Wow! I can't believe I haven't started this project again!

This commit is contained in:
2024-11-25 15:59:50 -06:00
parent a02e87c3fa
commit f8c008fd45
47 changed files with 177 additions and 845 deletions

View File

@ -7,11 +7,11 @@ cmake_minimum_required(VERSION 3.13)
set(CMAKE_C_STANDARD 99)
set(CMAKE_C_STANDARD_REQUIRED ON)
set(CMAKE_CXX_STANDARD 20)
set(CMAKE_CXX_STANDARD_REQUIRED True)
set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_SOURCE_DIR}/cmake/modules/")
set(CMAKE_CXX_STANDARD_REQUIRED ON)
# Variable Caches
set(DAWN_CACHE_TARGET "dawn-target")
set(DAWN_TARGET_NAME "Dawn")
# Set Common Build Variables
set(DAWN_ROOT_DIR "${CMAKE_SOURCE_DIR}")
@ -23,11 +23,6 @@ set(DAWN_ASSETS_BUILD_DIR "${DAWN_BUILD_DIR}/assets")
set(DAWN_GENERATED_DIR "${DAWN_BUILD_DIR}/generated")
set(DAWN_TEMP_DIR "${DAWN_BUILD_DIR}/temp")
# Add CMake Tools
add_subdirectory(cmake)
set(DAWN_BUILD_BINARY ${DAWN_BUILD_DIR}/src/${DAWN_BUILDING}/${DAWN_TARGET_NAME})
# Initialize Project First.
project(Dawn
VERSION 1.0.0

View File

@ -1,5 +0,0 @@
#!/bin/bash
mkdir tools
cd tools
cmake .. -DDAWN_BUILD_TARGET=target-tools
make

View File

@ -1,2 +0,0 @@
#!/bin/bash
git submodule update --init --recursive

View File

@ -1,2 +0,0 @@
#!/bin/bash
sudo apt install build-essential

View File

@ -1,38 +0,0 @@
#!/bin/bash
sudo apt-get install cmake libarchive-tools
git clone https://github.com/vitasdk/vdpm ~/vdpm
cd ~/vdpm
./bootstrap-vitasdk.sh
export PATH=$VITASDK/bin:$PATH
git clone https://github.com/vitasdk/packages.git ~/vitapackages
cd ~/vitapackages
dir_array=(
zlib
bzip2
henkaku
taihen
kubridge
openal-soft
openssl
curl
curlpp
expat
opus
opusfile
glm
kuio
vitaShaRK
libmathneon
vitaGL
SceShaccCgExt
)
curdir=$(pwd)
for d in "${dir_array[@]}";do
echo "${curdir}${d}"
cd "${curdir}/${d}"
vita-makepkg
vdpm *-arm.tar.xz
done

View File

@ -1,10 +0,0 @@
#!/bin/bash
mkdir -p vita/build
cd vita/build
if [ ! -d "src" ]
then
cmake ../.. -DDAWN_BUILD_TARGET=target-helloworld-vita -DCMAKE_BUILD_TYPE=Debug
fi
make
cp ./src/dawnvita/*.vpk ../
cd ../..

View File

@ -1,8 +0,0 @@
# Copyright (c) 2022 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
# Includes
add_subdirectory(hosts)
add_subdirectory(targets)

View File

@ -1,15 +0,0 @@
# Copyright (c) 2022 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
# Check for build target, or default
if(WIN32)
set(DAWN_BUILD_HOST "build-host-win32")
elseif(UNIX AND NOT APPLE)
set(DAWN_BUILD_HOST "build-host-linux")
elseif(UNIX AND APPLE)
set(DAWN_BUILD_HOST "build-host-osx")
endif()
add_subdirectory(${DAWN_BUILD_HOST})

View File

@ -1,4 +0,0 @@
# CMake Hosts
CMake Hosts help the build system define how a HOST (Not the target/client) does
its building. Host would be the system you are using, right now, to do the build
with.

View File

@ -1,6 +0,0 @@
# Copyright (c) 2022 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
set(DAWN_BUILD_HOST_LIBS "m" CACHE INTERNAL ${DAWN_CACHE_TARGET})

View File

@ -1,6 +0,0 @@
# Copyright (c) 2022 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
set(DAWN_BUILD_HOST_LIBS "" CACHE INTERNAL ${DAWN_CACHE_TARGET})

View File

@ -1,6 +0,0 @@
# Copyright (c) 2022 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
set(DAWN_BUILD_HOST_LIBS "" CACHE INTERNAL ${DAWN_CACHE_TARGET})

View File

@ -1,49 +0,0 @@
find_path(GLFW_INCLUDE_DIR GLFW/glfw3.h
HINTS
ENV GLFWDIR
PATHS
"/usr"
"/usr/local"
"~/Library/Frameworks"
"/Library/Frameworks"
"/opt"
"$ENV{PROGRAMFILES}/glfw"
"$ENV{PROGRAMFILES}/glfw3"
PATH_SUFFIXES
include
)
# Search for the library
FIND_LIBRARY(GLFW_LIBRARY
NAMES
glfw glfw3 GLFW GLFW3
HINTS
ENV GLFWDIR
PATHS
"/usr"
"/usr/local"
"~/Library/Frameworks"
"/Library/Frameworks"
"/opt"
"$ENV{PROGRAMFILES}/glfw"
"$ENV{PROGRAMFILES}/glfw3"
PATH_SUFFIXES
lib
lib32
lib64
libs
lib-vc2012
lib-vc2013
lib-vc2015
lib-vc2017
lib-vc2019
lib-vc2022
)
INCLUDE(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(
GLFW
REQUIRED_VARS GLFW_LIBRARY GLFW_INCLUDE_DIR
)
mark_as_advanced(GLFW_LIBRARY GLFW_INCLUDE_DIR)

View File

@ -1,49 +0,0 @@
find_path(OPENAL_INCLUDE_DIR al.h
HINTS
ENV OPENALDIR
PATHS
"/usr"
"/usr/local"
"~/Library/Frameworks"
"/Library/Frameworks"
"/opt"
"$ENV{PROGRAMFILES}/openal"
"[HKEY_LOCAL_MACHINE\\SOFTWARE\\Creative\ Labs\\OpenAL\ 1.1\ Software\ Development\ Kit\\1.00.0000;InstallDir]"
PATH_SUFFIXES
include/AL
AL/AL
include/OpenAL
include
AL
OpenAL
)
# Search for the library
FIND_LIBRARY(OPENAL_LIBRARY
NAMES
OpenAL al openal OpenAL32
HINTS
ENV OPENALDIR
PATHS
"/usr"
"/usr/local"
"~/Library/Frameworks"
"/Library/Frameworks"
"/opt"
"$ENV{PROGRAMFILES}/openal"
"[HKEY_LOCAL_MACHINE\\SOFTWARE\\Creative\ Labs\\OpenAL\ 1.1\ Software\ Development\ Kit\\1.00.0000;InstallDir]"
PATH_SUFFIXES
lib
lib32
lib64
libs
${_OpenAL_ARCH_DIR}
)
INCLUDE(FindPackageHandleStandardArgs)
FIND_PACKAGE_HANDLE_STANDARD_ARGS(
OpenAL
REQUIRED_VARS OPENAL_LIBRARY OPENAL_INCLUDE_DIR
)
mark_as_advanced(OPENAL_LIBRARY OPENAL_INCLUDE_DIR)

View File

@ -1,14 +0,0 @@
# Copyright (c) 2022 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
# Now validate we have a build target for real
if(NOT DEFINED DAWN_BUILD_TARGET)
set(DAWN_BUILD_TARGET "target-rpg-linux-glfw" CACHE INTERNAL ${DAWN_CACHE_TARGET})
endif()
message("Building target ${DAWN_BUILD_TARGET}")
# Include the build target
add_subdirectory(${DAWN_BUILD_TARGET})

View File

@ -1,40 +0,0 @@
# CMake Targets
CMake Targets decide what you are intending to build. Targets are (usually) a
specific system, like vita, 3ds, switch, or a specific OS with a library, e.g.
targetting vulkan on linux vs targetting opengl on linux, or targetting opengl
on windows, etc.
In addition the target also decides what project(s) to build. Usually this is
just the specific game and/or systems to be built, so if you are building a VN
game the target would need to let the build system know you want to rollup the
VN parts of the engine also.
Note this is one of the very few build args that is required during the
configuration of cmake to make it build properly, failure to specify a target
will result in a build error.
```
-DDAWN_BUILD_TARGET=target-helloworld-linux64-glfw
```
## Target Systems
- vita
- linux
- osx
- windows
- emscripten (Web)
## Target Libraries
- vita (Includes OGL)
- glfw (Includes OGL)
- sdl2 (Includes OGL)
## Target games
- liminal
- helloworld
## Target Arcitectures
- vita (form of armv7)
- linux (x64 only)
- windows (x64 only)
- osx (targetting arm64 currently)

View File

@ -1,15 +0,0 @@
# Copyright (c) 2023 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
set(DAWN_BUILDING dawnhelloworld CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_BUILD_HOST_LIBS "" CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_EMSCRIPTEN true CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_GLFW true CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_NAME "HelloWorld" CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_EMSCRIPTEN_FLAGS "" CACHE INTERNAL ${DAWN_CACHE_TARGET})
# Ensures a .HTML file is generated.
set(CMAKE_EXECUTABLE_SUFFIX ".html" CACHE INTERNAL ${DAWN_CACHE_TARGET})

View File

@ -1,10 +0,0 @@
# Copyright (c) 2023 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
set(DAWN_BUILDING dawnhelloworld CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_LINUX true CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_GLFW true CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_NAME "HelloWorld" CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_ARCHIVE true CACHE INTERNAL ${DAWN_CACHE_TARGET})

View File

@ -1,21 +0,0 @@
# Copyright (c) 2023 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
set(DAWN_BUILDING dawnhelloworld CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_VITA true CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_BUILD_HOST_LIBS "" CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_NAME "HelloWorld" CACHE INTERNAL ${DAWN_CACHE_TARGET})
# Properties
set(DAWN_VITA_APP_NAME "Hello Vita" CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_VITA_TITLEID "DAWN00000" CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_VITA_VERSION "01.00" CACHE INTERNAL ${DAWN_CACHE_TARGET})
# Toolchain
if(DEFINED ENV{VITASDK})
set(CMAKE_TOOLCHAIN_FILE "$ENV{VITASDK}/share/vita.toolchain.cmake" CACHE INTERNAL ${DAWN_CACHE_TARGET})
else()
message(FATAL_ERROR "VITASDK Environment variable is missing! Either you do not have the VITASDK installed, or it is not set up with the env vars correctly.")
endif()

View File

@ -1,11 +0,0 @@
# Copyright (c) 2023 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
set(DAWN_BUILDING dawnrpg CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_LINUX true CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_GLFW true CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_NAME "DawnRPG" CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_ARCHIVE true CACHE INTERNAL ${DAWN_CACHE_TARGET})
set(DAWN_TARGET_TRUETYPE false CACHE INTERNAL ${DAWN_CACHE_TARGET})

View File

@ -1,340 +0,0 @@
# Compiling, Debugging and Running
This document's purpose is to explain how to compile, debug and run the project
on your machine. It is assumed that you have a basic understanding of the
fundamentals of your operating system and how to use a terminal.
## Preamble
The Dawn project is written almost entirely in C and C++. This includes all of
the tooling used to generate the project and assets. The only non-C/C++ code is
used by CMake to generate the output compilation files. This provides the Dawn
project an extremely high level of portability not typically seen in other
projects.
## TLDR; Version
This document is going to go over the installation and configuration of the
following items. If you are already familiar with these tools, you can skip to
the "Downloading the Source Code" section.
- C/C++ Compiler
- CMake
- Git
- IDE
You may also need *python*, since we depend on third-party libraries that may use
python scripts to generate their own build files. This is not required for the
Dawn project itself.
## Pre-Configuration
In order to compile the Dawn project, you are required to have the following
tools installed on your machine.
### 1. A C/C++ Compiler
The exact tool(s) will depend on your specific scenario. The compiler is used to
take the .cpp/.hpp files and generating binaries that execute on the target
machine. Typically you will use your own C/C++ compiler for the machine that you
are currently running, e.g. if you are running Windows, you will use the Visual
Studio compiler. If you are running Linux, you will use GCC or Clang. If you are
running macOS, you will use Clang, and so-on.
If you are intending to compile on a different machine than the one you are
currently running, you will need to use a cross-compiler that is specific for
your use-case. You will also need to refer to the documentation for creating a
new Dawn engine target.
Please follow the instructions for your specific operating system to install the
appropriate C/C++ compiler.
**Windows**
You will need to download and install [Visual Studio](https://visualstudio.microsoft.com/downloads/).
Visual Studio (not to be confused with Visual Studio Code) is a full IDE that
bundles the official Microsoft C/C++ compiler. It is the recommended compiler
for building the Dawn project on Windows.
Advanced used can also use [MinGW](http://www.mingw.org/) or another compiler if
they wish, however this is not officially supported.
After installing Visual Studio, you will need to install the C++ development
tools. This can be done by opening the Visual Studio Installer and selecting
the "Desktop development with C++" workload.
**Linux**
You will need to install the GCC and Clang compilers. The compilers are usually
installed either by default or by installing the necessary packages for your
Linux distribution.
For example, on Ubuntu, you can install the GCC and Clang compilers by running
the following command:
```bash
sudo apt install build-essential clang
```
On Arch Linux, you can install the GCC and Clang compilers by running the
following command:
```bash
sudo pacman -S base-devel clang
```
And on Fedora, you can install the GCC and Clang compilers by running the
following command:
```bash
sudo dnf install @development-tools clang
```
For other distributions, please refer to your distribution's documentation.
**macOS**
You will need to install the Xcode command line tools. This can be done by done
by running the following command in your terminal:
```bash
xcode-select --install
```
Afterwards you will need to install and enable [Brew](https://brew.sh/). This
can be done by running the following command in your terminal:
```bash
/bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"
```
### 2. CMake
CMake is a tool that is used to generate the compilation files for the Dawn
project. In short this is used to create versions of the Dawn project that can
be compiled on all different sets of compilers, so if you are compiling on, for
example, Windows, you can use CMake to generate the compilation files for the
Visual Studio compiler, or if you are compiling on Linux, you can use CMake to
generate the compilation files for the GCC or Clang compilers, and so-on.
To install CMake, please follow the instructions for your specific operating
system. All other operating systems can be found on the [CMake downloads page](https://cmake.org/download/).
**Windows**
You will need to download and install [CMake](https://cmake.org/download/). The
installer will guide you through the installation process and will install the
CMake executable to your system. It is recommended that you add CMake to your
system PATH if requested by the installer.
**Linux**
Like installing the C/C++ compilers, you will need to install CMake using your
specific Linux distribution's package manager, there is also a chance that CMake
can be installed using flatpak or snap. Please refer to your distribution's
documentation for more information.
For Ubuntu and other Debian-based distributions, you can install CMake by using
the following command:
```bash
sudo apt install cmake
```
For Arch Linux, you can install CMake by using the following command:
```bash
sudo pacman -S cmake
```
And for Fedora, you can install CMake by using the following command:
```bash
sudo dnf install cmake
```
**macOS**
You will install CMake using brew. We detailed how to install brew in the C/C++
compiler section. To install CMake, run the following command in your terminal:
```bash
brew install cmake
```
### 3. Git
Git is a version control system that is used to manage the Dawn project's source
code. It is used to download the source code, and to update the source code to
the latest version. It is also used to manage the project's dependencies. Git is
a standard tool in the programming industry and is used to manage complex
projects, especially those that are worked on by multiple people.
Git, like all of the above tools, is installed slightly differently depending on
your operating system. Please follow the instructions for your specific
operating system.
**Windows**
You will need to download and install [Git](https://git-scm.com/downloads). The
installer will guide you through the installation process and will install the
Git executable to your system. It is recommended that you add Git to your system
PATH if requested by the installer. You do not need to add the Context-menu
items to your system.
**Linux**
Like installing the C/C++ compilers, you will need to install Git using your
specific Linux distribution's package manager. It is also likely that git would
have been installed by default. Please refer to your distribution's docs for
more information.
For Ubuntu and other Debian-based distributions, you can install Git by using
the following command:
```bash
sudo apt install git
```
For Arch Linux, you can install Git by using the following command:
```bash
sudo pacman -S git
```
And for Fedora, you can install Git by using the following command:
```bash
sudo dnf install git
```
**macOS**
You will install Git using brew. We detailed how to install brew in the C/C++
compiler section. To install Git, run the following command in your terminal:
```bash
brew install git
```
### 4. An IDE
An IDE (Integrated Development Environment) is a tool that is used to view and
edit code of projects. While it is not required to use an IDE, it is recommended
since it can make the process of editing and running the project much easier.
There are many different IDEs available, and often people chose an IDE that will
suit their preferences and needs, however if you are unsure of which IDE you
should be using, the Dawn project recommends using [Visual Studio Code](https://code.visualstudio.com/),
not to be confused with Visual Studio.
Visual Studio Code is a free and open-source IDE that is widely used in the
industry for its simple, modern and configurable interface. For example you can
configure VSCode to work on Web Projects, Game Projects, and more. It acts like
a text editor with a bunch of extra tools.
In addition to installing the VSCode IDE, we will add several recommended
plugins that will make editing the Dawn project easier and more seamless.
To install VSCode follow the instructions for your specific operating system on
the [VSCode downloads page](https://code.visualstudio.com/download), as it can
vary a lot between operating systems.
After installing VSCode, you will need to install the following plugins, by
clicking on the "Extensions" icon on the left-hand side of the VSCode window,
and searching for the following plugins. You may also be able to click on the
following links to install the plugins directly, but it may not work.
- [C/C++](https://marketplace.visualstudio.com/items?itemName=ms-vscode.cpptools)
- [CMake](https://marketplace.visualstudio.com/items?itemName=twxs.cmake)
- [CMake Tools](https://marketplace.visualstudio.com/items?itemName=ms-vscode.cmake-tools)
## Downloading the Source Code
Now that you have all of the necessary tools installed, you can download the
source code of the project and using it to build. The source code contains all
of the code of the project, as well as the assets and the build scripts. This is
confidential information and should not be shared with anyone.
### 1. Cloning the Repository
We previously installed the git tool, which is used to download the source code
of the project, and some third-party libraries. To download the source code, you
will need to open a terminal and navigate to the directory where you want to
download the source code to.
Afterwards, you will need to run the following command:
```bash
git clone https://git.wish.moe/YourWishes/Dawn.git
```
This will download the source code of the project to a new subdirectory called
"Dawn" and put all of the projects' source code within there.
### 2. Installing the Dependencies / Libraries.
I try to keep dependencies on third-party libraries to a minimum, however there
are a few libraries that are required to build the Dawn project. These libraries
are not included in the source code, and must be downloaded separately. This is
done using the git tool.
After you have cloned the above repository, you will need to open a terminal and
navigate to the directory where you downloaded the source code to. Afterwards,
you will need to run the following command:
```bash
git submodule update --init --recursive
```
This will fetch all of the third-party libraries that are required to build the
Dawn project. This may take a while depending on your internet connection.
### 3. Loading the Project
This step is semi-optional. We are aiming to build the project using CMake, and
the easiest way to do this is to use the CMake Tools plugin for VSCode that we
installed earlier. This plugin will automatically detect the CMake files in the
project and will allow us to build the project using the VSCode interface.
If you opted out of using VSCode, you will need to set up your CMake environment
to suit your IDE or needs. This is outside of the scope of this document, and
you will need to refer to your IDE's documentation for more information.
To load the project, you will need to open VSCode and open the Dawn project
directory. Most operating systems will allow you to do this by dragging the
Dawn project directory onto the VSCode window. If this does not work, you can
open VSCode and click on the "File" menu, and click on "Open Folder". You will
then need to navigate to the Dawn project directory and click "Open".
Afterwards you will likely be prompted autometically to configure the CMake
Tools plugin. If you are not, you can click on the "CMake" icon on the left-hand
side of the VSCode window, and click on "Configure". This will configure the
CMake Tools plugin to use the CMake files in the Dawn project directory.
You may also be asked to select a compiler. If you are using Windows, you will
need to select the Visual Studio compiler. If you are using Linux, you will need
to select the GCC or Clang compiler. If you are using macOS, you will need to
select the Clang compiler. If you are using a different compiler, you will need
to select the appropriate compiler.
If prompted to select a build type, select "Debug".
## Compiling the Project
Now that we have the project loaded into our IDE, we can compile the project.
This is done using the CMake Tools plugin for VSCode. If you are not using
VSCode you will need to refer to your IDE's documentation for more information.
Firstly, you will need to create a settings file to configure the project. In
VSCode you can create a new folder called `.vscode` (Including the leading `.`)
in the Dawn project root directory. Afterwards, you will need to create a new
file called `settings.json` in the `.vscode` directory. You will then need to
paste the following into the file:
```json
{
"cmake.configureArgs": [
"-DDAWN_BUILD_TOOLS=true",
"-DDAWN_BUILD_TARGET=target-liminal-win32-glfw",
"-DDAWN_DEBUG_BUILD=true"
]
}
```
And save the file. You may want to alter the values to suit your needs. For
example, if you are compiling on Linux, you will need to change
`target-liminal-win32-glfw` to `target-liminal-linux-glfw`. If you are compiling
on macOS, you will need to change it to `target-liminal-osx-glfw`. The specific
configure arguments are outside of the scope of this document, and you will need
to refer to the specific target documentation for more information.
After you have created the settings file, you will need to configure and build
the project. To perform the build you need to click "Build" button the bottom of
the VSCode window. This will compile the project and will output the resulting
binaries in to a "build" directory within the Dawn project directory.
Upon clicking the "Build" button, you will see an output panel appear at the
bottom of the VSCode window. This will show the process of the build, and will
show any errors that may occur. This is used to debug and fix any issues that
may occur during the build process.
If the build was successful, you will see a "Build finished" message in the
output panel, typically read as;
```bash
[build] Build finished with exit code 0
```
If you do not see this message, or if the exit code is not 0, you will need to
debug the issue. The output panel will show the error message which is helpful
so we can debug the issue. If you are unable to debug the issue, you can ask for
help in the Discord server.
## Running the built project
After the build process succeeds you will be able to run the project. This is
done by clicking on the Run icon, which looks like a play button, on the bottom
of the VSCode window. This will run the project in production mode and will not
show any debug information.
If the program hangs, crashes or does not run, you can click the Debug icon,
which looks like a ladybug, on the bottom of the VSCode window. This will run
the project in debug mode and will show debug information and HALT the program
if there is an error detected. If program HALTS in debug mode you can use this
information to debug the issue. If you are unable to debug the issue, you can
ask for help in the Discord server.

View File

@ -3,39 +3,17 @@
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
# Custom variables
set(
DAWN_TARGET_DEPENDENCIES_LAST
CACHE INTERNAL ${DAWN_CACHE_TARGET}
)
# Build Project
add_executable(${DAWN_TARGET_NAME})
# Change what we are building. Pulled from the cmake/targets dir.
if(DEFINED DAWN_BUILDING)
add_subdirectory(${DAWN_BUILDING})
# Validate game project includes the target name
if(NOT DEFINED DAWN_TARGET_NAME)
message(FATAL_ERROR "You need to define a target name")
endif()
# Validate game project includes the target name
if(DEFINED DAWN_TARGET_NAME)
# Add in base library
add_subdirectory(dawn)
# Compile entry targets
if(DAWN_TARGET_WIN32)
add_subdirectory(dawnwin32)
elseif(DAWN_TARGET_LINUX)
add_subdirectory(dawnlinux)
elseif(DAWN_TARGET_OSX)
add_subdirectory(dawnosx)
elseif(DAWN_TARGET_VITA)
add_subdirectory(dawnvita)
elseif(DAWN_TARGET_EMSCRIPTEN)
add_subdirectory(dawnemscripten)
else()
message(FATAL_ERROR "You need to define an entry target")
endif()
add_subdirectory(dawnrpg)
# Host Libraries
target_link_libraries(${DAWN_TARGET_NAME}
@ -44,34 +22,11 @@ if(DEFINED DAWN_TARGET_NAME)
)
# Compile support targets
if(DAWN_TARGET_GLFW)
if(DAWN_TARGET_LINUX)
add_subdirectory(dawnglfw)
add_subdirectory(dawnopengl)
endif()
if(DAWN_TARGET_TRUETYPE)
add_subdirectory(dawntruetype)
endif()
if(DAWN_TARGET_SDL2)
add_subdirectory(dawnsdl2)
add_subdirectory(dawnopengl)
endif()
if(DAWN_TARGET_VITA)
add_subdirectory(dawnopengl)
endif()
if(DAWN_TARGET_OPENAL)
add_subdirectory(dawnopenal)
endif()
# Late definitions, used by tools
if(NOT DAWN_TARGET_DEPENDENCIES_LAST)
else()
add_dependencies(${DAWN_TARGET_NAME} ${DAWN_TARGET_DEPENDENCIES_LAST})
add_subdirectory(dawnlinux)
endif()
# Compress the game assets.
add_dependencies(${DAWN_TARGET_NAME} dawnassets)
endif()

View File

@ -6,8 +6,10 @@
# Libraries
target_link_libraries(${DAWN_TARGET_NAME}
PUBLIC
glm
archive_static
glm::glm
nlohmann_json::nlohmann_json
freetype
)
# Includes

View File

@ -67,6 +67,35 @@ AssetDataLoader::AssetDataLoader(std::string fileName) : fileName(fileName) {
);
}
size_t AssetDataLoader::getSize() {
assertTrue(this->assetArchiveEntry != nullptr, "AssetDataLoader::getSize: Entry is NULL!");
assertTrue(archive_entry_size_is_set(assetArchiveEntry), "assetGetSize: Entry size is not set!");
return archive_entry_size(assetArchiveEntry);
}
size_t AssetDataLoader::getPosition() {
assertNotNull(this->assetArchiveFile, "AssetDataLoader::getPosition: File is not open!");
return this->position;
}
std::string AssetDataLoader::getEntireContentsAsString() {
if(!this->isOpen()) {
this->open();
} else {
this->rewind();
}
std::string buffer;
buffer.resize(this->getSize());
this->read((uint8_t*)buffer.data(), buffer.size());
this->close();
return buffer;
}
bool_t AssetDataLoader::isOpen() {
return this->assetArchive != nullptr;
}
void AssetDataLoader::open() {
assertNull(this->assetArchiveFile, "AssetDataLoader::open: File is already open");
assertNull(this->assetArchive, "AssetDataLoader::open: Archive is already open");
@ -156,12 +185,6 @@ size_t AssetDataLoader::readUntil(
return i;
}
size_t AssetDataLoader::getSize() {
assertTrue(this->assetArchiveEntry != nullptr, "AssetDataLoader::getSize: Entry is NULL!");
assertTrue(archive_entry_size_is_set(assetArchiveEntry), "assetGetSize: Entry size is not set!");
return archive_entry_size(assetArchiveEntry);
}
size_t AssetDataLoader::skip(size_t n) {
assertTrue(n >= 0, "AssetDataLoader::skip: Byte count must be greater than 0.");
@ -185,16 +208,14 @@ size_t AssetDataLoader::setPosition(const size_t position) {
}
void AssetDataLoader::rewind() {
assertTrue(this->isOpen(), "Asset is not open!");
if(this->position == 0) return;
// TODO: See if I can optimize this
this->close();
this->open();
}
size_t AssetDataLoader::getPosition() {
assertNotNull(this->assetArchiveFile, "AssetDataLoader::getPosition: File is not open!");
return this->position;
}
AssetDataLoader::~AssetDataLoader() {
if(this->assetArchiveFile != nullptr) this->close();
}

View File

@ -90,6 +90,33 @@ namespace Dawn {
*/
AssetDataLoader(std::string filename);
/**
* Get the size of the asset.
* @return The size of the asset in bytes.
*/
size_t getSize();
/**
* Returns the current position of the read head.
*
* @return The current read head position.
*/
size_t getPosition();
/**
* Get the entire contents of the asset as a string.
*
* @return The entire contents of the asset as a string.
*/
std::string getEntireContentsAsString();
/**
* Check if the asset is open.
*
* @return True if the asset is open, otherwise false.
*/
bool_t isOpen();
/**
* Platform-centric method to open a file buffer to an asset.
*/
@ -124,12 +151,6 @@ namespace Dawn {
const char_t delimiter
);
/**
* Get the size of the asset.
* @return The size of the asset in bytes.
*/
size_t getSize();
/**
* Skips the read head forward to a given position.
*
@ -151,13 +172,6 @@ namespace Dawn {
*/
size_t setPosition(const size_t absolutePosition);
/**
* Returns the current position of the read head.
*
* @return The current read head position.
*/
size_t getPosition();
/**
* Cleanup the asset loader.
*/

View File

@ -92,11 +92,24 @@ namespace Dawn {
* @param fontSize The font size to get the truetype asset of.
* @return The asset loader for the given asset.
*/
template<class T>
std::shared_ptr<T> get(
const std::string filename,
const uint32_t fontSize
);
// std::shared_ptr<TrueTypeTexture> get(
// const std::string filename,
// const uint32_t fontSize
// ) {
// auto existing = this->getExisting<TrueTypeLoader>(filename);
// if(existing) {
// // Check pointer hasn't gone stale, if it has remove it and create new.
// auto texture = existing->getTexture(fontSize);
// if(texture) return texture;
// this->removeExisting(filename);
// }
// std::shared_ptr<TrueTypeLoader> loader = std::make_shared<TrueTypeLoader>(
// filename
// );
// pendingAssetLoaders.push_back(std::static_pointer_cast<AssetLoader>(loader));
// return loader->getTexture(fontSize);
// }
/**
* Dispose the asset manager, and all attached assets.

View File

@ -7,4 +7,6 @@
target_sources(${DAWN_TARGET_NAME}
PRIVATE
TextureLoader.cpp
JSONLoader.cpp
TrueTypeLoader.cpp
)

View File

@ -0,0 +1,33 @@
// Copyright (c) 2024 Dominic Masters
//
// This software is released under the MIT License.
// https://opensource.org/licenses/MIT
#include "JSONLoader.hpp"
using namespace Dawn;
JSONLoader::JSONLoader(const std::string name) :
AssetLoader(name),
loader(name),
state(JSONLoaderState::INITIAL)
{
}
void JSONLoader::updateAsync() {
if(this->state != JSONLoaderState::INITIAL) return;
this->state = JSONLoaderState::LOADING_JSON;
std::string jsonContents = loader.getEntireContentsAsString();
this->data = json::parse(jsonContents);
this->state = JSONLoaderState::DONE;
this->loaded = true;
}
void JSONLoader::updateSync() {
}
JSONLoader::~JSONLoader() {
}

View File

@ -0,0 +1,33 @@
// Copyright (c) 2024 Dominic Masters
//
// This software is released under the MIT License.
// https://opensource.org/licenses/MIT
#pragma once
#include "asset/AssetLoader.hpp"
#include "asset/AssetDataLoader.hpp"
#include <nlohmann/json.hpp>
using json = nlohmann::json;
namespace Dawn {
enum class JSONLoaderState {
INITIAL,
LOADING_JSON,
DONE
};
class JSONLoader : public AssetLoader {
protected:
AssetDataLoader loader;
enum JSONLoaderState state;
public:
json data;
JSONLoader(const std::string name);
void updateSync() override;
void updateAsync() override;
~JSONLoader();
};
}

View File

@ -14,3 +14,4 @@ target_sources(${DAWN_TARGET_NAME}
# Subdirs
add_subdirectory(mesh)
add_subdirectory(shader)
add_subdirectory(font)

View File

@ -5,5 +5,6 @@
target_sources(${DAWN_TARGET_NAME}
PRIVATE
UILabel.cpp
UIRectangle.cpp
)

View File

@ -1,20 +0,0 @@
# Copyright (c) 2022 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
# Includes
target_include_directories(${DAWN_TARGET_NAME}
PUBLIC
${CMAKE_CURRENT_LIST_DIR}
)
target_link_libraries(${DAWN_TARGET_NAME}
PUBLIC
freetype
)
# Subdirs
add_subdirectory(asset)
add_subdirectory(display)
add_subdirectory(ui)

View File

@ -1,27 +0,0 @@
// Copyright (c) 2024 Dominic Masters
//
// This software is released under the MIT License.
// https://opensource.org/licenses/MIT
#include "AssetManager.hpp"
#include "loaders/TrueTypeLoader.hpp"
template<>
std::shared_ptr<TrueTypeTexture> AssetManager::get<TrueTypeTexture>(
const std::string filename,
const uint32_t fontSize
) {
auto existing = this->getExisting<TrueTypeLoader>(filename);
if(existing) {
// Check pointer hasn't gone stale, if it has remove it and create new.
auto texture = existing->getTexture(fontSize);
if(texture) return texture;
this->removeExisting(filename);
}
std::shared_ptr<TrueTypeLoader> loader = std::make_shared<TrueTypeLoader>(
filename
);
pendingAssetLoaders.push_back(std::static_pointer_cast<AssetLoader>(loader));
return loader->getTexture(fontSize);
}

View File

@ -1,11 +0,0 @@
# Copyright (c) 2024 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
target_sources(${DAWN_TARGET_NAME}
PRIVATE
AssetManagerTrueType.cpp
)
add_subdirectory(loaders)

View File

@ -1,10 +0,0 @@
# Copyright (c) 2024 Dominic Msters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
# Sources
target_sources(${DAWN_TARGET_NAME}
PRIVATE
TrueTypeLoader.cpp
)

View File

@ -1,6 +0,0 @@
# Copyright (c) 2024 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
add_subdirectory(font)

View File

@ -1,6 +0,0 @@
# Copyright (c) 2024 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
add_subdirectory(elements)

View File

@ -1,9 +0,0 @@
# Copyright (c) 2023 Dominic Masters
#
# This software is released under the MIT License.
# https://opensource.org/licenses/MIT
target_sources(${DAWN_TARGET_NAME}
PRIVATE
UILabel.cpp
)

View File

@ -9,7 +9,9 @@ import tarfile
import argparse
# Args
parser = argparse.ArgumentParser(description='Bundles all assets into the internal archive format.')
parser = argparse.ArgumentParser(
description='Bundles all assets into the internal archive format.'
)
parser.add_argument('-i', '--input');
parser.add_argument('-o', '--output');
args = parser.parse_args()
@ -24,7 +26,7 @@ if not os.path.exists(os.path.dirname(args.output)):
# Does the archive already exist?
filesInArchive = []
if os.path.exists(args.output):
if os.path.exists(args.output) and False:
# Yes, open it
archive = tarfile.open(args.output, 'r:')