257 lines
8.9 KiB
C++
257 lines
8.9 KiB
C++
// Copyright (c) 2023 Dominic Masters
|
|
//
|
|
// This software is released under the MIT License.
|
|
// https://opensource.org/licenses/MIT
|
|
|
|
#include "Ray3D.hpp"
|
|
|
|
using namespace Dawn;
|
|
|
|
bool_t Dawn::raytestSphere(
|
|
struct Ray3D ray,
|
|
struct PhysicsSphere sphere,
|
|
glm::vec3 *hit,
|
|
glm::vec3 *normal,
|
|
float_t *distance
|
|
) {
|
|
float_t a = glm::dot(ray.direction, ray.direction);
|
|
float_t b = 2.0f * glm::dot(ray.direction, ray.origin - sphere.center);
|
|
float_t c = glm::dot(ray.origin - sphere.center, ray.origin - sphere.center);
|
|
c -= sphere.radius * sphere.radius;
|
|
|
|
float_t dt = b * b - 4.0f * a * c;
|
|
if(dt < 0.0f) return false;
|
|
|
|
float_t t0 = (-b - sqrtf(dt)) / (a * 2.0f);
|
|
if(t0 < 0.0f) return false;
|
|
|
|
*hit = ray.origin + t0 * ray.direction;
|
|
*normal = glm::normalize(*hit - sphere.center);
|
|
*distance = t0;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool_t Dawn::raytestTriangle(
|
|
struct Ray3D ray,
|
|
struct PhysicsTriangle triangle,
|
|
glm::vec3 *hitPoint,
|
|
glm::vec3 *hitNormal,
|
|
float_t *hitDistance
|
|
) {
|
|
assertNotNull(hitPoint);
|
|
assertNotNull(hitNormal);
|
|
assertNotNull(hitDistance);
|
|
|
|
// Calculate the normal of the triangle
|
|
glm::vec3 e0 = triangle.v1 - triangle.v0;
|
|
glm::vec3 e1 = triangle.v2 - triangle.v0;
|
|
glm::vec3 normal = glm::normalize(glm::cross(e0, e1));
|
|
|
|
// Calculate the denominator of the ray-triangle intersection formula
|
|
float_t denominator = glm::dot(normal, ray.direction);
|
|
|
|
// If the denominator is zero, the ray and triangle are parallel and there is no intersection
|
|
if(denominator == 0) return -1;
|
|
|
|
// Calculate the distance from the ray origin to the plane of the triangle
|
|
float_t d = glm::dot(triangle.v0 - ray.origin, normal) / denominator;
|
|
|
|
// If the distance is negative, the intersection point is behind the ray origin and there is no intersection
|
|
if(d < 0) return -1;
|
|
|
|
// Calculate the intersection point
|
|
glm::vec3 intersectionPoint = ray.origin + d * ray.direction;
|
|
|
|
// Check if the intersection point is inside the triangle
|
|
glm::vec3 edge0 = triangle.v1 - triangle.v0;
|
|
glm::vec3 edge1 = triangle.v2 - triangle.v1;
|
|
glm::vec3 edge2 = triangle.v0 - triangle.v2;
|
|
glm::vec3 c0 = intersectionPoint - triangle.v0;
|
|
glm::vec3 c1 = intersectionPoint - triangle.v1;
|
|
glm::vec3 c2 = intersectionPoint - triangle.v2;
|
|
glm::vec3 n0 = glm::cross(edge0, c0);
|
|
glm::vec3 n1 = glm::cross(edge1, c1);
|
|
glm::vec3 n2 = glm::cross(edge2, c2);
|
|
if(glm::dot(n0, normal) >= 0 && glm::dot(n1, normal) >= 0 && glm::dot(n2, normal) >= 0) {
|
|
// If the intersection point is inside the triangle, set the hit point, normal and distance
|
|
*hitPoint = intersectionPoint;
|
|
*hitNormal = normal;
|
|
*hitDistance = d;
|
|
return true;
|
|
}
|
|
|
|
// If the intersection point is outside the triangle, there is no intersection
|
|
return false;
|
|
}
|
|
|
|
bool_t Dawn::raytestAABB(
|
|
struct Ray3D ray,
|
|
struct AABB3D box,
|
|
glm::vec3 *point,
|
|
glm::vec3 *normal,
|
|
float_t *distance
|
|
) {
|
|
assertNotNull(point);
|
|
assertNotNull(normal);
|
|
assertNotNull(distance);
|
|
|
|
// Compute the inverse direction of the ray, for numerical stability
|
|
glm::vec3 invDir(1.0f / ray.direction.x, 1.0f / ray.direction.y, 1.0f / ray.direction.z);
|
|
|
|
// Compute the t-values for the two intersection candidates
|
|
glm::vec3 tMin = (box.min - ray.origin) * invDir;
|
|
glm::vec3 tMax = (box.max - ray.origin) * invDir;
|
|
|
|
// Make sure tMin is less than or equal to tMax for all components
|
|
glm::vec3 t1 = glm::min(tMin, tMax);
|
|
glm::vec3 t2 = glm::max(tMin, tMax);
|
|
float tNear = glm::compMax(t1);
|
|
float tFar = glm::compMin(t2);
|
|
|
|
// If tNear is greater than or equal to tFar, there is no intersection
|
|
if(tNear >= tFar) return false;
|
|
|
|
// If tFar is negative, the ray is pointing away from the box
|
|
if(tFar < 0.0f) return false;
|
|
|
|
// Compute the hit point and normal
|
|
glm::vec3 hitPoint = ray.origin + tNear * ray.direction;
|
|
|
|
*point = hitPoint;
|
|
*distance = tNear;
|
|
|
|
// Small value to account for floating point imprecision
|
|
const float epsilon = 0.001f;
|
|
if(std::abs(hitPoint.x - box.min.x) < epsilon) {
|
|
*normal = glm::vec3(-1, 0, 0);
|
|
} else if(std::abs(hitPoint.x - box.max.x) < epsilon) {
|
|
*normal = glm::vec3(1, 0, 0);
|
|
} else if(std::abs(hitPoint.y - box.min.y) < epsilon) {
|
|
*normal = glm::vec3(0, -1, 0);
|
|
} else if(std::abs(hitPoint.y - box.max.y) < epsilon) {
|
|
*normal = glm::vec3(0, 1, 0);
|
|
} else if(std::abs(hitPoint.z - box.min.z) < epsilon) {
|
|
*normal = glm::vec3(0, 0, -1);
|
|
} else if(std::abs(hitPoint.z - box.max.z) < epsilon) {
|
|
*normal = glm::vec3(0, 0, 1);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool_t Dawn::raytestCube(
|
|
struct Ray3D ray,
|
|
struct AABB3D box,
|
|
glm::mat4 transform,
|
|
glm::vec3 *point,
|
|
glm::vec3 *normal,
|
|
float_t *distance
|
|
) {
|
|
// Compute the inverse transformation matrix
|
|
glm::mat4 inverseTransform = glm::inverse(transform);
|
|
|
|
// Transform the ray into model space
|
|
struct Ray3D localRay;
|
|
localRay.origin = glm::vec3(inverseTransform * glm::vec4(ray.origin, 1.0f));
|
|
localRay.direction = glm::normalize(glm::vec3(inverseTransform * glm::vec4(ray.direction, 0.0f)));
|
|
|
|
// Call raytestAABB with the transformed ray and cube
|
|
bool_t hit = raytestAABB(localRay, box, point, normal, distance);
|
|
if(!hit) return false;
|
|
|
|
// Transform the hit point and normal back into world space
|
|
*point = glm::vec3(transform * glm::vec4(*point, 1.0f));
|
|
*normal = glm::normalize(glm::vec3(glm::transpose(inverseTransform) * glm::vec4(*normal, 0.0f)));
|
|
|
|
return true;
|
|
}
|
|
|
|
bool_t Dawn::raytestQuad(
|
|
struct Ray3D ray,
|
|
glm::vec2 min,
|
|
glm::vec2 max,
|
|
glm::mat4 transform,
|
|
glm::vec3 *point,
|
|
glm::vec3 *normal,
|
|
float_t *distance
|
|
) {
|
|
assertNotNull(point);
|
|
assertNotNull(normal);
|
|
assertNotNull(distance);
|
|
|
|
// transform ray into local space of the quad
|
|
glm::mat4 inverseTransform = glm::inverse(transform);
|
|
glm::vec3 localRayOrigin = glm::vec3(inverseTransform * glm::vec4(ray.origin, 1.0f));
|
|
glm::vec3 localRayDirection = glm::vec3(inverseTransform * glm::vec4(ray.direction, 0.0f));
|
|
|
|
// perform ray-quad intersection test
|
|
float_t t = -localRayOrigin.z / localRayDirection.z; // intersection distance along ray
|
|
if (t < 0) return false; // intersection is behind the ray origin
|
|
glm::vec2 intersectionPoint = glm::vec2(localRayOrigin) + t * glm::vec2(localRayDirection);
|
|
if (
|
|
glm::any(glm::lessThan(intersectionPoint, min)) ||
|
|
glm::any(glm::greaterThan(intersectionPoint, max))
|
|
) {
|
|
return false; // intersection is outside the quad
|
|
}
|
|
*distance = t;
|
|
|
|
// compute point and normal of intersection in world space
|
|
glm::vec3 localIntersectionPoint = glm::vec3(intersectionPoint, 0.0f);
|
|
*point = glm::vec3(transform * glm::vec4(localIntersectionPoint, 1.0f));
|
|
*normal = glm::normalize(glm::vec3(transform * glm::vec4(0.0f, 0.0f, 1.0f, 0.0f)));
|
|
|
|
return true; // intersection found
|
|
}
|
|
|
|
bool_t Dawn::raytestCapsule(
|
|
struct Ray3D ray,
|
|
struct PhysicsCapsule capsule,
|
|
glm::vec3 *point,
|
|
glm::vec3 *normal,
|
|
float_t *distance
|
|
) {
|
|
// Calculate the axis of the capsule
|
|
glm::vec3 capsuleAxis = glm::normalize(ray.direction);
|
|
glm::vec3 capsuleP0 = capsule.origin;
|
|
glm::vec3 capsuleP1 = capsule.origin + capsule.height * capsuleAxis;
|
|
|
|
// Calculate the sphere centers and radii of the capsule end-caps
|
|
glm::vec3 sphereP0 = capsule.origin;
|
|
glm::vec3 sphereP1 = capsule.origin + capsule.height * capsuleAxis;
|
|
float_t sphereR = capsule.radius;
|
|
|
|
// Calculate the closest points on the capsule axis and the ray
|
|
glm::vec3 closestPointRay, closestPointAxis;
|
|
if(glm::distance(ray.origin, capsuleP0) < glm::distance(ray.origin, capsuleP1)) {
|
|
closestPointAxis = glm::clamp(glm::dot(ray.origin - capsuleP0, capsuleAxis), 0.0f, capsule.height) * capsuleAxis + capsuleP0;
|
|
} else {
|
|
closestPointAxis = glm::clamp(glm::dot(ray.origin - capsuleP1, -capsuleAxis), 0.0f, capsule.height) * -capsuleAxis + capsuleP1;
|
|
}
|
|
|
|
closestPointRay = glm::clamp(
|
|
glm::dot(closestPointAxis - ray.origin, ray.direction),
|
|
0.0f, glm::length(ray.direction)
|
|
) * ray.direction + ray.origin;
|
|
|
|
// Calculate the distance between the closest points on the ray and the axis
|
|
glm::vec3 temp = (closestPointRay - closestPointAxis);
|
|
float_t distanceSquared = glm::dot(temp, temp);
|
|
|
|
// Check if the ray intersects the end-caps of the capsule
|
|
if(
|
|
raytestSphere(ray, { .center = sphereP0, .radius = sphereR }, point, normal, distance) ||
|
|
raytestSphere(ray, { .center = sphereP1, .radius = sphereR }, point, normal, distance)
|
|
) {
|
|
*normal = glm::normalize(*point - sphereP0);
|
|
return true;
|
|
}
|
|
|
|
// Check if the ray intersects the cylinder part of the capsule
|
|
if(distanceSquared > sphereR * sphereR) return false;
|
|
*distance = glm::distance(ray.origin, closestPointRay);
|
|
*point = closestPointRay;
|
|
*normal = glm::normalize(*point - closestPointAxis);
|
|
return true;
|
|
} |