
||||
dest[1] = a[1] - b[1];
|
||||
dest[2] = a[2] - b[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract scalar from v vector store result in dest (d = v - s)
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_subs(vec3 v, float s, vec3 dest) {
|
||||
dest[0] = v[0] - s;
|
||||
dest[1] = v[1] - s;
|
||||
dest[2] = v[2] - s;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply two vector (component-wise multiplication)
|
||||
*
|
||||
* @param a vector1
|
||||
* @param b vector2
|
||||
* @param dest v3 = (a[0] * b[0], a[1] * b[1], a[2] * b[2])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_mul(vec3 a, vec3 b, vec3 dest) {
|
||||
dest[0] = a[0] * b[0];
|
||||
dest[1] = a[1] * b[1];
|
||||
dest[2] = a[2] * b[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -202,7 +287,7 @@ glm_vec_sub(vec3 v1, vec3 v2, vec3 dest) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_scale(vec3 v, float s, vec3 dest) {
|
||||
glm_vec3_scale(vec3 v, float s, vec3 dest) {
|
||||
dest[0] = v[0] * s;
|
||||
dest[1] = v[1] * s;
|
||||
dest[2] = v[2] * s;
|
||||
@@ -217,53 +302,173 @@ glm_vec_scale(vec3 v, float s, vec3 dest) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_scale_as(vec3 v, float s, vec3 dest) {
|
||||
glm_vec3_scale_as(vec3 v, float s, vec3 dest) {
|
||||
float norm;
|
||||
norm = glm_vec_norm(v);
|
||||
norm = glm_vec3_norm(v);
|
||||
|
||||
if (norm == 0) {
|
||||
glm_vec_copy(v, dest);
|
||||
if (norm == 0.0f) {
|
||||
glm_vec3_zero(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec_scale(v, s / norm, dest);
|
||||
glm_vec3_scale(v, s / norm, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief flip sign of all vec3 members
|
||||
* @brief div vector with another component-wise division: d = a / b
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_div(vec3 a, vec3 b, vec3 dest) {
|
||||
dest[0] = a[0] / b[0];
|
||||
dest[1] = a[1] / b[1];
|
||||
dest[2] = a[2] / b[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief div vector with scalar: d = v / s
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @param[out] dest result = (a[0]/s, a[1]/s, a[2]/s)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_divs(vec3 v, float s, vec3 dest) {
|
||||
dest[0] = v[0] / s;
|
||||
dest[1] = v[1] / s;
|
||||
dest[2] = v[2] / s;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add two vectors and add result to sum
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += (a + b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_addadd(vec3 a, vec3 b, vec3 dest) {
|
||||
dest[0] += a[0] + b[0];
|
||||
dest[1] += a[1] + b[1];
|
||||
dest[2] += a[2] + b[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief sub two vectors and add result to dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += (a + b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_subadd(vec3 a, vec3 b, vec3 dest) {
|
||||
dest[0] += a[0] - b[0];
|
||||
dest[1] += a[1] - b[1];
|
||||
dest[2] += a[2] - b[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mul two vectors and add result to dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += (a * b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_muladd(vec3 a, vec3 b, vec3 dest) {
|
||||
dest[0] += a[0] * b[0];
|
||||
dest[1] += a[1] * b[1];
|
||||
dest[2] += a[2] * b[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mul vector with scalar and add result to sum
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector
|
||||
* @param[in] s scalar
|
||||
* @param[out] dest dest += (a * b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_muladds(vec3 a, float s, vec3 dest) {
|
||||
dest[0] += a[0] * s;
|
||||
dest[1] += a[1] * s;
|
||||
dest[2] += a[2] * s;
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add max of two vector to result/dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += max(a, b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_maxadd(vec3 a, vec3 b, vec3 dest) {
|
||||
dest[0] += glm_max(a[0], b[0]);
|
||||
dest[1] += glm_max(a[1], b[1]);
|
||||
dest[2] += glm_max(a[2], b[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add min of two vector to result/dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += min(a, b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_minadd(vec3 a, vec3 b, vec3 dest) {
|
||||
dest[0] += glm_min(a[0], b[0]);
|
||||
dest[1] += glm_min(a[1], b[1]);
|
||||
dest[2] += glm_min(a[2], b[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief negate vector components and store result in dest
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[out] dest result vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_negate_to(vec3 v, vec3 dest) {
|
||||
dest[0] = -v[0];
|
||||
dest[1] = -v[1];
|
||||
dest[2] = -v[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief negate vector components
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_flipsign(vec3 v) {
|
||||
v[0] = -v[0];
|
||||
v[1] = -v[1];
|
||||
v[2] = -v[2];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector as inverse/opposite of itself
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_inv(vec3 v) {
|
||||
glm_vec_flipsign(v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inverse/opposite vector
|
||||
*
|
||||
* @param[in] v source
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_inv_to(vec3 v, vec3 dest) {
|
||||
glm_vec_copy(v, dest);
|
||||
glm_vec_flipsign(dest);
|
||||
glm_vec3_negate(vec3 v) {
|
||||
glm_vec3_negate_to(v, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -273,60 +478,94 @@ glm_vec_inv_to(vec3 v, vec3 dest) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_normalize(vec3 v) {
|
||||
glm_vec3_normalize(vec3 v) {
|
||||
float norm;
|
||||
|
||||
norm = glm_vec_norm(v);
|
||||
norm = glm_vec3_norm(v);
|
||||
|
||||
if (norm == 0.0f) {
|
||||
v[0] = v[1] = v[2] = 0.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec_scale(v, 1.0f / norm, v);
|
||||
glm_vec3_scale(v, 1.0f / norm, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize vec3 to dest
|
||||
*
|
||||
* @param[in] vec source
|
||||
* @param[in] v source
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_normalize_to(vec3 vec, vec3 dest) {
|
||||
glm_vec3_normalize_to(vec3 v, vec3 dest) {
|
||||
float norm;
|
||||
|
||||
norm = glm_vec_norm(vec);
|
||||
norm = glm_vec3_norm(v);
|
||||
|
||||
if (norm == 0.0f) {
|
||||
dest[0] = dest[1] = dest[2] = 0.0f;
|
||||
glm_vec3_zero(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec_scale(vec, 1.0f / norm, dest);
|
||||
glm_vec3_scale(v, 1.0f / norm, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief cross product of two vector (RH)
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_cross(vec3 a, vec3 b, vec3 dest) {
|
||||
/* (u2.v3 - u3.v2, u3.v1 - u1.v3, u1.v2 - u2.v1) */
|
||||
dest[0] = a[1] * b[2] - a[2] * b[1];
|
||||
dest[1] = a[2] * b[0] - a[0] * b[2];
|
||||
dest[2] = a[0] * b[1] - a[1] * b[0];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief cross product of two vector (RH) and normalize the result
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_crossn(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_cross(a, b, dest);
|
||||
glm_vec3_normalize(dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief angle betwen two vector
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
*
|
||||
* @return angle as radians
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec_angle(vec3 v1, vec3 v2) {
|
||||
float norm;
|
||||
|
||||
/* maybe compiler generate approximation instruction (rcp) */
|
||||
norm = 1.0f / (glm_vec_norm(v1) * glm_vec_norm(v2));
|
||||
return acosf(glm_vec_dot(v1, v2) * norm);
|
||||
}
|
||||
glm_vec3_angle(vec3 a, vec3 b) {
|
||||
float norm, dot;
|
||||
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_quatv(versor q,
|
||||
float angle,
|
||||
vec3 v);
|
||||
/* maybe compiler generate approximation instruction (rcp) */
|
||||
norm = 1.0f / (glm_vec3_norm(a) * glm_vec3_norm(b));
|
||||
dot = glm_vec3_dot(a, b) * norm;
|
||||
|
||||
if (dot > 1.0f)
|
||||
return 0.0f;
|
||||
else if (dot < -1.0f)
|
||||
return CGLM_PI;
|
||||
|
||||
return acosf(dot);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief rotate vec3 around axis by angle using Rodrigues' rotation formula
|
||||
@@ -337,32 +576,56 @@ glm_quatv(versor q,
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_rotate(vec3 v, float angle, vec3 axis) {
|
||||
versor q;
|
||||
vec3 v1, v2, v3;
|
||||
glm_vec3_rotate(vec3 v, float angle, vec3 axis) {
|
||||
vec3 v1, v2, k;
|
||||
float c, s;
|
||||
|
||||
c = cosf(angle);
|
||||
s = sinf(angle);
|
||||
|
||||
glm_vec3_normalize_to(axis, k);
|
||||
|
||||
/* Right Hand, Rodrigues' rotation formula:
|
||||
v = v*cos(t) + (kxv)sin(t) + k*(k.v)(1 - cos(t))
|
||||
*/
|
||||
glm_vec3_scale(v, c, v1);
|
||||
|
||||
/* quaternion */
|
||||
glm_quatv(q, angle, v);
|
||||
glm_vec3_cross(k, v, v2);
|
||||
glm_vec3_scale(v2, s, v2);
|
||||
|
||||
glm_vec_scale(v, c, v1);
|
||||
glm_vec3_add(v1, v2, v1);
|
||||
|
||||
glm_vec_cross(axis, v, v2);
|
||||
glm_vec_scale(v2, s, v2);
|
||||
glm_vec3_scale(k, glm_vec3_dot(k, v) * (1.0f - c), v2);
|
||||
glm_vec3_add(v1, v2, v);
|
||||
}
|
||||
|
||||
glm_vec_scale(axis,
|
||||
glm_vec_dot(axis, v) * (1.0f - c),
|
||||
v3);
|
||||
/*!
|
||||
* @brief apply rotation matrix to vector
|
||||
*
|
||||
* matrix format should be (no perspective):
|
||||
* a b c x
|
||||
* e f g y
|
||||
* i j k z
|
||||
* 0 0 0 w
|
||||
*
|
||||
* @param[in] m affine matrix or rot matrix
|
||||
* @param[in] v vector
|
||||
* @param[out] dest rotated vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_rotate_m4(mat4 m, vec3 v, vec3 dest) {
|
||||
vec4 x, y, z, res;
|
||||
|
||||
glm_vec_add(v1, v2, v1);
|
||||
glm_vec_add(v1, v3, v);
|
||||
glm_vec4_normalize_to(m[0], x);
|
||||
glm_vec4_normalize_to(m[1], y);
|
||||
glm_vec4_normalize_to(m[2], z);
|
||||
|
||||
glm_vec4_scale(x, v[0], res);
|
||||
glm_vec4_muladds(y, v[1], res);
|
||||
glm_vec4_muladds(z, v[2], res);
|
||||
|
||||
glm_vec3(res, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -374,92 +637,109 @@ glm_vec_rotate(vec3 v, float angle, vec3 axis) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_rotate_m4(mat4 m, vec3 v, vec3 dest) {
|
||||
vec3 res, x, y, z;
|
||||
glm_vec3_rotate_m3(mat3 m, vec3 v, vec3 dest) {
|
||||
vec4 res, x, y, z;
|
||||
|
||||
glm_vec_normalize_to(m[0], x);
|
||||
glm_vec_normalize_to(m[1], y);
|
||||
glm_vec_normalize_to(m[2], z);
|
||||
glm_vec4(m[0], 0.0f, x);
|
||||
glm_vec4(m[1], 0.0f, y);
|
||||
glm_vec4(m[2], 0.0f, z);
|
||||
|
||||
res[0] = x[0] * v[0] + y[0] * v[1] + z[0] * v[2];
|
||||
res[1] = x[1] * v[0] + y[1] * v[1] + z[1] * v[2];
|
||||
res[2] = x[2] * v[0] + y[2] * v[1] + z[2] * v[2];
|
||||
glm_vec4_normalize(x);
|
||||
glm_vec4_normalize(y);
|
||||
glm_vec4_normalize(z);
|
||||
|
||||
glm_vec_copy(res, dest);
|
||||
glm_vec4_scale(x, v[0], res);
|
||||
glm_vec4_muladds(y, v[1], res);
|
||||
glm_vec4_muladds(z, v[2], res);
|
||||
|
||||
glm_vec3(res, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief project a vector onto b vector
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest projected vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_proj(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec_scale(b,
|
||||
glm_vec_dot(a, b) / glm_vec_norm2(b),
|
||||
dest);
|
||||
glm_vec3_proj(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_scale(b,
|
||||
glm_vec3_dot(a, b) / glm_vec3_norm2(b),
|
||||
dest);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief find center point of two vector
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest center point
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_center(vec3 v1, vec3 v2, vec3 dest) {
|
||||
glm_vec_add(v1, v2, dest);
|
||||
glm_vec_scale(dest, 0.5f, dest);
|
||||
glm_vec3_center(vec3 a, vec3 b, vec3 dest) {
|
||||
glm_vec3_add(a, b, dest);
|
||||
glm_vec3_scale(dest, 0.5f, dest);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief squared distance between two vectors
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @return returns squared distance (distance * distance)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec3_distance2(vec3 a, vec3 b) {
|
||||
return glm_pow2(b[0] - a[0])
|
||||
+ glm_pow2(b[1] - a[1])
|
||||
+ glm_pow2(b[2] - a[2]);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief distance between two vectors
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @return returns distance
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec_distance(vec3 v1, vec3 v2) {
|
||||
return sqrtf(glm_pow2(v2[0] - v1[0])
|
||||
+ glm_pow2(v2[1] - v1[1])
|
||||
+ glm_pow2(v2[2] - v1[2]));
|
||||
glm_vec3_distance(vec3 a, vec3 b) {
|
||||
return sqrtf(glm_vec3_distance2(a, b));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief max values of vectors
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_maxv(vec3 v1, vec3 v2, vec3 dest) {
|
||||
dest[0] = glm_max(v1[0], v2[0]);
|
||||
dest[1] = glm_max(v1[1], v2[1]);
|
||||
dest[2] = glm_max(v1[2], v2[2]);
|
||||
glm_vec3_maxv(vec3 a, vec3 b, vec3 dest) {
|
||||
dest[0] = glm_max(a[0], b[0]);
|
||||
dest[1] = glm_max(a[1], b[1]);
|
||||
dest[2] = glm_max(a[2], b[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief min values of vectors
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_minv(vec3 v1, vec3 v2, vec3 dest) {
|
||||
dest[0] = glm_min(v1[0], v2[0]);
|
||||
dest[1] = glm_min(v1[1], v2[1]);
|
||||
dest[2] = glm_min(v1[2], v2[2]);
|
||||
glm_vec3_minv(vec3 a, vec3 b, vec3 dest) {
|
||||
dest[0] = glm_min(a[0], b[0]);
|
||||
dest[1] = glm_min(a[1], b[1]);
|
||||
dest[2] = glm_min(a[2], b[2]);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -470,12 +750,49 @@ glm_vec_minv(vec3 v1, vec3 v2, vec3 dest) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec_ortho(vec3 v, vec3 dest) {
|
||||
glm_vec3_ortho(vec3 v, vec3 dest) {
|
||||
dest[0] = v[1] - v[2];
|
||||
dest[1] = v[2] - v[0];
|
||||
dest[2] = v[0] - v[1];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief clamp vector's individual members between min and max values
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
* @param[in] minVal minimum value
|
||||
* @param[in] maxVal maximum value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_clamp(vec3 v, float minVal, float maxVal) {
|
||||
v[0] = glm_clamp(v[0], minVal, maxVal);
|
||||
v[1] = glm_clamp(v[1], minVal, maxVal);
|
||||
v[2] = glm_clamp(v[2], minVal, maxVal);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief linear interpolation between two vector
|
||||
*
|
||||
* formula: from + s * (to - from)
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec3_lerp(vec3 from, vec3 to, float t, vec3 dest) {
|
||||
vec3 s, v;
|
||||
|
||||
/* from + s * (to - from) */
|
||||
glm_vec3_broadcast(glm_clamp_zo(t), s);
|
||||
glm_vec3_sub(to, from, v);
|
||||
glm_vec3_mul(s, v, v);
|
||||
glm_vec3_add(from, v, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief vec3 cross product
|
||||
*
|
||||
@@ -488,7 +805,7 @@ glm_vec_ortho(vec3 v, vec3 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_cross(vec3 a, vec3 b, vec3 d) {
|
||||
glm_vec_cross(a, b, d);
|
||||
glm_vec3_cross(a, b, d);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -504,7 +821,7 @@ glm_cross(vec3 a, vec3 b, vec3 d) {
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_dot(vec3 a, vec3 b) {
|
||||
return glm_vec_dot(a, b);
|
||||
return glm_vec3_dot(a, b);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -517,7 +834,7 @@ glm_dot(vec3 a, vec3 b) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_normalize(vec3 v) {
|
||||
glm_vec_normalize(v);
|
||||
glm_vec3_normalize(v);
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -531,7 +848,7 @@ glm_normalize(vec3 v) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_normalize_to(vec3 v, vec3 dest) {
|
||||
glm_vec_normalize_to(v, dest);
|
||||
glm_vec3_normalize_to(v, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
|
||||
@@ -11,15 +11,19 @@
|
||||
|
||||
/*
|
||||
Functions:
|
||||
CGLM_INLINE void glm_vec4_mulv(vec4 a, vec4 b, vec4 d);
|
||||
CGLM_INLINE void glm_vec4_broadcast(float val, vec4 d);
|
||||
CGLM_INLINE bool glm_vec4_eq(vec4 v, float val);
|
||||
CGLM_INLINE bool glm_vec4_eq_eps(vec4 v, float val);
|
||||
CGLM_INLINE bool glm_vec4_eq_all(vec4 v);
|
||||
CGLM_INLINE bool glm_vec4_eqv(vec4 v1, vec4 v2);
|
||||
CGLM_INLINE bool glm_vec4_eqv_eps(vec4 v1, vec4 v2);
|
||||
CGLM_INLINE bool glm_vec4_eqv(vec4 a, vec4 b);
|
||||
CGLM_INLINE bool glm_vec4_eqv_eps(vec4 a, vec4 b);
|
||||
CGLM_INLINE float glm_vec4_max(vec4 v);
|
||||
CGLM_INLINE float glm_vec4_min(vec4 v);
|
||||
CGLM_INLINE bool glm_vec4_isnan(vec4 v);
|
||||
CGLM_INLINE bool glm_vec4_isinf(vec4 v);
|
||||
CGLM_INLINE bool glm_vec4_isvalid(vec4 v);
|
||||
CGLM_INLINE void glm_vec4_sign(vec4 v, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_sqrt(vec4 v, vec4 dest);
|
||||
*/
|
||||
|
||||
#ifndef cglm_vec4_ext_h
|
||||
@@ -27,29 +31,6 @@
|
||||
|
||||
#include "common.h"
|
||||
#include "vec3-ext.h"
|
||||
#include <stdbool.h>
|
||||
#include <math.h>
|
||||
#include <float.h>
|
||||
|
||||
/*!
|
||||
* @brief multiplies individual items, just for convenient like SIMD
|
||||
*
|
||||
* @param a v1
|
||||
* @param b v2
|
||||
* @param d v3 = (v1[0] * v2[0], v1[1] * v2[1], v1[2] * v2[2], v1[3] * v2[3])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_mulv(vec4 a, vec4 b, vec4 d) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(d, _mm_mul_ps(_mm_load_ps(a), _mm_load_ps(b)));
|
||||
#else
|
||||
d[0] = a[0] * b[0];
|
||||
d[1] = a[1] * b[1];
|
||||
d[2] = a[2] * b[2];
|
||||
d[3] = a[3] * b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief fill a vector with specified value
|
||||
@@ -61,7 +42,7 @@ CGLM_INLINE
|
||||
void
|
||||
glm_vec4_broadcast(float val, vec4 d) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(d, _mm_set1_ps(val));
|
||||
glmm_store(d, _mm_set1_ps(val));
|
||||
#else
|
||||
d[0] = d[1] = d[2] = d[3] = val;
|
||||
#endif
|
||||
@@ -113,31 +94,31 @@ glm_vec4_eq_all(vec4 v) {
|
||||
/*!
|
||||
* @brief check if vector is equal to another (without epsilon)
|
||||
*
|
||||
* @param v1 vector
|
||||
* @param v2 vector
|
||||
* @param a vector
|
||||
* @param b vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_eqv(vec4 v1, vec4 v2) {
|
||||
return v1[0] == v2[0]
|
||||
&& v1[1] == v2[1]
|
||||
&& v1[2] == v2[2]
|
||||
&& v1[3] == v2[3];
|
||||
glm_vec4_eqv(vec4 a, vec4 b) {
|
||||
return a[0] == b[0]
|
||||
&& a[1] == b[1]
|
||||
&& a[2] == b[2]
|
||||
&& a[3] == b[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if vector is equal to another (with epsilon)
|
||||
*
|
||||
* @param v1 vector
|
||||
* @param v2 vector
|
||||
* @param a vector
|
||||
* @param b vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_eqv_eps(vec4 v1, vec4 v2) {
|
||||
return fabsf(v1[0] - v2[0]) <= FLT_EPSILON
|
||||
&& fabsf(v1[1] - v2[1]) <= FLT_EPSILON
|
||||
&& fabsf(v1[2] - v2[2]) <= FLT_EPSILON
|
||||
&& fabsf(v1[3] - v2[3]) <= FLT_EPSILON;
|
||||
glm_vec4_eqv_eps(vec4 a, vec4 b) {
|
||||
return fabsf(a[0] - b[0]) <= FLT_EPSILON
|
||||
&& fabsf(a[1] - b[1]) <= FLT_EPSILON
|
||||
&& fabsf(a[2] - b[2]) <= FLT_EPSILON
|
||||
&& fabsf(a[3] - b[3]) <= FLT_EPSILON;
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -150,7 +131,7 @@ float
|
||||
glm_vec4_max(vec4 v) {
|
||||
float max;
|
||||
|
||||
max = glm_vec_max(v);
|
||||
max = glm_vec3_max(v);
|
||||
if (v[3] > max)
|
||||
max = v[3];
|
||||
|
||||
@@ -167,12 +148,95 @@ float
|
||||
glm_vec4_min(vec4 v) {
|
||||
float min;
|
||||
|
||||
min = glm_vec_min(v);
|
||||
min = glm_vec3_min(v);
|
||||
if (v[3] < min)
|
||||
min = v[3];
|
||||
|
||||
return min;
|
||||
}
|
||||
|
||||
#endif /* cglm_vec4_ext_h */
|
||||
/*!
|
||||
* @brief check if one of items is NaN (not a number)
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_isnan(vec4 v) {
|
||||
return isnan(v[0]) || isnan(v[1]) || isnan(v[2]) || isnan(v[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if one of items is INFINITY
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_isinf(vec4 v) {
|
||||
return isinf(v[0]) || isinf(v[1]) || isinf(v[2]) || isinf(v[3]);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief check if all items are valid number
|
||||
* you should only use this in DEBUG mode or very critical asserts
|
||||
*
|
||||
* @param[in] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
bool
|
||||
glm_vec4_isvalid(vec4 v) {
|
||||
return !glm_vec4_isnan(v) && !glm_vec4_isinf(v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief get sign of 32 bit float as +1, -1, 0
|
||||
*
|
||||
* Important: It returns 0 for zero/NaN input
|
||||
*
|
||||
* @param v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_sign(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE2__ ) || defined( __SSE2__ )
|
||||
__m128 x0, x1, x2, x3, x4;
|
||||
|
||||
x0 = glmm_load(v);
|
||||
x1 = _mm_set_ps(0.0f, 0.0f, 1.0f, -1.0f);
|
||||
x2 = glmm_shuff1x(x1, 2);
|
||||
|
||||
x3 = _mm_and_ps(_mm_cmpgt_ps(x0, x2), glmm_shuff1x(x1, 1));
|
||||
x4 = _mm_and_ps(_mm_cmplt_ps(x0, x2), glmm_shuff1x(x1, 0));
|
||||
|
||||
glmm_store(dest, _mm_or_ps(x3, x4));
|
||||
#else
|
||||
dest[0] = glm_signf(v[0]);
|
||||
dest[1] = glm_signf(v[1]);
|
||||
dest[2] = glm_signf(v[2]);
|
||||
dest[3] = glm_signf(v[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief square root of each vector item
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_sqrt(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_sqrt_ps(glmm_load(v)));
|
||||
#else
|
||||
dest[0] = sqrtf(v[0]);
|
||||
dest[1] = sqrtf(v[1]);
|
||||
dest[2] = sqrtf(v[2]);
|
||||
dest[3] = sqrtf(v[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif /* cglm_vec4_ext_h */
|
||||
|
||||
@@ -5,40 +5,57 @@
|
||||
* Full license can be found in the LICENSE file
|
||||
*/
|
||||
|
||||
/*!
|
||||
* vec3 functions dont have suffix e.g glm_vec_dot (not glm_vec3_dot)
|
||||
* all functions without suffix are vec3 functions
|
||||
*/
|
||||
|
||||
/*
|
||||
Macros:
|
||||
glm_vec4_dup3(v, dest)
|
||||
glm_vec4_dup(v, dest)
|
||||
GLM_VEC4_ONE_INIT
|
||||
GLM_VEC4_BLACK_INIT
|
||||
GLM_VEC4_ZERO_INIT
|
||||
GLM_VEC4_ONE
|
||||
GLM_VEC4_BLACK
|
||||
|
||||
GLM_VEC4_ZERO
|
||||
|
||||
Functions:
|
||||
CGLM_INLINE void glm_vec4(vec3 v3, float last, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_copy3(vec4 a, vec3 dest);
|
||||
CGLM_INLINE void glm_vec4_copy(vec4 v, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_ucopy(vec4 v, vec4 dest);
|
||||
CGLM_INLINE float glm_vec4_dot(vec4 a, vec4 b);
|
||||
CGLM_INLINE float glm_vec4_norm2(vec4 v);
|
||||
CGLM_INLINE float glm_vec4_norm(vec4 vec);
|
||||
CGLM_INLINE void glm_vec4_add(vec4 v1, vec4 v2, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_sub(vec4 v1, vec4 v2, vec4 dest);
|
||||
CGLM_INLINE float glm_vec4_norm(vec4 v);
|
||||
CGLM_INLINE void glm_vec4_add(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_adds(vec4 v, float s, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_sub(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_subs(vec4 v, float s, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_mul(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_scale(vec4 v, float s, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_scale_as(vec4 v, float s, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_flipsign(vec4 v);
|
||||
CGLM_INLINE void glm_vec4_div(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_divs(vec4 v, float s, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_addadd(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_subadd(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_muladd(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_muladds(vec4 a, float s, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_maxadd(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_minadd(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_negate(vec4 v);
|
||||
CGLM_INLINE void glm_vec4_inv(vec4 v);
|
||||
CGLM_INLINE void glm_vec4_inv_to(vec4 v, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_normalize(vec4 v);
|
||||
CGLM_INLINE void glm_vec4_normalize_to(vec4 vec, vec4 dest);
|
||||
CGLM_INLINE float glm_vec4_distance(vec4 v1, vec4 v2);
|
||||
CGLM_INLINE void glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest);
|
||||
CGLM_INLINE float glm_vec4_distance(vec4 a, vec4 b);
|
||||
CGLM_INLINE void glm_vec4_maxv(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_minv(vec4 a, vec4 b, vec4 dest);
|
||||
CGLM_INLINE void glm_vec4_clamp(vec4 v, float minVal, float maxVal);
|
||||
CGLM_INLINE void glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest)
|
||||
CGLM_INLINE void glm_vec4_swizzle(vec4 v, int mask, vec4 dest);
|
||||
|
||||
DEPRECATED:
|
||||
glm_vec4_dup
|
||||
glm_vec4_flipsign
|
||||
glm_vec4_flipsign_to
|
||||
glm_vec4_inv
|
||||
glm_vec4_inv_to
|
||||
glm_vec4_mulv
|
||||
*/
|
||||
|
||||
#ifndef cglm_vec4_h
|
||||
@@ -48,15 +65,22 @@
|
||||
#include "vec4-ext.h"
|
||||
#include "util.h"
|
||||
|
||||
/* DEPRECATED! use _copy, _ucopy versions */
|
||||
#define glm_vec4_dup3(v, dest) glm_vec4_copy3(v, dest)
|
||||
#define glm_vec4_dup(v, dest) glm_vec4_copy(v, dest)
|
||||
/* DEPRECATED! functions */
|
||||
#define glm_vec4_dup3(v, dest) glm_vec4_copy3(v, dest)
|
||||
#define glm_vec4_dup(v, dest) glm_vec4_copy(v, dest)
|
||||
#define glm_vec4_flipsign(v) glm_vec4_negate(v)
|
||||
#define glm_vec4_flipsign_to(v, dest) glm_vec4_negate_to(v, dest)
|
||||
#define glm_vec4_inv(v) glm_vec4_negate(v)
|
||||
#define glm_vec4_inv_to(v, dest) glm_vec4_negate_to(v, dest)
|
||||
#define glm_vec4_mulv(a, b, d) glm_vec4_mul(a, b, d)
|
||||
|
||||
#define GLM_VEC4_ONE_INIT {1.0f, 1.0f, 1.0f, 1.0f}
|
||||
#define GLM_VEC4_BLACK_INIT {0.0f, 0.0f, 0.0f, 1.0f}
|
||||
#define GLM_VEC4_ZERO_INIT {0.0f, 0.0f, 0.0f, 0.0f}
|
||||
|
||||
#define GLM_VEC4_ONE (vec4)GLM_VEC4_ONE_INIT
|
||||
#define GLM_VEC4_BLACK (vec4)GLM_VEC4_BLACK_INIT
|
||||
#define GLM_VEC4_ONE ((vec4)GLM_VEC4_ONE_INIT)
|
||||
#define GLM_VEC4_BLACK ((vec4)GLM_VEC4_BLACK_INIT)
|
||||
#define GLM_VEC4_ZERO ((vec4)GLM_VEC4_ZERO_INIT)
|
||||
|
||||
#define GLM_XXXX GLM_SHUFFLE4(0, 0, 0, 0)
|
||||
#define GLM_YYYY GLM_SHUFFLE4(1, 1, 1, 1)
|
||||
@@ -104,7 +128,9 @@ CGLM_INLINE
|
||||
void
|
||||
glm_vec4_copy(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest, _mm_load_ps(v));
|
||||
glmm_store(dest, glmm_load(v));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vld1q_f32(v));
|
||||
#else
|
||||
dest[0] = v[0];
|
||||
dest[1] = v[1];
|
||||
@@ -113,6 +139,63 @@ glm_vec4_copy(vec4 v, vec4 dest) {
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief copy all members of [a] to [dest]
|
||||
*
|
||||
* alignment is not required
|
||||
*
|
||||
* @param[in] v source
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_ucopy(vec4 v, vec4 dest) {
|
||||
dest[0] = v[0];
|
||||
dest[1] = v[1];
|
||||
dest[2] = v[2];
|
||||
dest[3] = v[3];
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector zero
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_zero(vec4 v) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(v, _mm_setzero_ps());
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(v, vdupq_n_f32(0.0f));
|
||||
#else
|
||||
v[0] = 0.0f;
|
||||
v[1] = 0.0f;
|
||||
v[2] = 0.0f;
|
||||
v[3] = 0.0f;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector one
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_one(vec4 v) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(v, _mm_set1_ps(1.0f));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(v, vdupq_n_f32(1.0f));
|
||||
#else
|
||||
v[0] = 1.0f;
|
||||
v[1] = 1.0f;
|
||||
v[2] = 1.0f;
|
||||
v[3] = 1.0f;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief vec4 dot product
|
||||
*
|
||||
@@ -124,7 +207,11 @@ glm_vec4_copy(vec4 v, vec4 dest) {
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec4_dot(vec4 a, vec4 b) {
|
||||
#if defined(CGLM_SIMD)
|
||||
return glmm_dot(glmm_load(a), glmm_load(b));
|
||||
#else
|
||||
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] + a[3] * b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -141,63 +228,133 @@ glm_vec4_dot(vec4 a, vec4 b) {
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec4_norm2(vec4 v) {
|
||||
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + v[3] * v[3];
|
||||
return glm_vec4_dot(v, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief norm (magnitude) of vec4
|
||||
*
|
||||
* @param[in] vec vector
|
||||
* @param[in] v vector
|
||||
*
|
||||
* @return norm
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec4_norm(vec4 vec) {
|
||||
return sqrtf(glm_vec4_norm2(vec));
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add v2 vector to v1 vector store result in dest
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_add(vec4 v1, vec4 v2, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest,
|
||||
_mm_add_ps(_mm_load_ps(v1),
|
||||
_mm_load_ps(v2)));
|
||||
glm_vec4_norm(vec4 v) {
|
||||
#if defined(CGLM_SIMD)
|
||||
return glmm_norm(glmm_load(v));
|
||||
#else
|
||||
dest[0] = v1[0] + v2[0];
|
||||
dest[1] = v1[1] + v2[1];
|
||||
dest[2] = v1[2] + v2[2];
|
||||
dest[3] = v1[3] + v2[3];
|
||||
return sqrtf(glm_vec4_dot(v, v));
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract v2 vector from v1 vector store result in dest
|
||||
* @brief add b vector to a vector store result in dest
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_sub(vec4 v1, vec4 v2, vec4 dest) {
|
||||
glm_vec4_add(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest,
|
||||
_mm_sub_ps(_mm_load_ps(v1),
|
||||
_mm_load_ps(v2)));
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(a), glmm_load(b)));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vaddq_f32(vld1q_f32(a), vld1q_f32(b)));
|
||||
#else
|
||||
dest[0] = v1[0] - v2[0];
|
||||
dest[1] = v1[1] - v2[1];
|
||||
dest[2] = v1[2] - v2[2];
|
||||
dest[3] = v1[3] - v2[3];
|
||||
dest[0] = a[0] + b[0];
|
||||
dest[1] = a[1] + b[1];
|
||||
dest[2] = a[2] + b[2];
|
||||
dest[3] = a[3] + b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add scalar to v vector store result in dest (d = v + vec(s))
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_adds(vec4 v, float s, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(v), _mm_set1_ps(s)));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vaddq_f32(vld1q_f32(v), vdupq_n_f32(s)));
|
||||
#else
|
||||
dest[0] = v[0] + s;
|
||||
dest[1] = v[1] + s;
|
||||
dest[2] = v[2] + s;
|
||||
dest[3] = v[3] + s;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract b vector from a vector store result in dest (d = a - b)
|
||||
*
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_sub(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_sub_ps(glmm_load(a), glmm_load(b)));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vsubq_f32(vld1q_f32(a), vld1q_f32(b)));
|
||||
#else
|
||||
dest[0] = a[0] - b[0];
|
||||
dest[1] = a[1] - b[1];
|
||||
dest[2] = a[2] - b[2];
|
||||
dest[3] = a[3] - b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief subtract scalar from v vector store result in dest (d = v - vec(s))
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_subs(vec4 v, float s, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_sub_ps(glmm_load(v), _mm_set1_ps(s)));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vsubq_f32(vld1q_f32(v), vdupq_n_f32(s)));
|
||||
#else
|
||||
dest[0] = v[0] - s;
|
||||
dest[1] = v[1] - s;
|
||||
dest[2] = v[2] - s;
|
||||
dest[3] = v[3] - s;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief multiply two vector (component-wise multiplication)
|
||||
*
|
||||
* @param a vector1
|
||||
* @param b vector2
|
||||
* @param dest dest = (a[0] * b[0], a[1] * b[1], a[2] * b[2], a[3] * b[3])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_mul(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_mul_ps(glmm_load(a), glmm_load(b)));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vmulq_f32(vld1q_f32(a), vld1q_f32(b)));
|
||||
#else
|
||||
dest[0] = a[0] * b[0];
|
||||
dest[1] = a[1] * b[1];
|
||||
dest[2] = a[2] * b[2];
|
||||
dest[3] = a[3] * b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
@@ -212,9 +369,9 @@ CGLM_INLINE
|
||||
void
|
||||
glm_vec4_scale(vec4 v, float s, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(dest,
|
||||
_mm_mul_ps(_mm_load_ps(v),
|
||||
_mm_set1_ps(s)));
|
||||
glmm_store(dest, _mm_mul_ps(glmm_load(v), _mm_set1_ps(s)));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vmulq_f32(vld1q_f32(v), vdupq_n_f32(s)));
|
||||
#else
|
||||
dest[0] = v[0] * s;
|
||||
dest[1] = v[1] * s;
|
||||
@@ -236,14 +393,240 @@ glm_vec4_scale_as(vec4 v, float s, vec4 dest) {
|
||||
float norm;
|
||||
norm = glm_vec4_norm(v);
|
||||
|
||||
if (norm == 0) {
|
||||
glm_vec4_copy(v, dest);
|
||||
if (norm == 0.0f) {
|
||||
glm_vec4_zero(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec4_scale(v, s / norm, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief div vector with another component-wise division: d = a / b
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest result = (a[0]/b[0], a[1]/b[1], a[2]/b[2], a[3]/b[3])
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_div(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_div_ps(glmm_load(a), glmm_load(b)));
|
||||
#else
|
||||
dest[0] = a[0] / b[0];
|
||||
dest[1] = a[1] / b[1];
|
||||
dest[2] = a[2] / b[2];
|
||||
dest[3] = a[3] / b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief div vec4 vector with scalar: d = v / s
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[in] s scalar
|
||||
* @param[out] dest destination vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_divs(vec4 v, float s, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_div_ps(glmm_load(v), _mm_set1_ps(s)));
|
||||
#else
|
||||
glm_vec4_scale(v, 1.0f / s, dest);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add two vectors and add result to sum
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += (a + b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_addadd(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(dest),
|
||||
_mm_add_ps(glmm_load(a),
|
||||
glmm_load(b))));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
|
||||
vaddq_f32(vld1q_f32(a),
|
||||
vld1q_f32(b))));
|
||||
#else
|
||||
dest[0] += a[0] + b[0];
|
||||
dest[1] += a[1] + b[1];
|
||||
dest[2] += a[2] + b[2];
|
||||
dest[3] += a[3] + b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief sub two vectors and add result to dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += (a - b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_subadd(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(dest),
|
||||
_mm_sub_ps(glmm_load(a),
|
||||
glmm_load(b))));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
|
||||
vsubq_f32(vld1q_f32(a),
|
||||
vld1q_f32(b))));
|
||||
#else
|
||||
dest[0] += a[0] - b[0];
|
||||
dest[1] += a[1] - b[1];
|
||||
dest[2] += a[2] - b[2];
|
||||
dest[3] += a[3] - b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mul two vectors and add result to dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += (a * b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_muladd(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(dest),
|
||||
_mm_mul_ps(glmm_load(a),
|
||||
glmm_load(b))));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
|
||||
vmulq_f32(vld1q_f32(a),
|
||||
vld1q_f32(b))));
|
||||
#else
|
||||
dest[0] += a[0] * b[0];
|
||||
dest[1] += a[1] * b[1];
|
||||
dest[2] += a[2] * b[2];
|
||||
dest[3] += a[3] * b[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief mul vector with scalar and add result to sum
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector
|
||||
* @param[in] s scalar
|
||||
* @param[out] dest dest += (a * b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_muladds(vec4 a, float s, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(dest),
|
||||
_mm_mul_ps(glmm_load(a),
|
||||
_mm_set1_ps(s))));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
|
||||
vsubq_f32(vld1q_f32(a),
|
||||
vdupq_n_f32(s))));
|
||||
#else
|
||||
dest[0] += a[0] * s;
|
||||
dest[1] += a[1] * s;
|
||||
dest[2] += a[2] * s;
|
||||
dest[3] += a[3] * s;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add max of two vector to result/dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += max(a, b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_maxadd(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(dest),
|
||||
_mm_max_ps(glmm_load(a),
|
||||
glmm_load(b))));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
|
||||
vmaxq_f32(vld1q_f32(a),
|
||||
vld1q_f32(b))));
|
||||
#else
|
||||
dest[0] += glm_max(a[0], b[0]);
|
||||
dest[1] += glm_max(a[1], b[1]);
|
||||
dest[2] += glm_max(a[2], b[2]);
|
||||
dest[3] += glm_max(a[3], b[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief add min of two vector to result/dest
|
||||
*
|
||||
* it applies += operator so dest must be initialized
|
||||
*
|
||||
* @param[in] a vector 1
|
||||
* @param[in] b vector 2
|
||||
* @param[out] dest dest += min(a, b)
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_minadd(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_add_ps(glmm_load(dest),
|
||||
_mm_min_ps(glmm_load(a),
|
||||
glmm_load(b))));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vaddq_f32(vld1q_f32(dest),
|
||||
vminq_f32(vld1q_f32(a),
|
||||
vld1q_f32(b))));
|
||||
#else
|
||||
dest[0] += glm_min(a[0], b[0]);
|
||||
dest[1] += glm_min(a[1], b[1]);
|
||||
dest[2] += glm_min(a[2], b[2]);
|
||||
dest[3] += glm_min(a[3], b[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief negate vector components and store result in dest
|
||||
*
|
||||
* @param[in] v vector
|
||||
* @param[out] dest result vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_negate_to(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_xor_ps(glmm_load(v), _mm_set1_ps(-0.0f)));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, veorq_s32(vld1q_f32(v), vdupq_n_f32(-0.0f)));
|
||||
#else
|
||||
dest[0] = -v[0];
|
||||
dest[1] = -v[1];
|
||||
dest[2] = -v[2];
|
||||
dest[3] = -v[3];
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief flip sign of all vec4 members
|
||||
*
|
||||
@@ -251,40 +634,45 @@ glm_vec4_scale_as(vec4 v, float s, vec4 dest) {
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_flipsign(vec4 v) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
_mm_store_ps(v, _mm_xor_ps(_mm_load_ps(v),
|
||||
_mm_set1_ps(-0.0f)));
|
||||
#else
|
||||
v[0] = -v[0];
|
||||
v[1] = -v[1];
|
||||
v[2] = -v[2];
|
||||
v[3] = -v[3];
|
||||
#endif
|
||||
glm_vec4_negate(vec4 v) {
|
||||
glm_vec4_negate_to(v, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief make vector as inverse/opposite of itself
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_inv(vec4 v) {
|
||||
glm_vec4_flipsign(v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief inverse/opposite vector
|
||||
* @brief normalize vec4 to dest
|
||||
*
|
||||
* @param[in] v source
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_inv_to(vec4 v, vec4 dest) {
|
||||
glm_vec4_copy(v, dest);
|
||||
glm_vec4_flipsign(dest);
|
||||
glm_vec4_normalize_to(vec4 v, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
__m128 xdot, x0;
|
||||
float dot;
|
||||
|
||||
x0 = glmm_load(v);
|
||||
xdot = glmm_vdot(x0, x0);
|
||||
dot = _mm_cvtss_f32(xdot);
|
||||
|
||||
if (dot == 0.0f) {
|
||||
glmm_store(dest, _mm_setzero_ps());
|
||||
return;
|
||||
}
|
||||
|
||||
glmm_store(dest, _mm_div_ps(x0, _mm_sqrt_ps(xdot)));
|
||||
#else
|
||||
float norm;
|
||||
|
||||
norm = glm_vec4_norm(v);
|
||||
|
||||
if (norm == 0.0f) {
|
||||
glm_vec4_zero(dest);
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec4_scale(v, 1.0f / norm, dest);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
@@ -295,85 +683,138 @@ glm_vec4_inv_to(vec4 v, vec4 dest) {
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_normalize(vec4 v) {
|
||||
float norm;
|
||||
|
||||
norm = glm_vec4_norm(v);
|
||||
|
||||
if (norm == 0.0f) {
|
||||
v[0] = v[1] = v[2] = v[3] = 0.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec4_scale(v, 1.0f / norm, v);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief normalize vec4 to dest
|
||||
*
|
||||
* @param[in] vec source
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_normalize_to(vec4 vec, vec4 dest) {
|
||||
float norm;
|
||||
|
||||
norm = glm_vec4_norm(vec);
|
||||
|
||||
if (norm == 0.0f) {
|
||||
dest[0] = dest[1] = dest[2] = dest[3] = 0.0f;
|
||||
return;
|
||||
}
|
||||
|
||||
glm_vec4_scale(vec, 1.0f / norm, dest);
|
||||
glm_vec4_normalize_to(v, v);
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief distance between two vectors
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @return returns distance
|
||||
*/
|
||||
CGLM_INLINE
|
||||
float
|
||||
glm_vec4_distance(vec4 v1, vec4 v2) {
|
||||
return sqrtf(glm_pow2(v2[0] - v1[0])
|
||||
+ glm_pow2(v2[1] - v1[1])
|
||||
+ glm_pow2(v2[2] - v1[2])
|
||||
+ glm_pow2(v2[3] - v1[3]));
|
||||
glm_vec4_distance(vec4 a, vec4 b) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
return glmm_norm(_mm_sub_ps(glmm_load(b), glmm_load(a)));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
return glmm_norm(vsubq_f32(glmm_load(a), glmm_load(b)));
|
||||
#else
|
||||
return sqrtf(glm_pow2(b[0] - a[0])
|
||||
+ glm_pow2(b[1] - a[1])
|
||||
+ glm_pow2(b[2] - a[2])
|
||||
+ glm_pow2(b[3] - a[3]));
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief max values of vectors
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_maxv(vec4 v1, vec4 v2, vec4 dest) {
|
||||
dest[0] = glm_max(v1[0], v2[0]);
|
||||
dest[1] = glm_max(v1[1], v2[1]);
|
||||
dest[2] = glm_max(v1[2], v2[2]);
|
||||
dest[3] = glm_max(v1[3], v2[3]);
|
||||
glm_vec4_maxv(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_max_ps(glmm_load(a), glmm_load(b)));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vmaxq_f32(vld1q_f32(a), vld1q_f32(b)));
|
||||
#else
|
||||
dest[0] = glm_max(a[0], b[0]);
|
||||
dest[1] = glm_max(a[1], b[1]);
|
||||
dest[2] = glm_max(a[2], b[2]);
|
||||
dest[3] = glm_max(a[3], b[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief min values of vectors
|
||||
*
|
||||
* @param[in] v1 vector1
|
||||
* @param[in] v2 vector2
|
||||
* @param[in] a vector1
|
||||
* @param[in] b vector2
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_minv(vec4 v1, vec4 v2, vec4 dest) {
|
||||
dest[0] = glm_min(v1[0], v2[0]);
|
||||
dest[1] = glm_min(v1[1], v2[1]);
|
||||
dest[2] = glm_min(v1[2], v2[2]);
|
||||
dest[3] = glm_min(v1[3], v2[3]);
|
||||
glm_vec4_minv(vec4 a, vec4 b, vec4 dest) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(dest, _mm_min_ps(glmm_load(a), glmm_load(b)));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(dest, vminq_f32(vld1q_f32(a), vld1q_f32(b)));
|
||||
#else
|
||||
dest[0] = glm_min(a[0], b[0]);
|
||||
dest[1] = glm_min(a[1], b[1]);
|
||||
dest[2] = glm_min(a[2], b[2]);
|
||||
dest[3] = glm_min(a[3], b[3]);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief clamp vector's individual members between min and max values
|
||||
*
|
||||
* @param[in, out] v vector
|
||||
* @param[in] minVal minimum value
|
||||
* @param[in] maxVal maximum value
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_clamp(vec4 v, float minVal, float maxVal) {
|
||||
#if defined( __SSE__ ) || defined( __SSE2__ )
|
||||
glmm_store(v, _mm_min_ps(_mm_max_ps(glmm_load(v), _mm_set1_ps(minVal)),
|
||||
_mm_set1_ps(maxVal)));
|
||||
#elif defined(CGLM_NEON_FP)
|
||||
vst1q_f32(v, vminq_f32(vmaxq_f32(vld1q_f32(v), vdupq_n_f32(minVal)),
|
||||
vdupq_n_f32(maxVal)));
|
||||
#else
|
||||
v[0] = glm_clamp(v[0], minVal, maxVal);
|
||||
v[1] = glm_clamp(v[1], minVal, maxVal);
|
||||
v[2] = glm_clamp(v[2], minVal, maxVal);
|
||||
v[3] = glm_clamp(v[3], minVal, maxVal);
|
||||
#endif
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief linear interpolation between two vector
|
||||
*
|
||||
* formula: from + s * (to - from)
|
||||
*
|
||||
* @param[in] from from value
|
||||
* @param[in] to to value
|
||||
* @param[in] t interpolant (amount) clamped between 0 and 1
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_lerp(vec4 from, vec4 to, float t, vec4 dest) {
|
||||
vec4 s, v;
|
||||
|
||||
/* from + s * (to - from) */
|
||||
glm_vec4_broadcast(glm_clamp_zo(t), s);
|
||||
glm_vec4_sub(to, from, v);
|
||||
glm_vec4_mul(s, v, v);
|
||||
glm_vec4_add(from, v, dest);
|
||||
}
|
||||
|
||||
/*!
|
||||
* @brief helper to fill vec4 as [S^3, S^2, S, 1]
|
||||
*
|
||||
* @param[in] s parameter
|
||||
* @param[out] dest destination
|
||||
*/
|
||||
CGLM_INLINE
|
||||
void
|
||||
glm_vec4_cubic(float s, vec4 dest) {
|
||||
float ss;
|
||||
|
||||
ss = s * s;
|
||||
|
||||
dest[0] = ss * s;
|
||||
dest[1] = ss;
|
||||
dest[2] = s;
|
||||
dest[3] = 1.0f;
|
||||
}
|
||||
|
||||
/*!
|
||||
|
||||
@@ -9,7 +9,7 @@
|
||||
#define cglm_version_h
|
||||
|
||||
#define CGLM_VERSION_MAJOR 0
|
||||
#define CGLM_VERSION_MINOR 3
|
||||
#define CGLM_VERSION_PATCH 3
|
||||
#define CGLM_VERSION_MINOR 6
|
||||
#define CGLM_VERSION_PATCH 0
|
||||
|
||||
#endif /* cglm_version_h */
|
||||
|
||||
Reference in New Issue
Block a user